請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89657
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施養信 | zh_TW |
dc.contributor.advisor | Yang-hsin Shih | en |
dc.contributor.author | 王芸珍 | zh_TW |
dc.contributor.author | Yun-Chen Wang | en |
dc.date.accessioned | 2023-09-15T16:07:00Z | - |
dc.date.available | 2023-09-16 | - |
dc.date.copyright | 2023-09-15 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Ahmaruzzaman, M., Sharma, D., 2005. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science 287, 14-24. Alimi, O.S., Farner Budarz, J., Hernandez, L.M., Tufenkji, N., 2018. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ Sci Technol 52, 1704-1724. Andrady, A.L., Neal, M.A., 2009a. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1977-1984. Andrady, A.L., Neal, M.A., 2009b. Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci 364, 1977-1984. Bakir, A., Rowland, S.J., Thompson, R.C., 2014. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185, 16-23. Battaglin, W.A., Sandstrom, M.W., Kuivila, K.M., Kolpin, D.W., Meyer, M.T., 2011. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water, Air, & Soil Pollution 218, 307-322. Besseling, E., Foekema, E.M., Van Franeker, J.A., Leopold, M.F., Kuhn, S., Bravo Rebolledo, E.L., Hesse, E., Mielke, L., J, I.J., Kamminga, P., Koelmans, A.A., 2015. Microplastic in a macro filter feeder: Humpback whale Megaptera novaeangliae. Mar Pollut Bull 95, 248-252. Bodirlau, R., Teaca, C.A., Spiridon, I., 2009. Preparation and characterization of composites comprising modified hardwood and wood polymers/poly (vinyl chloride). BioResources 4, 1285-1304. Boyd, G., Adamson, A.W., Myers Jr, L., 1947. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1. Journal of the American Chemical Society 69, 2836-2848. Bozdogan, A.M., 2014. Assessment of total risk on non-target organisms in fungicide application for agricultural sustainability. Sustainability 6, 1046-1058. Brenner, C.G., Mallmann, C.A., Arsand, D.R., Mayer, F.M., Martins, A.F., 2011. Determination of sulfamethoxazole and trimethoprim and their metabolites in hospital effluent. CLEAN–Soil, Air, Water 39, 28-34. Brown, T.N., 2021. Empirical regressions between system parameters and solute descriptors of polyparameter linear free energy relationships (PPLFERs) for predicting solvent-air partitioning. Fluid Phase Equilibria 540, 113035. Busca, G., Berardinelli, S., Resini, C., Arrighi, L., 2008. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of hazardous materials 160, 265-288. Caldas, S.S., Demoliner, A., Costa, F.P., D'Oca, M.G., Primel, E.G., 2010. Pesticide residue determination in groundwater using solid-phase extraction and high-performance liquid chromatography with diode array detector and liquid chromatography-tandem mass spectrometry. Journal of the Brazilian Chemical Society 21, 642-650. Caron, F., Wehrle, V., Etienne, M., 2017. The comeback of trimethoprim in France. Medecine et maladies infectieuses 47, 253-260. Ceresana, 2014. Market Study: Polypropylene. Constance Germany. Chang-hu, L., 2012. Determination of n-Octanol/Water Partition Coefficient of Melamine. Guizhou Science. Chen, X., Gu, X., Bao, L., Ma, S., Mu, Y., 2021. Comparison of adsorption and desorption of triclosan between microplastics and soil particles. Chemosphere 263, 127947. Chen, Y., Qian, Y., Shi, Y., Wang, X., Tan, X., An, D., 2022. Accumulation of chiral pharmaceuticals (ofloxacin or levofloxacin) onto polyethylene microplastics from aqueous solutions. Science of The Total Environment 823, 153765. Chen, Z., Guo, X., Liu, Y., Zhang, W., Tang, X., Zheng, Y., Wang, Y., Li, L., Wang, Z., Zhao, Y., 2019. Facile preparation of graphene nanowalls/EVA hybrid film for ultraflexible transparent electrodes. Journal of Solid State Electrochemistry 23, 1473-1480. Cho, C.-W., Zhao, Y., Yun, Y.-S., 2019. QSAR modelling for predicting adsorption of neutral, cationic, and anionic pharmaceuticals and other neutral compounds to microalgae Chlorella vulgaris in aquatic environment. Water research 151, 288-295. Cole, M., Lindeque, P., Fileman, E., Halsband, C., Galloway, T.S., 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49, 1130-1137. Commission, E., 2014. COMMISSION REGULATION (EU) No 358/2014 of 9 April 2014 amending Annexes II and V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products. Official Journal of the European Union. Corrales, J., Kristofco, L.A., Steele, W.B., Yates, B.S., Breed, C.S., Williams, E.S., Brooks, B.W., 2015. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose Response 13, 1559325815598308. Demoliner, A., Caldas, S.S., Costa, F.P., Gonçalves, F.F., Clementin, R.M., Milani, M.R., Primel, E.G., 2010. Development and validation of a method using SPE and LC-ESI-MS-MS for the determination of multiple classes of pesticides and metabolites in water samples. Journal of the Brazilian Chemical Society 21, 1424-1433. Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin, B., 2015. Microplastic contamination in an urban area: a case study in Greater Paris. Environmental Chemistry 12, 592-599. Elizalde-Velazquez, A., Subbiah, S., Anderson, T.A., Green, M.J., Zhao, X., Canas-Carrell, J.E., 2020. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics. Sci Total Environ 715, 136974. Enders, K., Lenz, R., Stedmon, C.A., Nielsen, T.G., 2015. Abundance, size and polymer composition of marine microplastics >/=10mum in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull 100, 70-81. Endo, S., Droge, S.T., Goss, K.-U., 2011. Polyparameter linear free energy models for polyacrylate fiber− water partition coefficients to evaluate the efficiency of solid-phase microextraction. Analytical chemistry 83, 1394-1400. Endo, S., Koelmans, A.A., 2016. Sorption of hydrophobic organic compounds to plastics in the marine environment: equilibrium. Hazardous chemicals associated with plastics in the marine environment, 185-204. Faleye, A., Adegoke, A., Ramluckan, K., Fick, J., Bux, F., Stenström, T., 2019. Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Science of The Total Environment 678, 10-20. Fred-Ahmadu, O.H., Bhagwat, G., Oluyoye, I., Benson, N.U., Ayejuyo, O.O., Palanisami, T., 2020. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci Total Environ 706, 135978. Frias, J.P., Sobral, P., Ferreira, A.M., 2010. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar Pollut Bull 60, 1988-1992. Fu, L., Li, J., Wang, G., Luan, Y., Dai, W., 2021. Adsorption behavior of organic pollutants on microplastics. Ecotoxicology and Environmental Safety 217, 112207. Galimberti, D., Quarti, C., Milani, A., Brambilla, L., Civalleri, B., Castiglioni, C., 2013. IR spectroscopy of crystalline polymers from ab initio calculations: Nylon 6,6. Vibrational Spectroscopy 66, 83-92. Gao, X., Xu, Y., Ma, M., Rao, K., Wang, Z., 2019. Simultaneous passive sampling of hydrophilic and hydrophobic emerging organic contaminants in water. Ecotoxicol Environ Saf 178, 25-32. Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Science advances 3, e1700782. Glausiusz, J., 2014. The plastics puzzle. Nature 508, 306. Godoy, V., Martín-Lara, M.A., Calero, M., Blázquez, G., 2020. The relevance of interaction of chemicals/pollutants and microplastic samples as route for transporting contaminants. Process Safety and Environmental Protection 138, 312-323. Gonsioroski, A., Mourikes, V.E., Flaws, J.A., 2020. Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int J Mol Sci 21. Good, T.P., June, J.A., Etnier, M.A., Broadhurst, G., 2010. Derelict fishing nets in Puget Sound and the Northwest Straits: Patterns and threats to marine fauna. Marine Pollution Bulletin 60, 39-50. Graham, D.B., Tripp, J., 2021. Ofloxacin. StatPearls [Internet]. StatPearls Publishing. Gulmine, J., Janissek, P., Heise, H., Akcelrud, L., 2002. Polyethylene characterization by FTIR. Polymer testing 21, 557-563. Guo, X., Chen, C., Wang, J., 2019a. Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere 228, 300-308. Guo, X., Liu, Y., Wang, J., 2019b. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study. Mar Pollut Bull 145, 547-554. Guo, X., Wang, J., 2019. Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar Pollut Bull 149, 110511. Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S., Xing, B., 2012. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition. Environ Sci Technol 46, 7252-7259. Halden, R.U., Lindeman, A.E., Aiello, A.E., Andrews, D., Arnold, W.A., Fair, P., Fuoco, R.E., Geer, L.A., Johnson, P.I., Lohmann, R., 2017. The Florence statement on triclosan and triclocarban. Environmental health perspectives 125, 064501. Halden, R.U., Paull, D.H., 2005. Co-occurrence of triclocarban and triclosan in US water resources. Environmental science & technology 39, 1420-1426. Hartmann, N.B., Rist, S., Bodin, J., Jensen, L.H., Schmidt, S.N., Mayer, P., Meibom, A., Baun, A., 2017. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13, 488-493. Hernandez, L.M., Xu, E.G., Larsson, H.C.E., Tahara, R., Maisuria, V.B., Tufenkji, N., 2019. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ Sci Technol 53, 12300-12310. Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H., Laursen, D., Zettler, E.R., Farrington, J.W., Reddy, C.M., Peacock, E.E., Ward, M.W., 2011. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62, 1683-1692. Ho, Y.-S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process biochemistry 34, 451-465. Hong, X., Zheng, Y., Zhang, X., Wu, X., 2020. Preparation of graphene intercalated magnesium silicate for enhancing the thermal stability and thermal conductivity of ethylene-vinyl acetate copolymer. Polymer 193, 122332. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586, 127-141. Hu, B., Li, Y., Jiang, L., Chen, X., Wang, L., An, S., Zhang, F., 2020. Influence of microplastics occurrence on the adsorption of 17beta-estradiol in soil. J Hazard Mater 400, 123325. Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., van der Ploeg, M., Besseling, E., Koelmans, A.A., Geissen, V., 2016. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50, 2685-2691. Huffer, T., Hofmann, T., 2016. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ Pollut 214, 194-201. Hummel, D., Fath, A., Hofmann, T., Hüffer, T., 2021. Additives and polymer composition influence the interaction of microplastics with xenobiotics. Environmental Chemistry 18. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science 347, 768-771. Juncker, J., 2016. Commission impementing decision not approving triclosan as an existing active substance for use in biocidal products for product-type 1. 528/2012. Kang, C.-Q., Meng, Q.-Y., Dang, W., Shao, Y.-J., Lu, H.-L., 2022. Effects of chronic exposure to the fungicide vinclozolin on gut microbiota community in an aquatic turtle. Ecotoxicology and Environmental Safety 239, 113621. Kapur, M., Mondal, M.K., 2013. Mass transfer and related phenomena for Cr (VI) adsorption from aqueous solutions onto Mangifera indica sawdust. Chemical Engineering Journal 218, 138-146. Karami, A., Romano, N., Galloway, T., Hamzah, H., 2016. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus). Environ Res 151, 58-70. Karapanagioti, H.K., Werner, D., 2018. Sorption of hydrophobic organic compounds to plastics in the marine environment: sorption and desorption kinetics. Hazardous chemicals associated with plastics in the marine environment. Springer, pp. 205-219. Kaur, G., Singh, N., Rajor, A., Kushwaha, J.P., 2021. Deep eutectic solvent functionalized rice husk ash for effective adsorption of ofloxacin from aqueous environment. Journal of Contaminant Hydrology 242, 103847. Kaur, H., Bansiwal, A., Hippargi, G., Pophali, G.R., 2018. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism. Environ Sci Pollut Res Int 25, 20473-20485. Khan, G.A., Berglund, B., Khan, K.M., Lindgren, P.-E., Fick, J., 2013. Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities–a study in Pakistan. PloS one 8, e62712. Kong, F., Xu, X., Xue, Y., Gao, Y., Zhang, L., Wang, L., Jiang, S., Zhang, Q., 2021a. Investigation of the Adsorption of Sulfamethoxazole by Degradable Microplastics Artificially Aged by Chemical Oxidation. Arch Environ Contam Toxicol 81, 155-165. Kong, F., Xu, X., Xue, Y., Gao, Y., Zhang, L., Wang, L., Jiang, S., Zhang, Q., 2021b. Investigation of the Adsorption of Sulfamethoxazole by Degradable Microplastics Artificially Aged by Chemical Oxidation. Archives of environmental contamination and toxicology 81, 155-165. Kovács, K., Tóth, T., Wojnárovits, L., 2022. Evaluation of advanced oxidation processes for β-blockers degradation: a review. Water Science and Technology 85, 685-705. López-Serna, R., Kasprzyk-Hordern, B., Petrović, M., Barceló, D., 2013. Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (South Spain) by chiral liquid chromatography coupled with tandem mass spectrometry. Analytical and Bioanalytical Chemistry 405, 5859-5873. Lagergren, S., 1898. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar 24, 1-39. Leadbitter, J., 2002. PVC and sustainability. Progress in Polymer Science 27, 2197-2226. Lehutso, R.F., Daso, A.P., Okonkwo, J.O., 2017. Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa. Emerging Contaminants 3, 107-114. Leri, A.C., Pavia, A.P., 2022a. Analysis of Plastic Waste for Sorting in Recycling Plants: An Inquiry-Based FTIR Spectroscopy Experiment for the Organic Chemistry Laboratory. Journal of Chemical Education 99, 1008-1013. Leri, A.C., Pavia, A.P., 2022b. Analysis of Plastic Waste for Sorting in Recycling Plants: An Inquiry-Based FTIR Spectroscopy Experiment for the Organic Chemistry Laboratory. Journal of Chemical Education. Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Garcia-Vallejo, J.J., Lamoree, M.H., 2022. Discovery and quantification of plastic particle pollution in human blood. Environ Int, 107199. Li, H., Wang, F., Li, J., Deng, S., Zhang, S., 2021. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 264, 128556. Li, J., Zhang, K., Zhang, H., 2018. Adsorption of antibiotics on microplastics. Environ Pollut 237, 460-467. LI, W.C., Tse, H., Fok, L., 2016. Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the total environment 566, 333-349. Li, Y., Li, M., Li, Z., Yang, L., Liu, X., 2019. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic. Chemosphere 231, 308-314. Lindberg, R.H., Östman, M., Olofsson, U., Grabic, R., Fick, J., 2014. Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system. Water research 58, 221-229. Liu, C., Wang, Q., 2000. Solid‐phase grafting of hydroxymethyl acrylamide onto polypropylene through pan milling. Journal of applied polymer science 78, 2191-2197. Liu, F.F., Liu, G.Z., Zhu, Z.L., Wang, S.C., Zhao, F.F., 2019a. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere 214, 688-694. Liu, G., Zhu, Z., Yang, Y., Sun, Y., Yu, F., Ma, J., 2019b. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ Pollut 246, 26-33. Liu, G., Zhu, Z., Yang, Y., Sun, Y., Yu, F., Ma, J., 2019c. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environmental Pollution 246, 26-33. Liu, P., Lu, K., Li, J., Wu, X., Qian, L., Wang, M., Gao, S., 2020. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates. J Hazard Mater 384, 121193. Liu, X., Xu, J., Zhao, Y., Shi, H., Huang, C.H., 2019d. Hydrophobic sorption behaviors of 17beta-Estradiol on environmental microplastics. Chemosphere 226, 726-735. Llorca, M., Abalos, M., Vega-Herrera, A., Adrados, M.A., Abad, E., Farre, M., 2020. Adsorption and Desorption Behaviour of Polychlorinated Biphenyls onto Microplastics' Surfaces in Water/Sediment Systems. Toxics 8. Lohmann, R., 2012. Critical review of low-density polyethylene's partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ Sci Technol 46, 606-618. Lu, J., Wu, J., Wu, J., Zhang, C., Luo, Y., 2021. Adsorption and Desorption of Steroid Hormones by Microplastics in Seawater. Bull Environ Contam Toxicol 107, 730-735. Lunestad, B.T., Samuelsen, O.B., Fjelde, S., Ervik, A., 1995. Photostability of eight antibacterial agents in seawater. Aquaculture 134, 217-225. Ma, J., Zhao, J., Zhu, Z., Li, L., Yu, F., 2019. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environ Pollut 254, 113104. Martín-Lara, M., Calero, M., Ronda, A., Iáñez-Rodríguez, I., Escudero, C., 2020. Adsorptive behavior of an activated carbon for bisphenol A removal in single and binary (bisphenol A—heavy metal) solutions. Water 12, 2150. Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T., 2001. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental science & technology 35, 318-324. Matsubara, I., Magill, J., 1973. Lower‐frequency infrared spectra and structures of some typical aliphatic polyamides. Journal of Polymer Science: Polymer Physics Edition 11, 1173-1187. Moldoveanu, S., David, V., 2015. Phase transfer in sample preparation. Mod. Sample Prep. Chromatogr, 105-130. Ngumba, E., Gachanja, A., Tuhkanen, T., 2016. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Science of the Total Environment 539, 206-213. Nurlatifah, Nakata, H., 2021. Monitoring of polymer type and plastic additives in coating film of beer cans from 16 countries. Scientific Reports 11. Olmos, D., Martín, E., González-Benito, J., 2014. New molecular-scale information on polystyrene dynamics in PS and PS–BaTiO 3 composites from FTIR spectroscopy. Physical Chemistry Chemical Physics 16, 24339-24349. Orimolade, B., Adekola, F., Adebayo, G., 2018. Adsorptive removal of bisphenol A using synthesized magnetite nanoparticles. Applied water science 8, 1-8. Pascall, M.A., Zabik, M.E., Zabik, M.J., Hernandez, R.J., 2005. Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films. Journal of agricultural and food chemistry 53, 164-169. Pauly, J.L., Stegmeier, S.J., Allaart, H.A., Cheney, R.T., Zhang, P.J., Mayer, A.G., Streck, R.J., 1998. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 7, 419-428. Peixoto, D., Pinheiro, C., Amorim, J., Oliva-Teles, L., Guilhermino, L., Vieira, M.N., 2019. Microplastic pollution in commercial salt for human consumption: A review. Estuarine, Coastal and Shelf Science 219, 161-168. Pignatello, J.J., 1998. Soil organic matter as a nanoporous sorbent of organic pollutants. Advances in Colloid and Interface Science 76, 445-467. Pothuluri, J.V., Freeman, J.P., Heinze, T.M., Beger, R.D., Cerniglia, C.E., 2000. Biotransformation of Vinclozolin by the Fungus Cunninghamella e legans. Journal of agricultural and food chemistry 48, 6138-6148. Qin, B., Lin, M., Huang, Z., Qiu, R., Ruan, J., Tang, Y., Qiu, R., 2020. Preparing cedrene from ethylene-vinyl acetate copolymer and polyethylene terephthalate of waste solar cells. Journal of Cleaner Production 254, 120065. Razanajatovo, R.M., Ding, J., Zhang, S., Jiang, H., Zou, H., 2018. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Mar Pollut Bull 136, 516-523. Reppas-Chrysovitsinos, E., Sobek, A., MacLeod, M., 2016. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water. Environmental Science: Processes & Impacts 18, 667-676. Rist, S., Hartmann, N.B., 2018. Aquatic ecotoxicity of microplastics and nanoplastics: lessons learned from engineered nanomaterials. Freshwater microplastics. Springer, Cham, pp. 25-49. Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C., 2013. Classify plastic waste as hazardous. Nature 494, 169-171. Rubin, B.S., 2011. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127, 27-34. Savoca, S., Capillo, G., Mancuso, M., Bottari, T., Crupi, R., Branca, C., Romano, V., Faggio, C., D'Angelo, G., Spano, N., 2019. Microplastics occurrence in the Tyrrhenian waters and in the gastrointestinal tract of two congener species of seabreams. Environ Toxicol Pharmacol 67, 35-41. Schulz, G., 1964. NSRDS-NBS: National Standard Reference Data Series. US Department of Commerce, National Bureau of Standards. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., 2016. Environmental organic chemistry. John Wiley & Sons. Siek, M., Paszko, T., 2019. Factors affecting coupled degradation and time-dependent sorption processes of tebuconazole in mineral soil profiles. Science of the Total Environment 690, 1035-1047. Silva, M., Morante-Zarcero, S., Pérez-Quintanilla, D., Sierra, I., 2019a. Simultaneous determination of pindolol, acebutolol and metoprolol in waters by differential-pulse voltammetry using an efficient sensor based on carbon paste electrode modified with amino-functionalized mesostructured silica. Sensors and Actuators B: Chemical 283, 434-442. Silva, V., Mol, H.G., Zomer, P., Tienstra, M., Ritsema, C.J., Geissen, V., 2019b. Pesticide residues in European agricultural soils–A hidden reality unfolded. Science of the Total Environment 653, 1532-1545. Song, K., Ding, R., Sun, C., Yao, L., Zhang, W., 2021. Microparticles and microplastics released from daily use of plastic feeding and water bottles and plastic injectors: potential risks to infants and children in China. Environ Sci Pollut Res Int 28, 59813-59820. Steel, C.C., Nair, N., 1993. The physiological basis of resistance to the dicarboximide fungicide iprodione in Botrytis cinerea. Pesticide Biochemistry and Physiology 47, 60-68. Subramani, M., Sepperumal, U., 2016. FTIR analysis of bacterial mediated chemical changes in Polystyrene foam. Ann. Biol. Res 7, 55-61. Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M.E., Le Goic, N., Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., Huvet, A., 2016. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 113, 2430-2435. Tan, I.A., Ahmad, A.L., Hameed, B.H., 2009. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 164, 473-482. Tang, C.-C., Chen, H.-I., Brimblecombe, P., Lee, C.-L., 2019. Morphology and chemical properties of polypropylene pellets degraded in simulated terrestrial and marine environments. Marine Pollution Bulletin 149, 110626. Teuten, E.L., Saquing, J.M., Knappe, D.R., Barlaz, M.A., Jonsson, S., Björn, A., Rowland, S.J., Thompson, R.C., Galloway, T.S., Yamashita, R., 2009a. Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical transactions of the royal society B: biological sciences 364, 2027-2045. Teuten, E.L., Saquing, J.M., Knappe, D.R., Barlaz, M.A., Jonsson, S., Bjorn, A., Rowland, S.J., Thompson, R.C., Galloway, T.S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P.H., Tana, T.S., Prudente, M., Boonyatumanond, R., Zakaria, M.P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., Takada, H., 2009b. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond B Biol Sci 364, 2027-2045. Thiele‐Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils–a review. Journal of plant nutrition and soil science 166, 145-167. Thomas, S., Shanks, R., Chandran, S., 2013. Nanostructured polymer blends. William Andrew. Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W., McGonigle, D., Russell, A.E., 2004. Lost at sea: where is all the plastic? Science 304, 838. Tossavainen, A., 1978. Styrene use and occupational exposure in the plastics industry. Scandinavian Journal of Work, Environment & Health, 7-13. Tourinho, P.S., Koci, V., Loureiro, S., van Gestel, C.A.M., 2019. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ Pollut 252, 1246-1256. Uber, T.H., Hüffer, T., Planitz, S., Schmidt, T.C., 2019a. Sorption of non-ionic organic compounds by polystyrene in water. Science of the Total Environment 682, 348-355. Uber, T.H., Huffer, T., Planitz, S., Schmidt, T.C., 2019b. Characterization of sorption properties of high-density polyethylene using the poly-parameter linearfree-energy relationships. Environ Pollut 248, 312-319. Ulrich, N., Endo, S., Brown, T., Watanabe, N., Bronner, G., Abraham, M., Goss, K., 2017. UFZ-LSER database v 3.2. 1 [Internet]. Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. Underwood, J.C., Harvey, R.W., Metge, D.W., Repert, D.A., Baumgartner, L.K., Smith, R.L., Roane, T.M., Barber, L.B., 2011. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environmental science & technology 45, 3096-3101. Velez, J.F.M., Shashoua, Y., Syberg, K., Khan, F.R., 2018. Considerations on the use of equilibrium models for the characterisation of HOC-microplastic interactions in vector studies. Chemosphere 210, 359-365. Velzeboer, I., Kwadijk, C.J., Koelmans, A.A., 2014. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48, 4869-4876. Vinet, L., Zhedanov, A., 2011. A ‘missing’ family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical 44. Wan, T., Lu, S., Cheng, W., Ren, J., Wang, M., Hu, B., Jia, Z., Li, Y., Sun, Y., 2019. A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions. Environ Pollut 249, 398-405. Wang, F., Shih, K.M., Li, X.Y., 2015. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere 119, 841-847. Wang, J., Liu, X., Liu, G., Zhang, Z., Wu, H., Cui, B., Bai, J., Zhang, W., 2019. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicol Environ Saf 173, 331-338. Wang, W., Qi, M., Jia, X., Jin, J., Zhou, Q., Zhang, M., Zhou, W., Li, A., 2020. Differential adsorption of zwitterionic PPCPs by multifunctional resins: The influence of the hydrophobicity and electrostatic potential of PPCPs. Chemosphere 241, 125023. Wang, W., Wang, J., 2018. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere 193, 567-573. Wang, Y., Liu, J., Kang, D., Wu, C., Wu, Y., 2017. Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review. Reviews in Environmental Science and Bio/Technology 16, 717-735. Weber Jr, W.J., Morris, J.C., 1963. Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division 89, 31-59. Williams, K.R., 1994. Analysis of ethylene-vinyl acetate copolymers: A combined TGA/FTIR experiment. Journal of chemical education 71, A195. Woodings, C., 2001. A brief history of regenerated cellulosic fibers. Regenerated cellulose fibers, 1-21. Wright, S.L., Kelly, F.J., 2017. Plastic and human health: a micro issue? Environmental science & technology 51, 6634-6647. Wright, S.L., Rowe, D., Thompson, R.C., Galloway, T.S., 2013. Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23, R1031-1033. Wu, P., Cai, Z., Jin, H., Tang, Y., 2019. Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Sci Total Environ 650, 671-678. Wu, X., Liu, P., Huang, H., Gao, S., 2020. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations. Science of the Total Environment 717, 137033. Xu, B., Liu, F., Brookes, P.C., Xu, J., 2018a. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ Pollut 240, 87-94. Xu, B., Liu, F., Brookes, P.C., Xu, J., 2018b. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environmental Pollution 240, 87-94. Xu, B., Liu, F., Brookes, P.C., Xu, J., 2018c. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics. Mar Pollut Bull 131, 191-196. Xu, J.-L., Hassellöv, M., Yu, K., Gowen, A.A., 2020. Microplastic Characterization by Infrared Spectroscopy. Handbook of Microplastics in the Environment, 1-33. Xu, J., Wang, L., Sun, H., 2021. Adsorption of neutral organic compounds on polar and nonpolar microplastics: Prediction and insight into mechanisms based on pp-LFERs. J Hazard Mater 408, 124857. Xu, W., Yan, W., Li, X., Zou, Y., Chen, X., Huang, W., Miao, L., Zhang, R., Zhang, G., Zou, S., 2013. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks. Environmental Pollution 182, 402-407. Xu, Y., Luo, F., Pal, A., Gin, K.Y., Reinhard, M., 2011. Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. Chemosphere 83, 963-969. Yan, C., Yang, Y., Zhou, J., Liu, M., Nie, M., Shi, H., Gu, L., 2013. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environmental pollution 175, 22-29. Yang, J., Sun, H., Liu, Y., Wang, X., Valizadeh, K., 2021. The sorption of Tebuconazole and Linuron from an Aqueous Environment with a Modified Sludge-Based Biochar: Effect, Mechanisms, and Its Persistent Free Radicals Study. Journal of Chemistry 2021. Yang, Y., Chen, M., Li, H., Li, H., 2018. The degree of crystallinity exhibiting a spatial distribution in polymer films. European Polymer Journal 107, 303-307. Ying, G.-G., Kookana, R.S., Kolpin, D.W., 2009. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. Journal of Environmental Monitoring 11, 1498-1505. Yu, F., Yang, C., Huang, G., Zhou, T., Zhao, Y., Ma, J., 2020a. Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution. Science of the Total Environment 721, 137729. Yu, F., Yang, C., Huang, G., Zhou, T., Zhao, Y., Ma, J., 2020b. Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution. Sci Total Environ 721, 137729. Zhang, H., Liu, P., Feng, Y., Yang, F., 2013. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Marine pollution bulletin 73, 282-290. Zhang, H., Wang, J., Zhou, B., Zhou, Y., Dai, Z., Zhou, Q., Chriestie, P., Luo, Y., 2018. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ Pollut 243, 1550-1557. Zhang, Y., 2017. Sorption of Polycyclic Aromatic Hydrocarbons in Microplastic Polystyrene. Zhuang, W.R., Wang, Y., Cui, P.F., Xing, L., Lee, J., Kim, D., Jiang, H.L., Oh, Y.K., 2019. Applications of pi-pi stacking interactions in the design of drug-delivery systems. J Control Release 294, 311-326. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89657 | - |
dc.description.abstract | 廢棄塑膠顆粒及人工合成的新興有機化合物常共同存在許多水相環境中,然而對於塑膠顆粒與有機化合物間的吸附作用尚不完全清楚。本研究採用十二種塑膠顆粒進行吸附試驗,並藉由比表面積分析儀、X光繞射儀 (X-Ray diffraction, XRD)、衰減全反射傅立葉紅外線光譜儀 (attenuated total reflectance-fourier transform infrared spectrophotometer, ATR-FTIR) 等儀器進行塑膠材料特徵分析,瞭解比表面積、平均孔隙直徑、結晶度及顆粒表面官能基等特性,發現本研究採用的塑膠顆粒尺寸大及比表面積小,導致本研究採用的塑膠顆粒吸附有機化合物量較小,幾乎偵測不到高密度聚乙烯(high-density polyethylene, HDPE)、低密度聚乙烯(low-density polyethylene, LDPE)、線型低密度聚乙烯(linear low density polyethylene, LLDPE)、單聚聚丙烯(mono-material polypropylene, Mono PP)及通用級聚苯乙烯(general purpose polystyrene, GPPS)塑膠顆粒發生吸附作用,並使得吸附平衡時間長達至少14天以上。另其中軟質聚氯乙烯(flexible PVC, FPVC)及修飾型聚苯乙烯(modified PS, MPS)兩種材料具有不同於典型塑膠的單體結構,如C=O官能基及O-H官能基。探討bisphenol A (BPA)、phenol (PEN)及sulfamethoxazole (SMX)三種有機化合物與乙烯-醋酸乙烯酯共聚物(ethylene vinyl acetate copolymer, EVA)、Nylon 6、Nylon 66及FPVC四種塑膠顆粒進行靜置條件及震盪條件下的25℃吸附動力學結果,發現震盪條件會相對於靜置條件縮短吸附平衡時間。其中除了SMX無法偵測到被EVA吸附外,擬一階模型適用於SMX吸附速率,依序為Nylon 6 (0.550 day-1) > Nylon 66 (0.484 day-1) > FPVC (0.254 day-1)。擬二階模型則適用於BPA的吸附速率,排序為EVA (0.066 g/mg·day) > Nylon 66 (0.044 g/mg·day) > Nylon 6 (0.038 g/mg·day) > FPVC (0.025 g/mg·day)。而在phenol則在兩種模型具相同吸附速率的推測,排序皆為EVA > FPVC > Nylon 6 > Nylon 66。另進行不同塑膠顆粒對九種弱疏水性芳香族有機化合物的25℃等溫吸附平衡實驗,可觀察到在本研究採用的初濃度範圍內之等溫吸附曲線平衡曲線圖皆呈高度線性相關,Linear模型具高相關性(相關係數範圍0.899~0.998),判定大部分吸附機制皆發生以凡德瓦爾力所主導的分配作用。並利用線性模型估算的Kd值作為吸附親和性的比較發現,塑膠顆粒對於有機化合物的吸附會強於河川底泥或土壤等環境基質。其中影響吸附親和性的塑膠特性主要為比表面積及極性,而有機化合物則主要為疏水性質。最終藉由多參數線性自由能關係 (polyparameter linear free energy relationships, pp-LFER)的吸附劑物化參數,表述塑膠顆粒在吸附作用中發生的不同交互作用力,以本研究的實驗結果分析可知,EVA、Nylon 6、Nylon 66、FPVC及MPS五種塑膠顆粒的v值皆具最大正值,Nylon 6、Nylon 66及FPVC的a值為較大負值,EVA的s值為正值而b值為較大負值。 | zh_TW |
dc.description.abstract | Waste plastic particles and synthetic emerging organic compounds often coexist in many aqueous environments, but the sorption between plastic particles and organic compounds is not completely clear. In this study, 12 kinds of plastic particles were used for sorption test, and specific surface area analyzer, X-Ray diffraction (XRD), Attenuated Total Reflection-Fourier Transform Infrared Spectrometer (ATR-FTIR) were used to analyze the characteristics of plastic materials, and the characteristics of specific surface area, average pore diameter, crystallinity and functional groups of particles were known. It is found that the plastic particles used in this study have large size and small specific surface area, which leads to the small amount of organic compounds adsorbed by the plastic particles used in this study. The sorption of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density polyethylene (LLDPE), mono-material polypropylene (Mono PP) and general purpose polystyrene (GPPS) can hardly be detected, and the sorption equilibrium time is at least 14 days. In addition, flexible PVC (FPVC) and modified PS (MPS) have different monomer structures from typical plastics, such as C=O functional group and O-H functional group. The sorption kinetics of bisphenol A (BPA), phenol (PEN), sulfamethoxazole (SMX) with ethylene vinyl acetate copolymer (EVA), Nylon 6, Nylon 66 and FPVC at 25℃ under static condition and shaking condition was discussed. It was found that shaking condition could shorten the sorption equilibrium time compared with static condition. Except that SMX can't be detected by EVA, the pseudo-first-order model is suitable for SMX sorption rate, and the order is Nylon 6 (0.550day-1) > Nylon 66 (0.484day-1) > FPVC (0.254day-1). The pseudo-second order model is suitable for the sorption rate of BPA, and the order is EVA (0.066g/mg day) > Nylon 66 (0.044g/mg day) > Nylon 6 (0.038g/mg day) > FPVC (0.025g/mg day). On the other hand, PEN has the same sorption rate in the two models, and the order is EVA > FPVC > Nylon 6 > Nylon 66. In addition, the isotherm experiment of nine weakly hydrophobic aromatic organic compounds by different plastic particles at 25℃ shows that the equilibrium curves of isotherm in the initial concentration range used in this study are highly linearly correlated, and the linear model has high correlation (correlation coefficient range 0.899~0.998), which indicates that most sorption mechanisms have partition dominated by van der waals force. The Kd value estimated by the linear model is used as the comparison of sorption affinity. It is found that the sorption of organic compounds by plastic particles is stronger than that of environmental substrates such as river sediment or soil. Among them, the characteristics of plastics that affect sorption affinity are mainly specific surface area and polarity, while organic compounds are mainly hydrophobic. Finally, according to the physical and chemical parameters of the adsorbent with polyparameter linear free energy relationships (pp-LFER), the different interaction forces of plastic particles in sorption are expressed. According to the analysis of the experimental results of this study, The v values of EVA, Nylon 6, Nylon 66, FPVC and MPS all have maximum positive values, and the a values of Nylon 6, Nylon 66 and FPVC are relatively negative, while the s values of EVA are positive and the b values are relatively negative. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:07:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-15T16:07:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I 中文摘要 II Abstract III 目錄 V 表目錄 IX 圖目錄 XI Abbreviations XVI 第一章 前言 1 1.1 塑膠的危害 1 1.2 研究背景 1 1.3 研究目的 2 第二章 文獻回顧 3 2.1 常見的塑膠 3 2.1.1 PE 3 2.1.2 PP 3 2.1.3 EVA 3 2.1.4 PA 4 2.1.5 PVC 4 2.1.6 PS 4 2.2 環境水域中常見的新興有機化合物 5 2.2.1 Bisphenol A 5 2.2.2 Phenol 6 2.2.3 Sulfamethoxazole 6 2.2.4 Tebuconazole 6 2.2.5 Ofloxacin 6 2.2.6 Pindolol 7 2.2.7 Trimethopreim 7 2.2.8 Vinclozolin 7 2.2.9 Triclosan 8 2.3 塑膠顆粒對於有機化合物的吸附 8 2.3.1 吸附作用 8 2.3.2 吸附動力學 8 (一) 擬一階模型及擬二階模型 9 (二) 顆粒內擴散模型 10 (三) 薄膜擴散模型 10 2.3.3 等溫吸附曲線 10 (一) 線性模型 10 (二) Freundlich吸附模型 11 (三) 塑膠顆粒吸附有機化合物的研究 12 2.3.4 影響吸附的因素 14 (一) 有機化合物的極性(logKow) 14 (二) 粒徑與比表面積 14 (三) 結晶度 16 (四) 不同塑膠種類的表面官能基 16 2.3.5 塑膠顆粒對有機化合物的吸附之常見機制及作用力 17 (一) 分配效應 17 (二) 孔隙填充機制 17 (三) 疏水相互作用 17 (四) π-π相互作用 18 (五) 氫鍵及鹵素鍵 18 2.3.6 多參數線性自由能關係(pp-LFER) 18 第三章 實驗材料與方法 20 3.1 材料 20 3.1.1 實驗藥品 20 3.1.2 吸附劑 20 3.1.3 吸附質 21 3.2 實驗方法 23 3.2.1 吸附劑的表徵分析 23 (一) X光繞射 23 (二) 傅立葉紅外線光譜 23 (三) 比表面積分析 23 3.2.2 吸附動力學及等溫吸附實驗 24 第四章 結果與討論 31 4.1 塑膠顆粒特性分析 31 4.1.1 塑膠顆粒之粒徑、比表面積及平均孔徑 31 4.1.2 塑膠顆粒的結晶度 34 4.1.3 塑膠顆粒的表面官能基 37 (一) LDPE及LLDPE 37 (二) Mono PP 38 (三) EVA 38 (四) Nylon 6及Nylon 66 39 (五) Flexible PVC 40 (六) GPPS 41 (七) Modified PS 41 4.2 塑膠顆粒吸附各種有機化合物之動力學 42 4.2.1 Triclosan 42 4.2.2 Bisphenol A 43 4.2.3 Phenol 44 4.2.4 Sulfamethoxazole 44 4.2.5 Tebuconazole 46 4.2.6 Ofloxacin 46 4.2.7 Pindolol 47 4.2.8 Trimethoprim 47 4.2.9 Vinclozolin 48 4.2.10 吸附質及吸附劑的量對於吸附平衡時間之關係 49 4.3 吸附動力學之分析 51 4.3.1 Bisphenol A的吸附動力學分析 52 4.3.2 Phenol的吸附動力學分析 54 4.3.3 Sulfamethoxazole的吸附動力學分析 56 4.3.4 同種塑膠顆粒對於不同有機化物的吸附動力學分析 57 4.4 等溫吸附曲線 59 4.4.1 同種有機化合物在不同塑膠顆粒的等溫吸附曲線 59 (一) 七種塑膠顆粒吸附triclosan的等溫吸附 59 (二) 四種塑膠顆粒吸附bisphenol A的等溫吸附 63 (三) 五種塑膠顆粒吸附phenol的等溫吸附 66 (四) 四種塑膠顆粒吸附sulfamethoxazole的等溫吸附 69 (五) 四種塑膠顆粒吸附tebuconazole的等溫吸附 72 (六) 一種塑膠顆粒吸附ofloxacin的等溫吸附 75 (七) 兩種塑膠顆粒吸附pindolol的等溫吸附 76 (八) 兩種塑膠顆粒吸附trimethoprim的等溫吸附 78 (九) 四種塑膠顆粒吸附vinclozolin的等溫吸附 80 4.5 同種有機化合物在不同塑膠顆粒上的吸附分析 82 4.5.1 Triclosan 82 4.5.2 Bisphenol A 83 4.5.3 Phenol 84 4.5.4 Sulfamethoxazole 85 4.5.5 Tebuconazole 86 4.5.6 Pindolol 87 4.5.7 Trimethoprim 88 4.5.8 Vinclozolin 88 4.6 pp-LFER估計Kd與吸附實驗線性擬合Kd結果之比較 90 4.7 同種塑膠顆粒對於不同有機化合物的吸附親和性分析 95 4.7.1 EVA對不同有機化合物的吸附 95 4.7.2 Nylon 6對不同有機化合物的吸附 96 4.7.3 Nylon 66對不同有機化合物的吸附 97 4.7.4 Flexible PVC對不同有機化合物的吸附 98 4.7.5 Modified PS對不同有機化合物的吸附 100 第五章 結論 102 附錄 104 參考資料 129 | - |
dc.language.iso | zh_TW | - |
dc.title | 塑膠顆粒吸附水中有機化合物之研究 | zh_TW |
dc.title | Sorption of Organic Compounds in Plastic Particles in Water | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭大孚 | zh_TW |
dc.contributor.oralexamcommittee | Chin-Yun Chen;Meei-Ling Chang;Dave KUO | en |
dc.subject.keyword | 塑膠顆粒,有機化合物,吸附,動力學,等溫吸附曲線, | zh_TW |
dc.subject.keyword | Plastic particles,Organic compounds,Sorption,Kinetics,Isotherm, | en |
dc.relation.page | 142 | - |
dc.identifier.doi | 10.6342/NTU202204167 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-29 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農業化學系 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 此日期後於網路公開 2027-09-29 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。