請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89652完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡國龍 | zh_TW |
| dc.contributor.advisor | Kuo-Liong Chien | en |
| dc.contributor.author | 葉姿麟 | zh_TW |
| dc.contributor.author | Tzu-Lin Yeh | en |
| dc.date.accessioned | 2023-09-13T16:15:04Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-13 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-03 | - |
| dc.identifier.citation | 1. Neeland IJ, Ross R, Després JP, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol 2019; 7(9): 715-25.
2. Yeh TL, Tsai MC, Tsai WH, Tu YK, Chien KL. Effect of glucagon-like peptide-1 receptor agonists on glycemic control, and weight reduction in adults: A multivariate meta-analysis. PLoS One 2023; 18(1): e0278685. 3. Yeh T-L, Hsu M-S, Hsu H-Y, et al. Risk of cardiovascular diseases in cancer patients: A nationwide representative cohort study in Taiwan. BMC Cancer 2022; 22(1): 1198. 4. Cardiovascular diseases. 2021. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1. 5. Roth GA, Mensah GA, Fuster V. The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action. Journal of the American College of Cardiology 2020; 76(25): 2980-1. 6. Collaborators GBDO, Afshin A, Forouzanfar MH, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine 2017; 377(1): 13-27. 7. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2163-96. 8. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386(9995): 743-800. 9. Salomon JA, Vos T, Hogan DR, et al. Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2129-43. 10. Salomon JA, Haagsma JA, Davis A, et al. Disability weights for the Global Burden of Disease 2013 study. Lancet Global Health 2015; 3(11): e712-23. 11. Matthews A, Stanway S, Farmer RE, et al. Long term adjuvant endocrine therapy and risk of cardiovascular disease in female breast cancer survivors: systematic review. British Medical Journal 2018; 363: k3845. 12. Zapata-Diomedi B, Barendregt JJ, Veerman JL. Population attributable fraction: names, types and issues with incorrect interpretation of relative risks. British Journal of Sports Medicine 2018; 52(4): 212-3. 13. Collaborators GBDRF. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1923-94. 14. Global Burden of Disease (GBD). 2019. https://www.healthdata.org/gbd/2019. 15. Bacigalupo I, Mayer F, Lacorte E, et al. A Systematic Review and Meta-Analysis on the Prevalence of Dementia in Europe: Estimates from the Highest-Quality Studies Adopting the DSM IV Diagnostic Criteria. Journal of Alzheimer's Disease 2018; 66(4): 1471-81. 16. Mingji C, Onakpoya IJ, Perera R, Ward AM, Heneghan CJ. Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review. Heart 2015; 101(13): 1054-60. 17. Box GEP. Some problems of statistics and everyday life. Journal of American Statistical Association; 74(365): 1-4. 18. Forouzanfar MH, Alexander L, Anderson HR, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386(10010): 2287-323. 19. Ho Chan WS. Taiwan's healthcare report 2010. The EPMA Journal 2010; 1(4): 563-85. 20. Lee CMY, Colagiuri S, Ezzati M, Woodward M. The burden of cardiovascular disease associated with high body mass index in the Asia–Pacific region. Obesity Review 2011; 12(5): e454-e9. 21. Rinde LB, Smabrekke B, Hald EM, et al. Myocardial infarction and future risk of cancer in the general population-the Tromso Study. European Journal of Epidemiology 2017; 32(3): 193-201. 22. Wu YC, Lo WC, Lu TH, Chang SS, Lin HH, Chan CC. Mortality, morbidity, and risk factors in Taiwan, 1990-2017: findings from the Global Burden of Disease Study 2017. Journal of the Formosan Medical Association 2020. 23. Health inequalities in Taiwan: Health Promotion Administration, Ministery of Health and Welfare; 2016. 24. Global BMIMC, Di Angelantonio E, Bhupathiraju Sh N, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016; 388(10046): 776-86. 25. Chen Y, Copeland WK, Vedanthan R, et al. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. British Medical Journal 2013; 347: f5446. 26. Ikeda N, Inoue M, Iso H, et al. Adult mortality attributable to preventable risk factors for non-communicable diseases and injuries in Japan: a comparative risk assessment. PLoS Medicine 2012; 9(1): e1001160. 27. 臺灣「醫療利用歸人檔資料庫」之建置介紹. 健康科技期刊 2018. 28. Dickerson T, Wiczer T, Waller A, et al. Hypertension and incident cardiovascular events following ibrutinib initiation. Blood 2019; 134(22): 1919-28. 29. Ng T-C, Lo W-C, Ku C-C, Lu T-H, Lin H-H. Improving the Use of Mortality Data in Public Health: A Comparison of Garbage Code Redistribution Models. American Journal of Public Health 2020; 110(2): 222-9. 30. Zhang F, Wang K, Du P, et al. Risk of Stroke in Cancer Survivors: A Meta-analysis of Population-Based Cohort Studies. Neurology 2021; 96(4): e513-e26. 31. Dai H, Alsalhe TA, Chalghaf N, Riccò M, Bragazzi NL, Wu J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: An analysis of the Global Burden of Disease Study. PLoS Medicine 2020; 17(7): e1003198. 32. The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. The Lancet Diabetes & Endocrinology 2014; 2(8): 634-47. 33. Felisbino-Mendes MS, Cousin E, Malta DC, et al. The burden of non-communicable diseases attributable to high BMI in Brazil, 1990-2017: findings from the Global Burden of Disease Study. Population Health Metrics 2020; 18(Suppl 1): 18. 34. NCD Risk Factor Collaboration. Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight. eLife 2021; 10. 35. Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ. Promoting Physical Activity and Exercise: JACC Health Promotion Series. Journal of the American College of Cardiology 2018; 72(14): 1622-39. 36. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness and Cancer — Viewpoint of the IARC Working Group. New England Journal of Medicine 2016; 375(8): 794-8. 37. Grady D, Wenger NK, Herrington D, et al. Postmenopausal hormone therapy increases risk for venous thromboembolic disease. The Heart and Estrogen/progestin Replacement Study. Annals of Internal Medicine 2000; 132(9): 689-96. 38. Obesity and inequities. In: Satterley N, editor.: World Health Organization, regional office fore Europe; 2014. 39. Zukiewicz-Sobczak W, Wroblewska P, Zwolinski J, et al. Obesity and poverty paradox in developed countries. Annals of Agricultural and Environmental Medicine 2014; 21(3): 590-4. 40. Health Promotion Administration, Ministery of Health and Welfare. Statistical Yearbook of Health Promotion (Revision) 2013. 41. Lin CY, Hung HJ, Chung CJ, Huang CT, Wu TN, Chen CY. Ethnic disparity in metabolic syndrome and related obesity and health behavior: a community study in Taiwan. Diabetology & Metabolic Syndrome 2021; 13(1): 134. 42. Y-C Hong C-HL. Exploring the Relationship between Medical Resources and Health Status: An Empirical Study of Crude and Accidental Death Rates in 23 Counties in Taiwan. Taiwan Journal of Public Health 2010; 29(4): 347 - 59. 43. Rose G. Sick individuals and sick populations. International Journal of Epidemiology 2001; 30(3): 427-32; discussion 33-4. 44. Brownell K, Kersh R, Ludwig D. Personal Responsibility And Obesity: A Constructive Approach To A Controversial Issue. Health Affairs 2010; 29(3): 379-87. 45. Murray CJL, Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S. Comparative quantification of health risks: Conceptual framework and methodological issues. Population Health Metrics 2003; 1(1): 1. 46. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1223-49. 47. Wen CP, David Cheng TY, Tsai SP, et al. Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public Health Nutrition 2009; 12(4): 497-506. 48. Shin DW, Suh B, Park Y, et al. Risk of Coronary Heart Disease and Ischemic Stroke Incidence in Gastric Cancer Survivors: A Nationwide Study in Korea. Annals of Surgical Oncology 2018; 25(11): 3248-56. 49. Ni Mhurchu C, Rodgers A, Pan WH, Gu DF, Woodward M. Body mass index and cardiovascular disease in the Asia-Pacific Region: an overview of 33 cohorts involving 310 000 participants. International Journal of Epidemiology 2004; 33(4): 751-8. 50. Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Molecular Metabolism 2019; 30: 72-130. 51. Aroda VR. A review of GLP-1 receptor agonists: Evolution and advancement, through the lens of randomised controlled trials. Diabetes, Obesity and Metabolism 2018; 20 Suppl 1: 22-33. 52. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Molecular Metabolism 2021; 46: 101102. 53. Huthmacher JA, Meier JJ, Nauck MA. Efficacy and Safety of Short- and Long-Acting Glucagon-Like Peptide 1 Receptor Agonists on a Background of Basal Insulin in Type 2 Diabetes: A Meta-analysis. Diabetes Care 2020; 43(9): 2303-12. 54. Xia L, Shen T, Dong W, et al. Comparative efficacy and safety of 8 GLP-1RAs in patients with type 2 diabetes: A network meta-analysis. Diabetes Research And Clinical Practice 2021; 177: 108904. 55. Schmidt AM. Diabetes Mellitus and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology 2019; 39(4): 558-68. 56. Sorli C, Harashima SI, Tsoukas GM, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes & Endocrinology 2017; 5(4): 251-60. 57. Ahrén B, Masmiquel L, Kumar H, et al. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes & Endocrinology 2017; 5(5): 341-54. 58. Ahmann AJ, Capehorn M, Charpentier G, et al. Efficacy and Safety of Once-Weekly Semaglutide Versus Exenatide ER in Subjects With Type 2 Diabetes (SUSTAIN 3): A 56-Week, Open-Label, Randomized Clinical Trial. Diabetes Care 2018; 41(2): 258-66. 59. Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes & Endocrinology 2017; 5(5): 355-66. 60. Rodbard HW, Lingvay I, Reed J, et al. Semaglutide Added to Basal Insulin in Type 2 Diabetes (SUSTAIN 5): A Randomized, Controlled Trial. Journal of Clinical Endocrinology and Metabolism 2018; 103(6): 2291-301. 61. Goldenberg RM, Steen O. Semaglutide: Review and Place in Therapy for Adults With Type 2 Diabetes. Canadian Journal of Diabetes 2019; 43(2): 136-45. 62. Umpierrez GE, Pantalone KM, Kwan AY, Zimmermann AG, Zhang N, Fernández Landó L. Relationship between weight change and glycaemic control in patients with type 2 diabetes receiving once-weekly dulaglutide treatment. Diabetes, Obesity & Metabolism 2016; 18(6): 615-22. 63. Aroda VR, Ahmann A, Cariou B, et al. Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: Insights from the SUSTAIN 1-7 trials. Diabetes & Metabolism 2019; 45(5): 409-18. 64. Mehta PD, Neale MC. People are variables too: multilevel structural equations modeling. Psychol Methods 2005; 10(3): 259-84. 65. Cheung M. Meta-Analysis: A Structural Equation Modelling Approach. John Wiley & Sons 2015. 66. MacCallum RC, Austin JT. Applications of structural equation modeling in psychological research. Annual Review of Psychology 2000; 51: 201-26. 67. Greenwald AG, Pratkanis AR, Leippe MR, Baumgardner MH. Under what conditions does theory obstruct research progress? Psychological Review 1986; 93(2): 216-29. 68. Guido Schwarzer JRC, Gerta Rücker. Meta-Analysis with R: Springer International 2015. 69. Cheung MW-L. Meta-Analysis: A Structural Equation Modeling Approach; Wiley 2015. 70. Harrer M, Cuijpers P, Furukawa TA, Ebert DD. Doing meta-analysis with R : a hands-on guide. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press; 2022. 71. Bergh DD, Aguinis H, Heavey C, et al. Using meta-analytic structural equation modeling to advance strategic management research: Guidelines and an empirical illustration via the strategic leadership-performance relationship. Strategic Management Journal 2016; 37(3): 477-97. 72. Colquitt JA, LePine JA, Noe RA. Toward an integrative theory of training motivation: a meta-analytic path analysis of 20 years of research. Journal of Applied Psychology 2000; 85(5): 678-707. 73. Becker G. The meta-analysis of factor analyses: An illustration based on the cumulation of correlation matrices. Psychological Methods 1996; 1: 341-53. 74. Hom PW, Caranikas-Walker F, Prussia GE, Griffeth RW. A meta-analytical structural equations analysis of a model of employee turnover. Journal of Applied Psychology 1992; 77: 890-909. 75. Eby LT, Freeman DM, Rush MC, Lance CE. Motivational bases of affective organizational commitment: A partial test of an integrative theoretical model. Journal of Occupational and Organizational Psychology 1999; 72(4): 463-83. 76. Conway JM. Distinguishing contextual performance from task performance for managerial jobs. Journal of Applied Psychology 1999. 77. Tett RP, Meyer JP. Job satisfaction, organizational commitment, turnover intention, and turnover: Path analyses based on meta-analytic findings. Personnel Psychology 1993; 46: 259-93. 78. Becker BJ. Model-based meta-analysis. The handbook of research synthesis and meta-analysis, 2nd ed. New York, NY, US: Russell Sage Foundation; 2009: 377-95. 79. Tang RW, Cheung MW-LJRoIB, Strategy. Testing IB theories with meta-analytic structural equation modeling: The TSSEM approach and the Univariate-r approach. Review of International Business and Strategy 2016. 80. Cheung MWL, Chan W. A Two-Stage Approach to Synthesizing Covariance Matrices in Meta-Analytic Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal 2009; 16(1): 28-53. 81. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ. Cochrane Handbook for Systematic Reviews of Interventions version 6.2: Cochrane; 2021. 82. Cochrane Handbook for Systematic Reviews of Interventions. 5.1.0 ed; 2011. 83. Drahota ABE. RevMan Calculator. https://training.cochrane.org/resource/revman-calculator. 84. Zinman B, Bhosekar V, Busch R, et al. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): a randomised, placebo-controlled trial. The Lancet Diabetes & Endocrinology 2019; 7(5): 356-67. 85. Ishøy PL, Knop FK, Broberg BV, et al. Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: a randomized, placebo-controlled trial. Diabetes, Obesity and Metabolism 2017; 19(2): 162-71. 86. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7(3): 177-88. 87. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002; 21(11): 1539-58. 88. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 1997; 315(7109): 629-34. 89. McDonald RP. Some Checking Procedures For Extension Analysis. Multivariate Behavioral Research 1978; 13(3): 319-25. 90. Schwarzer G, Carpenter, J. R., and Rücker, G. (2015). Meta-analysis with R. Springer 2015. 91. DiCiccio TJ, Efron B. Bootstrap confidence intervals. Journal of Statistical Sciences 1996; 11(3): 189-228. 92. Ahmann A, Rodbard HW, Rosenstock J, et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo-controlled trial. Diabetes, Obesity & Metabolism 2015; 17(11): 1056-64. 93. Aroda VR, Rosenstock J, Terauchi Y, et al. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison With Placebo in Patients With Type 2 Diabetes. Diabetes Care 2019; 42(9): 1724-32. 94. Blackman A, Foster GD, Zammit G, et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. International Journal Of Obesity (2005) 2016; 40(8): 1310-9. 95. Davies M, Færch L, Jeppesen OK, et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. The Lancet 2021; 397(10278): 971-84. 96. Davies MJ, Bain SC, Atkin SL, et al. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial. Diabetes Care 2016; 39(2): 222-30. 97. Davies MJ, Bergenstal R, Bode B, et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. Journal of the American Medical Association 2015; 314(7): 687-99. 98. Dejgaard TF, Frandsen CS, Hansen TS, et al. Efficacy and safety of liraglutide for overweight adult patients with type 1 diabetes and insufficient glycaemic control (Lira-1): A randomised, double-blind, placebo-controlled trial. The Lancet Diabetes and Endocrinology 2016; 4(3): 221-32. 99. Frøssing S, Nylander M, Chabanova E, et al. Effect of liraglutide on ectopic fat in polycystic ovary syndrome: A randomized clinical trial. Diabetes, Obesity & Metabolism 2018; 20(1): 215-8. 100. Garvey WT, Birkenfeld AL, Dicker D, et al. Efficacy and Safety of Liraglutide 3.0 mg in Individuals With Overweight or Obesity and Type 2 Diabetes Treated With Basal Insulin: The SCALE Insulin Randomized Controlled Trial. Diabetes Care 2020; 43(5): 1085-93. 101. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet (London, England) 2019; 394(10193): 121-30. 102. Ghanim H, Batra M, Green K, et al. Liraglutide treatment in overweight and obese patients with type 1 diabetes: A 26-week randomized controlled trial; mechanisms of weight loss. Diabetes, Obesity & Metabolism 2020; 22(10): 1742-52. 103. Gudbergsen H, Overgaard A, Henriksen M, et al. Liraglutide after diet-induced weight loss for pain and weight control in knee osteoarthritis: a randomized controlled trial. The American Journal of Clinical Nutrition 2021; 113(2): 314-23. 104. Husain M, Birkenfeld AL, Donsmark M, et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. The New England Journal of Medicine 2019; 381(9): 841-51. 105. Kim SH, Abbasi F, Lamendola C, et al. Benefits of liraglutide treatment in overweight and obese older individuals with prediabetes. Diabetes Care 2013; 36(10): 3276-82. 106. Kuhadiya ND, Dhindsa S, Ghanim H, et al. Addition of Liraglutide to Insulin in Patients With Type 1 Diabetes: A Randomized Placebo-Controlled Clinical Trial of 12 Weeks. Diabetes Care 2016; 39(6): 1027-35. 107. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. The New England Journal of Medicine 2016; 375(19): 1834-44. 108. Mensberg P, Nyby S, Jørgensen PG, et al. Near-normalization of glycaemic control with glucagon-like peptide-1 receptor agonist treatment combined with exercise in patients with type 2 diabetes. Diabetes, Obesity and Metabolism 2017; 19(2): 172-80. 109. Mosenzon O, Blicher TM, Rosenlund S, et al. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. The Lancet Diabetes & Endocrinology 2019; 7(7): 515-27. 110. Nauck MA, Stewart MW, Perkins C, et al. Efficacy and safety of once-weekly GLP-1 receptor agonist albiglutide (HARMONY 2): 52 week primary endpoint results from a randomised, placebo-controlled trial in patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetologia 2016; 59(2): 266-74. 111. Neeland IJ, Marso SP, Ayers CR, et al. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: a randomised, double-blind, placebo-controlled, clinical trial. The Lancet Diabetes & Endocrinology 2021; 9(9): 595-605. 112. Retnakaran R, Kramer CK, Choi H, Swaminathan B, Zinman B. Liraglutide and the preservation of pancreatic β-cell function in early type 2 diabetes: the LIBRA trial. Diabetes Care 2014; 37(12): 3270-8. 113. van Eyk HJ, Paiman EHM, Bizino MB, et al. A double-blind, placebo-controlled, randomised trial to assess the effect of liraglutide on ectopic fat accumulation in South Asian type 2 diabetes patients. Cardiovascular Diabetology 2019; 18(1): 87. 114. Vanderheiden A, Harrison L, Warshauer J, Li X, Adams-Huet B, Lingvay I. Effect of Adding Liraglutide vs Placebo to a High-Dose lnsulin Regimen in Patients With Type 2 Diabetes: A Randomized Clinical Trial. Journal of the American Medical Association Internal Medicine 2016; 176(7): 939-47. 115. Wadden TA, Bailey TS, Billings LK, et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. Journal of the American Medical Association 2021; 325(14): 1403-13. 116. Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. International Journal of Obesity (2005) 2013; 37(11): 1443-51. 117. Wilding JPH, Batterham RL, Calanna S, et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. The New England Journal of Medicine 2021; 384(11): 989-1002. 118. Zinman B, Aroda VR, Buse JB, et al. Efficacy, Safety, and Tolerability of Oral Semaglutide Versus Placebo Added to Insulin With or Without Metformin in Patients With Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care 2019; 42(12): 2262-71. 119. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. 2016; 375(19): 1834-44. 120. Geiser JS, Heathman MA, Cui X, et al. Clinical Pharmacokinetics of Dulaglutide in Patients with Type 2 Diabetes: Analyses of Data from Clinical Trials. Clinical Pharmacokinetics 2016; 55(5): 625-34. 121. Matthews JE, Stewart MW, De Boever EH, et al. Pharmacodynamics, Pharmacokinetics, Safety, and Tolerability of Albiglutide, a Long-Acting Glucagon-Like Peptide-1 Mimetic, in Patients with Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism 2008; 93(12): 4810-7. 122. Damholt B, Golor G, Wierich W, Pedersen P, Ekblom M, Zdravkovic M. An Open-Label, Parallel Group Study Investigating the Effects of Age and Gender on the Pharmacokinetics of the Once-Daily Glucagon-Like Peptide-1 Analogue Liraglutide. The Journal of Clinical Pharmacology 2006; 46(6): 635-41. 123. Marbury TC, Flint A, Jacobsen JB, Derving Karsbøl J, Lasseter K. Pharmacokinetics and Tolerability of a Single Dose of Semaglutide, a Human Glucagon-Like Peptide-1 Analog, in Subjects With and Without Renal Impairment. Clinical Pharmacokinetics 2017; 56(11): 1381-90. 124. Granhall C, Donsmark M, Blicher TM, et al. Safety and Pharmacokinetics of Single and Multiple Ascending Doses of the Novel Oral Human GLP-1 Analogue, Oral Semaglutide, in Healthy Subjects and Subjects with Type 2 Diabetes. Clinical Pharmacokinetics 2019; 58(6): 781-91. 125. Karagiannis T, Liakos A, Bekiari E, et al. Efficacy and safety of once-weekly glucagon-like peptide 1 receptor agonists for the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes, Obesity & Metabolism 2015; 17(11): 1065-74. 126. Eng C, Kramer CK, Zinman B, Retnakaran R. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet (London, England) 2014; 384(9961): 2228-34. 127. Armstrong MJ, Houlihan DD, Rowe IA, et al. Safety and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program. Alimentary Pharmacology & Therapeutics 2013; 37(2): 234-42. 128. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. British Medical Journal (Clinical research ed) 2012; 344: d7771. 129. Monami M, Dicembrini I, Marchionni N, Rotella CM, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Experimental Diabetes Research 2012; 2012: 672658. 130. Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet Diabetes & Endocrinology 2019; 7(10): 776-85. 131. Bethel MA, Patel RA, Merrill P, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. The Lancet Diabetes & Endocrinology 2018; 6(2): 105-13. 132. Guha A, Dey AK, Al-Kindi S, et al. Socio-Economic Burden of Myocardial Infarction Among Cancer Patients. The American Journal of Cardiology 2021; 141: 16-22. 133. Andreadis P, Karagiannis T, Malandris K, et al. Semaglutide for type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes, Obesity & Metabolism 2018; 20(9): 2255-63. 134. Avgerinos I, Michailidis T, Liakos A, et al. Oral semaglutide for type 2 diabetes: A systematic review and meta-analysis. Diabetes, Obesity & Metabolism 2020; 22(3): 335-45. 135. Onishi Y, Oura T, Matsui A, Matsuura J, Iwamoto N. Analysis of efficacy and safety of dulaglutide 0.75 mg stratified by sex in patients with type 2 diabetes in 2 randomized, controlled phase 3 studies in Japan. Endocrine Journal 2017; 64(5): 553-60. 136. Green JB, Merrill P, Lokhnygina Y, Mentz RJ, Alfredsson J, Holman RR. Sex differences in the complications, care and clinical outcomes of patients with type 2 diabetes in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL). Diabetes, Obesity and Metabolism 2023. 137. Chadda KR, Cheng TS, Ong KK. GLP-1 agonists for obesity and type 2 diabetes in children: Systematic review and meta-analysis. Obesity Reviews : an official journal of the International Association for the Study of Obesity 2021; 22(6): e13177. 138. Gabery S, Salinas CG, Paulsen SJ, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020; 5(6): e133429. 139. Secher A, Jelsing J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. The Journal of Clinical Investigation 2014; 124(10): 4473-88. 140. Schlögl H, Kabisch S, Horstmann A, et al. Exenatide-Induced Reduction in Energy Intake Is Associated With Increase in Hypothalamic Connectivity. J Diabetes Care 2013; 36(7): 1933-40. 141. Beasley GS, Towbin JA. Acquired and modifiable cardiovascular risk factors in patients treated for cancer. Journal of Thrombosis and Thrombolysis 2021; 51(4): 846-53. 142. Lin B, Zhang Z, Mei Y, et al. Cumulative risk of stroke recurrence over the last 10 years: a systematic review and meta-analysis. Neurological Sciences 2021; 42(1): 61-71. 143. Sun JY, Zhang ZY, Qu Q, et al. Cardiovascular disease-specific mortality in 270,618 patients with non-small cell lung cancer. International Journal of Cardiology 2021; 330: 186-93. 144. Carrillo-Estrada M, Bobrowski D, Carrasco R, et al. Coronary artery disease in patients with cancer: challenges and opportunities for improvement. Current Opinion in Cardiology 2021; 36(5): 597-608. 145. Calvillo-Arguelles O, Jaiswal S, Shlush LI, et al. Connections Between Clonal Hematopoiesis, Cardiovascular Disease, and Cancer: A Review. Journal of American Medical Association Cardiology 2019; 4(4): 380-7. 146. Essa H, Pettitt AR, Lip GYH. Hypertension and cardiovascular risk factors when treating cancer patients: underrecognised and undertreated. Journal of Human Hypertension 2021; 35(4): 301-3. 147. Pajamäki N, Metso S, Hakala T, et al. Long-term cardiovascular morbidity and mortality in patients treated for differentiated thyroid cancer. Clinical Endocrinology 2018; 88(2): 303-10. 148. van Herk-Sukel MP, Shantakumar S, Penning-van Beest FJ, et al. Pulmonary embolism, myocardial infarction, and ischemic stroke in lung cancer patients: results from a longitudinal study. Lung 2013; 191(5): 501-9. 149. Kwon HK, Han KD, Cheon YI, et al. The incidence of myocardial infarction and stroke in head and neck cancer patients. Scientific Reports 2021; 11(1): 4174. 150. Strongman H, Gadd S, Matthews A, et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet (London, England) 2019; 394(10203): 1041-54. 151. Zaorsky NG, Zhang Y, Tchelebi LT, Mackley HB, Chinchilli VM, Zacharia BE. Stroke among cancer patients. Nature Communication 2019; 10(1): 5172. 152. Zoltek M, Andersson TM, Hedman C, Ihre-Lundgren C, Nordenvall C. Cardiovascular Incidence in 6900 Patients with Differentiated Thyroid Cancer: a Swedish Nationwide Study. World Journal of Surgery 2020; 44(2): 436-41. 153. Lee CC, Su YC, Ho HC, et al. Increased risk of ischemic stroke in young nasopharyngeal carcinoma patients. International Journal of Radiation Oncology, Biology, Physsiolgy 2011; 81(5): e833-8. 154. Schoormans D, Vissers PAJ, van Herk-Sukel MPP, et al. Incidence of cardiovascular disease up to 13 year after cancer diagnosis: A matched cohort study among 32 757 cancer survivors. Cancer Medicine 2018; 7(10): 4952-63. 155. Hooning MJ, Botma A, Aleman BM, et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. Journal of the National Cancer Institute 2007; 99(5): 365-75. 156. Shin DW, Han K, Park HS, Lee SP, Park SH, Park J. Risk of Ischemic Heart Disease and Stroke in Prostate Cancer Survivors: A Nationwide Study in South Korea. Scientific Reports 2020; 10(1): 10313. 157. Ramin C, Schaeffer ML, Zheng Z, et al. All-Cause and Cardiovascular Disease Mortality Among Breast Cancer Survivors in CLUE II, a Long-Standing Community-Based Cohort. Journal of the National Cancer Institute 2021; 113(2): 137-45. 158. Navi BB, Reiner AS, Kamel H, et al. Risk of Arterial Thromboembolism in Patients With Cancer. Journal of American College of Cardiology: Cardiology 2017; 70(8): 926-38. 159. Cancer Today. 2020. https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0. 160. Jacob L, Kostev K. Cancer risk in stroke survivors followed for up to 10 years in general practices in Germany. Journal of Cancer Research and Clinical Oncology 2019; 145(4): 1013-20. 161. Huang R, Zhou Y, Hu S, Ren G, Cui F, Zhou PK. Radiotherapy Exposure in Cancer Patients and Subsequent Risk of Stroke: A Systematic Review and Meta-Analysis. Frontior in Neurology 2019; 10: 233. 162. Chiang CJ, You SL, Chen CJ, Yang YW, Lo WC, Lai MS. Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review. Japanese Journal of Clinical Oncology 2015; 45(3): 291-6. 163. Chiang CJ, Wang YW, Lee WC. Taiwan's Nationwide Cancer Registry System of 40 years: Past, present, and future. Journal of the Formosan Medical Association 2019; 118(5): 856-8. 164. Yeh TL, Hsieh CT, Hsu HY, et al. The risk of ischemic stroke in head and neck cancer patients and those who were treated with radiotherapy: a population-based cohort study. Cancer Epidemiology, Biomarkers & Prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2022. 165. Hsu H-Y, Chern Y-J, Hsieh C-T, et al. Increased standardised incidence ratio of cardiovascular diseases among colorectal cancer patients. International Journal of Colorectal Disease 2022. 166. Chan PC, Chang WL, Hsu MH, et al. Higher stroke incidence in the patients with pancreatic cancer: A nation-based cohort study in Taiwan. Medicine (Baltimore) 2018; 97(11): e0133. 167. Chu CN, Chen SW, Bai LY, Mou CH, Hsu CY, Sung FC. Increase in stroke risk in patients with head and neck cancer: a retrospective cohort study. British Journal of Cancer 2011; 105(9): 1419-23. 168. Tsai MC, Hsieh CT, Hsu HY, et al. Association between thyroid cancer and cardiovascular disease risk: a nationwide observation study. Scientific Reports 2022; 12(1): 18438. 169. Taiwan Cancer Registry Report. 2017. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=12235. 170. Austin PC, Fine JP. Practical recommendations for reporting Fine-Gray model analyses for competing risk data. Statistics in Medicine 2017; 36(27): 4391-400. 171. Lega IC, Lipscombe LL. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocrine Reviews 2020; 41(1). 172. van Dorst DCH, Dobbin SJH, Neves KB, et al. Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circulation Research 2021; 128(7): 1040-61. 173. Navi BB, Reiner AS, Kamel H, et al. Association between incident cancer and subsequent stroke. Annals of Neurology 2015; 77(2): 291-300. 174. Chen PC, Muo CH, Lee YT, Yu YH, Sung FC. Lung cancer and incidence of stroke: a population-based cohort study. Stroke 2011; 42(11): 3034-9. 175. Yoon DW, Shin DW, Cho JH, et al. Increased risk of coronary heart disease and stroke in lung cancer survivors: A Korean nationwide study of 20,458 patients. Lung Cancer 2019; 136: 115-21. 176. Armenian SH, Xu L, Ky B, et al. Cardiovascular Disease Among Survivors of Adult-Onset Cancer: A Community-Based Retrospective Cohort Study. Journal of Clinical Oncology : official journal of the American Society of Clinical Oncology 2016; 34(10): 1122-30. 177. Suh B, Shin DW, Park Y, et al. Increased cardiovascular risk in thyroid cancer patients taking levothyroxine: a nationwide cohort study in Korea. European Journal of Endocrinology 2019; 180(1): 11-20. 178. Yeh T-L, Hsieh C-T, Hsu H-Y, et al. The Risk of Ischemic Stroke in Head and Neck Cancer Patients and Those Who Were Treated with Radiotherapy: A Population-Based Cohort Study. Cancer Epidemiol Biomarkers Prev 2022; 31(5): 1111-8. 179. Navi BB, Iadecola C. Ischemic stroke in cancer patients: A review of an underappreciated pathology. Annals of Neurology 2018; 83(5): 873-83. 180. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opinion on Drug Safety 2009; 8(2): 191-202. 181. Zafar A, Drobni ZD, Mosarla R, et al. The Incidence, Risk Factors, and Outcomes With 5-Fluorouracil-Associated Coronary Vasospasm. Journal of American College of CardioOncology 2021; 3(1): 101-9. 182. Qi WX, Shen Z, Tang LN, Yao Y. Risk of arterial thromboembolic events with vascular endothelial growth factor receptor tyrosine kinase inhibitors: an up-to-date meta-analysis. Critical Reviews in Oncology/Hematology 2014; 92(2): 71-82. 183. Drobni ZD, Alvi RM, Taron J, et al. Association Between Immune Checkpoint Inhibitors With Cardiovascular Events and Atherosclerotic Plaque. Circulation 2020; 142(24): 2299-311. 184. Hu JR, Duncan MS, Morgans AK, et al. Cardiovascular Effects of Androgen Deprivation Therapy in Prostate Cancer: Contemporary Meta-Analyses. Arteriosclerosis, Thrombosis, and Vascular Biology 2020; 40(3): e55-e64. 185. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. New England Journal of Medicine 2013; 368(11): 987-98. 186. Gevaert SA, Halvorsen S, Sinnaeve PR, et al. Evaluation and management of cancer patients presenting with acute cardiovascular disease: a Consensus Document of the Acute CardioVascular Care (ACVC) association and the ESC council of Cardio-Oncology-Part 1: acute coronary syndromes and acute pericardial diseases. European Heart Journal. Acute Cardiovascular Care 2021; 10(8): 947-59. 187. Nonaka M, Hosoda H, Uezono Y. Cancer treatment-related cardiovascular disease: Current status and future research priorities. Biochemical Pharmacology 2021; 190: 114599. 188. Paterson DI, Wiebe N, Cheung WY, et al. Incident Cardiovascular Disease Among Adults With Cancer: A Population-Based Cohort Study. Journal of American College of Cardiology: CardioOncology 2022; 4(1): 85-94. 189. Silveira EA, Kliemann N, Noll M, Sarrafzadegan N, de Oliveira C. Visceral obesity and incident cancer and cardiovascular disease: An integrative review of the epidemiological evidence. Obesity Reviews : an official journal of the International Association for the Study of Obesity 2021; 22(1): e13088. 190. Koene RJ, Prizment AE, Blaes A, Konety SH. Shared Risk Factors in Cardiovascular Disease and Cancer. Circulation 2016; 133(11): 1104-14. 191. Libby P, Sidlow R, Lin AE, et al. Clonal Hematopoiesis: Crossroads of Aging, Cardiovascular Disease, and Cancer: JACC Review Topic of the Week. Journal of American College of Cardiology 2019; 74(4): 567-77. 192. Barac A, Murtagh G, Carver JR, et al. Cardiovascular Health of Patients With Cancer and Cancer Survivors: A Roadmap to the Next Level. Journal of American College of Cardiology 2015; 65(25): 2739-46. 193. Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia 2009; 52(10): 2046-55. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89652 | - |
| dc.description.abstract | 背景:關於心臟代謝性疾病之心血管疾病(Cardiovascular disease, CVD)的預防,先前缺乏肥胖/過重此危險因子對於台灣 CVD負擔相關的研究。而關於心臟代謝性疾病的治療,以升糖素胜肽-1受體的促效劑(Glucagon-Like Peptide-1 Receptor Agonist, GLP-1 RAs)降低體重和血糖,過去研究也未曾考慮統合分析(meta-analysis)中不同結果之間的相關性。再者,過去對於台灣特殊族群癌症病人的 CVD 預防,研究結果並不一致。
目的:量化可歸因於高身體質量指數(Body Mass Index, BMI)之 CVD 疾病負擔;探討 GLP-1 RAs 對血糖和體重控制的效果及其相關性;並探討台灣常見癌症病人,相較於非癌症族群之 CVD 風險。 方法:使用全球疾病負擔研究中的可比較性風險評估方法,依性別、年齡和縣市別估計台灣的族群歸因分率 (Population Attributable Fraction, PAF)、可歸因之 CVD 疾病負擔和失能調整生命人年損失 (Disability Adjusted Life Years, DALY)以量化疾病負擔。搜尋 2021 年 8 月至 2022 年 3 月的文獻資料庫,使用平均差值(Mean Difference, MD)和 95% 信賴區間(Confidence Interval, CI)進行分析, 採用隨機和固定效應模型,並以結構方程式模型多變項統合分析,探討 GLP-1 RAs 對血糖和體重控制的效果量及其相關程度。最後,以台灣癌症登記檔,將常見癌症患者納入研究,研究終點是致命和非致命 CVD。使用 Cox 回歸分析估計多變項調整風險比(Hazard Ratios, HR)和 95% CI,並估計診斷後每年的風險以評估時間趨勢變化。 結果:台灣疾病負擔中,高 BMI 導致 CVD 的可歸因 PAF 為 18.0 %, 60-65 歲的成年人絕對 DALYs 損失最高為 11,546 人年,平均相對年齡標準化可歸因疾病負擔為每十萬人年 314 DALYs 損失,人年損失最多在年齡 75-80 歲(每十萬人年 1,407 DALYs 損失)。至於 GLP-1 RAs 對血糖和體重控制的效果及其相關,共納入 31篇雙盲隨機對照試驗, 22,948 名參與者。 GLP-1 RAs 經統合分析,可減少糖化血色素 MD 和 95% CI ,在隨機效應模型中為 -0.78(-0.97 , -0.60)%,在固定效應模型中為 -0.45(-0.47, -0.44) %;經隨機效應模型統合,可減少體重 -4.05(-5.02, -3.09)kg,經固定效應模型統合為 -2.04(-2.16, -1.92)kg。 統合後糖化血色素與體重之間的標準化相關係數為負相關 -0.42。最後,在 552,485 名癌症患者(平均年齡 60.6 歲,女性 47.7%)中,經過 4.1 年追蹤,確認了 32,634 例 CVD 病例,相較於非癌族群,癌症患者整體經完全調整後之 HR 和 95% CI 為 1.28(1.25-1.30);第一年的 CVD 風險最高,調整後的 HR 和 95% CI 為 2.31(2.23-2.40),之後風險逐年降低。 結論:若能去除肥胖/過重,可以減少台灣 18 % 的 CVD,肥胖/過重的絕對 CVD 疾病負擔在中年男性最高,而相對負擔則在老年人最高,需針對特定地區及族群妥善資源分配。以長效 GLP-1 RAs 可顯著降低成人糖化血色素和體重,血糖控制和體重減輕之間為負相關。另外,癌症患者之 CVD 的風險顯著升高,該風險在診斷後的第一年最高,之後逐年下降。 | zh_TW |
| dc.description.abstract | Background: In the prevention of cardiometabolic disease, studies on risk factors, obesity/ overweight and disease burden in Taiwan were lacking. In the treatment of cardiometabolic disease, previous studies did not investigate the between-study correlation of glycemic control and weight reduction of glucagon-like peptide-1 receptor agonist (GLP-1 RAs) in meta-analysis. Furthermore, the associations with cancer and CVD in Taiwan had inconsistent results.
Aims: To quantify the CVD burden attributable to high body mass index (BMI) in Taiwan; to explore the effect and correlation of GLP-1 RAs on glycemic and weight reduction and to investigate the risk of CVD between populations with and without cancer. Methods: Using a comparative risk assessment approach from the Global Burden of Disease study, we estimated the population attributable fraction (PAF), attributable CVD burden, and disability-adjusted life years (DALYs) according to sex, age, and area in Taiwan to quantify CVD burden. Databases were searched from August 2021 to March 2022. Data were analyzed using mean difference (MD) values with 95% confidence intervals (CIs). Both random-and fixed-effect models were employed. Structural equation modeling fitting was used for the multivariate meta-analysis to explore the effect and correlation of GLP-1 RAs on glycemic and weight reduction. Finally, patients with common cancers were enrolled in the study using the Taiwan Cancer Registry. The study endpoint was fatal and non-fatal CVD. Multivariable adjusted hazard ratios (HRs) and 95% CIs were obtained from Cox analysis. To evaluate the chronological trend, we estimated the risks yearly since the diagnosis. Results: The attributable PAF for CVD from high BMI was 18.0%. Adults aged 60-65 years had the highest absolute DALYs (11,546 person-years). The average relative age-standardized attributable burden was 314 DALYs per 100,000 person-years, highest at aged 75-80 years (1,407 DALYs per 100,000 person-years). As for the effect and correlation of GLP-1 RAs on glycemic and weight reduction, a total of 31 double-blind randomized controlled trials with 22,948 participants were included. The MD and 95% CI of the pooled GLP1-RA in the glycated hemoglobin level was -0.78 (-0.97, -0.60) % in the random-effects model and -0.45 (-0.47, -0.44) % in the fixed-effect model. The pooled body weight reduction was -4.05 (-5.02, -3.09) kg in the random-effects model and -2.04 (-2.16, -1.92) kg in the fixed-effect model. The standardized pooled correlation coefficient between HbA1c levels and body weight was -0.42. Finally, among the 552,485 cancer patients (mean age, 60.6 years; women, 47.7 %) during the median follow-up period of 4.1 years, 32,634 cases of CVD were identified. Compared with that noted in the non-cancer population, the fully adjusted HR with 95% CI was 1.28 (1.25, 1.30) in the cancer population. The CVD risk was the highest in the first year, the adjusted HR with 95% CI was 2.31 (2.23, 2.40), and this risk decreased yearly. Conclusion: A total of 18% of CVDs could be reduced in Taiwan if obesity/overweight was prevented. The absolute CVD burden from obesity/overweight was the highest in middle-aged men, and the relative burden was the highest in older adults. Resource allocation in targeted populations is required. Long-acting GLP-1 RAs significantly reduced the glycated hemoglobin level and body weight in adults. A negative correlation between glycemic control and weight reduction was obtained. Also, patients with cancer had a significantly higher risk of CVD. The risk was the highest in the first year since diagnosis and decreased yearly. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:15:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-13T16:15:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract v 縮寫對照表 viii 目錄 x 第一章 研究架構 1 第二章 歸因於肥胖/過重之心血管疾病負擔 3 2.1 研究背景 3 2.1.1 心血管疾病及其危險因子 3 2.1.2 量化疾病負擔 4 2.1.3 量化危險因子 5 2.1.4 疾病負擔研究 7 2.2 研究假說與目的 9 2.3 研究方法 9 2.3.1 研究架構 9 2.3.2 危險因子暴露:肥胖/過重之盛行率 10 2.3.3可歸因於肥胖/過重之 CVD 相對風險 11 2.3.4 BMI最小風險暴露分佈 13 2.3.5 台灣疾病負擔 14 2.3.6 可歸因於肥胖/過重之疾病負擔 15 2.3.7 統計方法 16 2.4 研究結果 17 2.4.1 BMI分布 17 2.4.2 主要結果 18 2.4.3 依年齡分析 19 2.4.3 依縣市別分析 21 2.4.4 其他分析 22 2.5 討論 23 2.5.1 主要結果 23 2.5.2 比較過去文獻 23 2.5.3 致病機轉 26 2.5.4 公共衛生與臨床應用 27 2.5.5 優點與限制 28 2.6 結論 29 第三章 以多變項統合分析估計 GLP-1 RAs 減重、降糖效果及其相關 30 3.1. 研究背景 30 3.1.1 Glucagon-Like Peptide-1(GLP-1)及其 Receptor Agonist 30 3.1.2 結構方程式模型與統合分析 34 3.1.3 統合分析之結構方程式模型(Meta-analytic SEM) 36 3.2 研究假說與目的 38 3.3 研究方法 39 3.3.1 搜尋來源及策略 39 3.3.2 納入條件與排除條件 39 3.3.3 文章品質評析 41 3.3.4 資料萃取 42 3.3.5 統計方法 43 3.4 研究結果 45 3.4.1 收納文章描述 45 3.4.2 單變項統合分析 46 3.4.3 多變項統合分析 51 3.5 討論 54 3.5.1 主要結果 54 3.5.2 比較過去文獻 55 3.5.3 致病機轉 57 3.5.4 公共衛生與臨床應用 57 3.5.5 優點與限制 58 3.6 結論 58 第四章 癌症病人之心血管疾病風險 59 4.1 研究背景 59 4.1.1 癌症與心血管疾病關聯 59 4.1.2 癌症與心血管疾病之過去文獻 60 4.1.3 台灣常見癌症及登記 62 4.1.4 台灣癌症與心血管疾病 65 4.2 研究目的與假說 66 4.3 研究方法 67 4.3.1 研究架構 67 4.3.2 暴露定義及納入排除條件 67 4.3.3 結果定義 68 4.3.4 對照組及共變項定義 68 4.3.5 統計方法 70 4.4 研究結果 72 4.4.1 基本人口學特徵 72 4.4.2 描述性統計 74 4.4.3 分析性統計 75 4.5 討論 79 4.5.1 主要結果 79 4.5.2 比較過去文獻 80 4.5.3 致病機轉 82 4.5.4 公共衛生與臨床應用 85 4.5.5 優點與限制 85 4.6 結論 86 第五章 結語 87 Tables 88 Table 1. Relative risks used by age for mortality and morbidity of ischemic heart disease and ischemic stroke for high body mass index in adults in both sexes. 88 Table 2. The disability weight and lay description of stroke in our study. 89 Table 3. The distribution of sex-, age- and geographic area-specific body mass index. 90 Table 4. Population attributable fractions and cardiovascular disease burdens attributable to high body mass index. 92 Table 5. The population attributable fractions and age-specific cardiovascular disease burdens attributable to high body mass index. 94 Table 6. Population attributable fractions and age-standardized cardiovascular disease burdens attributable to high body mass index in different geographic areas in Taiwan. 96 Table 7. The population attributable fractions and cardiovascular disease burdens attributable to high body mass index in 2005 and 2009. 97 Table 8. Search strategy 99 Table 9. Characteristics of included randomized placebo-controlled studies 101 Table 10. Summary of risk of bias assessment for included studies. 109 Table 11. Univariate meta-regression of the effects of glucagon-like peptide-1 receptor agonists on glycated hemoglobin levels and weight reduction. 111 Table 12. The pooled results for glycated hemoglobin level and weight reduction on comparison of glucagon-like peptide-1 receptor agonist and placebo by using the structural equation modeling multivariate meta-analysis according to participant characteristics. 112 Table 13. Sensitivity analysis of the pooled results for glycated hemoglobin level and weight reduction by using the structural equation modeling multivariate meta-analysis according to participant characteristics. 113 Table 14. Literature review of cancer and cardiovascular diseases 114 Table 15. Literature review of cancer and cardiovascular diseases in Taiwan. 119 Table 16. International Classification of Diseases codes used in the study cohort 121 Table 17. Definitions of the covariates in the study cohort 122 Table 18. Baseline characteristics of populations with and without cancer. 125 Table 19. Baseline characteristics of each cancer patients and the matched non-cancer population. 126 Table 20. The risk of cardiovascular disease according to the presence of cancer. 129 Table 21. The risk of cardiovascular disease according to the presence of each target cancer. 130 Table 22. The risk of cardiovascular disease each year since cancer diagnosis. 132 Table 23. Subgroup analyses of the risk of cardiovascular disease according to the presence of cancer. 134 Table 24. The risk of cardiovascular disease mortality and morbidity according to the presence of cancer. 135 Table 25. The risk of cardiovascular disease according to the presence of cancer considering the competing risk and other models. 136 Figures 137 Figure 1. Study topics 137 Figure 2. Comparative Risk Assessment in the Global Burden of Disease study 138 Figure 3. Comparative Risk Assessment in our study 139 Figure 4. The age-specific cardiovascular disease burdens attributable to high body mass index. 141 Figure 5. The original cardiovascular disease burdens in the different geographic areas in Taiwan. 142 Figure 6. The population attributable fractions due to high body mass index in the different geographic areas in Taiwan. 143 Figure 7. The age-standardized attributable disability adjusted life year due to high body mass index in Taiwan. 144 Figure 8. The age-standardized attributable disease burdens due to high body mass index in Taiwan. 145 Figure 9. The population attributable fractions NOT due to high body mass index in the different geographic areas in Taiwan. 146 Figure 10. The age-standardized attributable disability adjusted life year NOT due to high body mass index in Taiwan. 147 Figure 11. Flowchart of the trial selection process. 148 Figure 12. Forest plots of univariate meta-analysis. 149 Figure 13. Forest plots of univariate meta-analysis, subgroup by participants’ characteristics. 150 Figure 14. Forest plots of univariate meta-analysis, subgroup by different glucagon-like peptide-1 receptor agonists. 151 Figure 15. Funnel plots and the Egger’s tests of the univariate meta-analysis. 152 Figure 16. Funnel plots and the Egger’s tests of the univariate meta-analysis in different conditions. 153 Figure 17. Contour-enhanced and filled funnel plots of glycated hemoglobin level and body weight. 154 Figure 18. Forest plot of pooled body weight reduction, comparing Glucagon-like peptide-1 receptor agonist and placebo, by restricting articles with low bias. 155 Figure 19. The pooled effects for changes in glycated hemoglobin level and body weight in different population treated with a glucagon-like peptide-1 receptor agonist. 156 Figure 20. The logarithm negative logarithm plot against logarithm of time for proportional hazard assumption 158 Figure 21. Flow diagram of the participants enrollment 159 Figure 22. The Kaplan–Meier survival curves of cardiovascular disease. 160 Figure 23. The Kaplan-Meier survival curves of cardiovascular disease of each cancer. 161 Figure 24. The risk of cardiovascular disease each year since cancer diagnosis. 162 Figure 25. The risk of cardiovascular disease each year since each cancer diagnosis. 163 Figure 26. Subgroup analyses of the risk of cardiovascular disease. 164 References 165 附錄 196 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 族群可歸因分率 | zh_TW |
| dc.subject | 可比較性風險評估 | zh_TW |
| dc.subject | 腫瘤心臟學 | zh_TW |
| dc.subject | 世代研究 | zh_TW |
| dc.subject | 多變量統合分析 | zh_TW |
| dc.subject | onco-cardiology | en |
| dc.subject | comparative risk assessment | en |
| dc.subject | population attributable fraction | en |
| dc.subject | multivariate meta-analysis | en |
| dc.subject | cohort study | en |
| dc.title | 台灣心臟代謝性疾病之預防及治療—肥胖/過重、糖尿病、癌症及心血管疾病 | zh_TW |
| dc.title | Cardiometabolic Disease Prevention and Control in Taiwan--Obesity/ overweight, diabetes mellitus, cancer and cardiovascular disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 黃麗卿;孫建安;林先和;杜裕康;張慶國 | zh_TW |
| dc.contributor.oralexamcommittee | Lee-Ching Hwang;Chien-An Sun;Hsien-Ho Lin ;Yu-Kang Tu;Chin-Kuo Chang | en |
| dc.subject.keyword | 族群可歸因分率,可比較性風險評估,多變量統合分析,世代研究,腫瘤心臟學, | zh_TW |
| dc.subject.keyword | population attributable fraction,comparative risk assessment,multivariate meta-analysis,cohort study,onco-cardiology, | en |
| dc.relation.page | 196 | - |
| dc.identifier.doi | 10.6342/NTU202301125 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-03 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 10.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
