請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89648完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃國晉 | zh_TW |
| dc.contributor.advisor | Kuo-Chin Huang | en |
| dc.contributor.author | 周孜容 | zh_TW |
| dc.contributor.author | Tzu-Jung Chou | en |
| dc.date.accessioned | 2023-09-13T16:14:02Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-13 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | 1. World Obesity Federation. 2022 World Obesity Atlas. 2022 [cited 2023 Janurary 8]; Available from: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022.
2. 成人肥胖防治實證指引. 2022: 衛生福利部國民健康署、台灣肥胖醫學會、考科藍臺灣研究中心. 3. Frühbeck, G., et al., The ABCD of Obesity: An EASO Position Statement on a Diagnostic Term with Clinical and Scientific Implications. Obes Facts, 2019. 12(2): p. 131-136. 4. Heymsfield, S.B. and T.A. Wadden, Mechanisms, Pathophysiology, and Management of Obesity. New England Journal of Medicine, 2017. 376(3): p. 254-266. 5. Müller, T.D., et al., Anti-obesity drug discovery: advances and challenges. Nature Reviews Drug Discovery, 2022. 21(3): p. 201-223. 6. Sakers, A., et al., Adipose-tissue plasticity in health and disease. Cell, 2022. 185(3): p. 419-446. 7. Cypess, A.M., Reassessing Human Adipose Tissue. New England Journal of Medicine, 2022. 386(8): p. 768-779. 8. Wolfrum, C. and Z. Gerhart-Hines, Fueling the fire of adipose thermogenesis. Science, 2022. 375(6586): p. 1229-1231. 9. Cypess, A.M., et al., Identification and Importance of Brown Adipose Tissue in Adult Humans. New England Journal of Medicine, 2009. 360(15): p. 1509-1517. 10. Fernández-Verdejo, R., et al., Contribution of brown adipose tissue to human energy metabolism. Molecular Aspects of Medicine, 2019. 68: p. 82-89. 11. Saito, M., et al., High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes, 2009. 58(7): p. 1526-1531. 12. Tseng, Y.-H., Adipose tissue in communication: within and without. Nature Reviews Endocrinology, 2023. 19(2): p. 70-71. 13. Carpentier, A.C., et al., Brown Adipose Tissue—A Translational Perspective. Endocrine Reviews, 2022. 14. Villarroya, F., et al., Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 2017. 13(1): p. 26-35. 15. Koenen, M., et al., Obesity, Adipose Tissue and Vascular Dysfunction. Circulation Research, 2021. 128(7): p. 951-968. 16. Chow, L.S., et al., Exerkines in health, resilience and disease. Nature Reviews Endocrinology, 2022. 18(5): p. 273-289. 17. Garritson, J.D. and S. Boudina, The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Front Physiol, 2021. 12: p. 772894. 18. Peres Valgas da Silva, C., et al., Cold and exercise: Therapeutic tools to activate brown adipose tissue and combat obesity. Biology, 2019. 8(1): p. 9. 19. Lehnig, A.C. and K.I. Stanford, Exercise-induced adaptations to white and brown adipose tissue. The Journal of Experimental Biology, 2018. 221(Suppl 1): p. jeb161570. 20. Wu, M.V., et al., Thermogenic Capacity Is Antagonistically Regulated in Classical Brown and White Subcutaneous Fat Depots by High Fat Diet and Endurance Training in Rats: IMPACT ON WHOLE-BODY ENERGY EXPENDITURE. Journal of Biological Chemistry, 2014. 289(49): p. 34129-34140. 21. Dewal, R.S. and K.I. Stanford, Effects of exercise on brown and beige adipocytes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2019. 1864(1): p. 71-78. 22. Aldiss, P., et al., Exercise-induced 'browning' of adipose tissues. Metabolism, 2018. 81: p. 63-70. 23. Boström, P., et al., A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012. 481(7382): p. 463-468. 24. Norheim, F., et al., The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. The FEBS Journal, 2014. 281(3): p. 739-749. 25. Flori, L., L. Testai, and V. Calderone, The “irisin system”: From biological roles to pharmacological and nutraceutical perspectives. Life Sciences, 2021. 267: p. 118954. 26. Leal, L.G., M.A. Lopes, and M.L. Batista, Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Frontiers in Physiology, 2018. 9. 27. Siersbæk, M.S., et al., C57BL/6J substrain differences in response to high-fat diet intervention. Scientific Reports, 2020. 10(1): p. 14052. 28. Xu, X., et al., Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2011. 300(5): p. R1115-R1125. 29. Kan, N.-W., et al., The Synergistic Effects of Resveratrol combined with Resistant Training on Exercise Performance and Physiological Adaption. Nutrients, 2018. 10(10): p. 1360. 30. Xiong, Y., et al., Moderate-Intensity Continuous Training Improves FGF21 and KLB Expression in Obese Mice. Biochemistry (Mosc), 2020. 85(8): p. 938-946. 31. Matthews, D.R., et al., Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985. 28(7): p. 412-9. 32. de Jong, J.M., et al., A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab, 2015. 308(12): p. E1085-105. 33. Bustin, S.A., et al., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 2009. 55(4): p. 611-622. 34. Krämer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2013. 30(4): p. 523-530. 35. Wu, J., et al., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012. 150(2): p. 366-76. 36. Tanimura, R., et al., Effects of exercise intensity on white adipose tissue browning and its regulatory signals in mice. Physiological Reports, 2022. 10(5): p. e15205. 37. Seale, P., et al., Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest, 2011. 121(1): p. 96-105. 38. Steensberg, A., et al., Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol, 2000. 529 Pt 1(Pt 1): p. 237-42. 39. Kim, H., et al., Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 2019. 178(2): p. 507-508. 40. Arhire, L.I., L. Mihalache, and M. Covasa, Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Frontiers in Endocrinology, 2019. 10(524). 41. Kazeminasab, F., E. Sadeghi, and A. Afshari-Safavi, Comparative Impact of Various Exercises on Circulating Irisin in Healthy Subjects: A Systematic Review and Network Meta-Analysis. Oxidative Medicine and Cellular Longevity, 2022. 2022: p. 8235809. 42. Cho, E., et al., The Acute Effects of Swimming Exercise on PGC-1α-FNDC5/Irisin-UCP1 Expression in Male C57BL/6J Mice. Metabolites, 2021. 11(2). 43. Kim, H.J., et al., Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study. Physiol Res, 2016. 65(2): p. 271-9. 44. Guilford, B.L., et al., Increased FNDC5 is associated with insulin resistance in high fat-fed mice. Physiological Reports, 2017. 5(13): p. e13319. 45. Chen, Y., et al., Deficiency in the short-chain acyl-CoA dehydrogenase protects mice against diet-induced obesity and insulin resistance. Faseb j, 2019. 33(12): p. 13722-13733. 46. Delibegovic, M., et al., Disruption of the Striated Muscle Glycogen Targeting Subunit PPP1R3A of Protein Phosphatase 1 Leads to Increased Weight Gain, Fat Deposition, and Development of Insulin Resistance. Diabetes, 2003. 52(3): p. 596-604. 47. Singh, C.K., et al., The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal, 2018. 28(8): p. 643-661. 48. Cortés-Rojo, C., et al., Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2020. 1866(8): p. 165801. 49. Li, N., et al., Aerobic Exercise Prevents Chronic Inflammation and Insulin Resistance in Skeletal Muscle of High-Fat Diet Mice. Nutrients, 2022. 14(18): p. 3730. 50. Kawanishi, N., et al., Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice. Physiological Reports, 2015. 3(9): p. e12534. 51. Yuan, H., et al., Proteomic Analysis of Skeletal Muscle in Insulin-Resistant Mice: Response to 6-Week Aerobic Exercise. PLOS ONE, 2013. 8(1): p. e53887. 52. Henriques, B.J., et al., Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene, 2021. 776: p. 145407. 53. Lo, K.A. and L. Sun, Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep, 2013. 33(5). 54. Dickson, L.M., et al., Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2016. 311(1): p. R79-R88. 55. Schork, K., et al., Important Issues in Planning a Proteomics ExperimentPlanning a Proteomics experiment: Statistical Considerations of Quantitative ProteomicQuantitativeproteomicsData, in Quantitative Methods in Proteomics, K. Marcus, M. Eisenacher, and B. Sitek, Editors. 2021, Springer US: New York, NY. p. 1-20. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89648 | - |
| dc.description.abstract | 背景
全球肥胖的盛行率持續上升,已對公共健康造成重大威脅。促進能量消耗的產熱脂肪細胞被視為具有潛力對抗肥胖的新興治療目標。本研究旨在探討有氧運動、阻力運動、及間歇性高強度訓練對於高脂誘導肥胖小鼠產熱脂肪細胞與白脂褐化之影響。此外,我們亦進一步探討有氧運動對於肥胖小鼠骨骼肌與副睪白色脂肪蛋白質體變化的影響。 方法 本研究首先將50隻6週齡的C57BL/6 雄性小鼠分為對照組和高脂飼料誘導肥胖組。經過8 週的肥胖誘導後,肥胖小鼠再被分為靜態、有氧運動、阻力運動和間歇性高強度訓練四組,分別進行為期8 週的運動訓練介入。接著使用液相層析串聯質譜儀分析小鼠骨骼肌和副睪白色脂肪之蛋白質體,並針對顯著表現差異的蛋白質以Gene Ontology和Ingenuity Pathway Analysis進行生物資訊分析。 結果 有氧運動、阻力運動和間歇性高強度運動均有助於顯著下降體重,並改善葡萄糖耐受性、總膽固醇和低密度脂蛋白膽固醇等代謝指標。然而,其中僅有氧運動顯著增加血中鳶尾素(Irisin)濃度、改善胰島素阻抗、及增加副睪白色脂肪產熱相關基因(如:Prdm16、Cidea和Pgc-1α)的表現。透過蛋白質體分析,我們進一步發現有氧運動透過調控骨骼肌及副睪白色脂肪之相關蛋白質,達到影響粒線體功能、改善胰島素敏感性,同時促進白脂褐化之機轉。 結論 我們的研究結果顯示,不同運動模式對於產熱脂肪細胞會有不同的影響。有氧運動可以顯著增加白色脂肪產熱基因的表現,並調節影響胰島素敏感性和白脂褐化的蛋白質。本研究提供了有關有氧運動誘導白脂褐化背後分子機轉的見解,冀盼有助於未來發展以產熱脂肪細胞為基礎之類運動治療模式。 | zh_TW |
| dc.description.abstract | Background
Global prevalence of obesity has continued to rise and poses significant public health concerns. Thermogenic fat cells that increase energy expenditure may be a promising alternative target to combat obesity. Our study aims to investigate the effects of aerobic exercise (AE), resistance exercise (RE), and high-intensity interval training (HIIT) on thermogenic fat cells and browning of white adipose tissue (WAT). Furthermore, we sought to examine the proteomic alterations induced by AE in skeletal muscle and epididymal fat pad (EFP) of high fat diet induced obese mice. Methods Fifty 6-week-old male C57BL/6 mice were initially divided into control group and high-fat-diet obesity induction group. After 8 weeks of obesity induction, obese mice were further subdivided into sedentary, AE, RE, and HIIT groups. Trained obese mice were submitted to 8 weeks of exercise. Liquid chromatography-mass spectrometry was used to detect skeletal muscle and EFP proteins, and bioinformatic analyses were conducted on differentially regulated proteins using Gene Ontology enrichment analysis and Ingenuity Pathway Analysis. Results All three types of exercises significantly attenuated diet-induced obesity, and improved metabolic profiles including glucose tolerance, total cholesterol, and low-density lipoprotein cholesterol. Moreover, AE significantly increased serum irisin level, improved the homeostatic model assessment of insulin resistance, and increased thermogenic gene expressions such as Prdm16, Cidea, and Pgc-1α in EFP of obese mice. Furthermore, AE regulated skeletal muscle proteins that affect mitochondrial function and insulin sensitivity, while promoting proteins involved in the browning of WAT in EFP. Conclusion Our findings suggest that the modality of exercise should be considered when it comes to the adaptation of thermogenic fat cells. AE significantly increased thermogenic gene expression and regulated proteins that affect insulin resistance and browning of WAT. Our study provides insights into the molecular responses underlying the beneficial effects of AE and may contribute to the development of exercise-mimicking therapeutic targets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:14:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-13T16:14:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xi 第一章、緒論 1 1.1 背景 1 1.1.1 肥胖與產熱脂肪細胞 1 1.1.2 運動與白脂褐化 3 1.2 目的 4 1.3 假說 4 第二章、研究方法 5 2.1 實驗設計與實驗動物 5 2.2 小鼠運動訓練模式 6 2.2.1 有氧運動 6 2.2.2 阻力運動 6 2.2.3 間歇性高強度運動 6 2.3 血液生化分析及口服葡萄糖耐受試驗 7 2.4 組織樣本採集與分析 7 2.5 酵素連結免疫吸附分析法 7 2.6 即時定量聚合酶連鎖反應 8 2.7 紅外線熱像儀(Infrared thermography)分析 9 2.8 蛋白質體分析 9 2.8.1 組織樣本前處理 9 2.8.2 液相層析串聯質譜分析 10 2.8.3 質譜數據分析 10 2.8.4 生物資訊分析 10 2.9 統計分析 11 第三章、研究結果 12 3.1 不同運動模式對於小鼠體重之影響 12 3.2 不同運動模式於小鼠棕色脂肪、副睪白色脂肪、及肌肉之組織學變化 13 3.3 不同運動模式對於小鼠生化數值之影響 14 3.4 不同運動模式對於胰島素阻抗及肌肉激素之影響 16 3.5 不同運動模式對於產熱基因表現之影響 16 3.6 棕色脂肪組織之紅外線熱成像 17 3.7 高脂飲食對於小鼠肌肉蛋白質體之影響 18 3.8 高脂飲食對於小鼠副睪白色脂肪蛋白質體之影響 20 3.9 有氧運動對於小鼠肌肉蛋白質體之影響 21 3.10 有氧運動對於小鼠副睪白色脂肪蛋白質體之影響 22 第四章、討論 24 4.1 不同運動模式對於小鼠產熱脂肪細胞與白脂褐化之影響 24 4.2 運動誘導白脂褐化與irisin之關係 25 4.3 有氧運動對於小鼠肌肉及副睪白色脂肪蛋白質體之調控 26 4.4 研究限制 27 4.5 未來研究發展與方向 28 第五章、結論 29 第六章、參考文獻 30 附錄 34 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 產熱脂肪細胞 | zh_TW |
| dc.subject | 運動 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 白脂褐化 | zh_TW |
| dc.subject | 棕色脂肪 | zh_TW |
| dc.subject | browning | en |
| dc.subject | brown adipose tissue | en |
| dc.subject | obesity | en |
| dc.subject | exercise | en |
| dc.subject | thermogenic fat cells | en |
| dc.title | 探討有氧運動、阻力運動、間歇性高強度運動對於 高脂誘導肥胖小鼠產熱脂肪細胞與白脂褐化之影響 | zh_TW |
| dc.title | Effects of aerobic, resistance, and high-intensity interval training on thermogenic fat cells and browning in high fat diet induced obese mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊偉勛;程劭儀 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Shiung Yang;Shao-Yi Cheng | en |
| dc.subject.keyword | 肥胖,運動,產熱脂肪細胞,棕色脂肪,白脂褐化, | zh_TW |
| dc.subject.keyword | brown adipose tissue,browning,exercise,obesity,thermogenic fat cells, | en |
| dc.relation.page | 35 | - |
| dc.identifier.doi | 10.6342/NTU202301430 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-27 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
