Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89604
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志潾zh_TW
dc.contributor.advisorChih-Lin Weien
dc.contributor.author陳彥廷zh_TW
dc.contributor.authorYen-Ting Chenen
dc.date.accessioned2023-09-11T16:27:41Z-
dc.date.available2025-07-01-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-06-27-
dc.identifier.citationAkoumianaki I, Papaspyrou S, Kormas KAr, Nicolaidou A (2013) Environmental variation and macrofauna response in a coastal area influenced by land runoff. Estuarine, Coastal and Shelf Science 132:34–44.
Akoumianaki I, Papaspyrou S, Nicolaidou A (2006) Dynamics of macrofaunal body size in a deltaic environment. Marine Ecology Progress Series 321:55–66.
Albertelli G, Covazzi-Harriague A, Danovaro R, Fabiano M, Fraschetti S, Pusceddu A (1999) Differential responses of bacteria, meiofauna and macrofauna in a shelf area (Ligurian Sea, NW Mediterranean): role of food availability. Journal of Sea Research 42:11–26.
Aller JY, Aller RC (1986) General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Continental Shelf Research 6:291–310.
Aller JY, Stupakoff I (1996) The distribution and seasonal characteristics of benthic communities on the Amazon shelf as indicators of physical processes. Continental Shelf Research 16:717–751.
Alongi DM, Christoffersen P, Tirendi F, Robertson AI (1992) The influence of freshwater and material export on sedimentary facies and benthic processes within the Fly Delta and adjacent Gulf of Papua (Papua New Guinea). Continental Shelf Research 12:287–326.
Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46.
Anderson MJ (2006) Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62:245–253.
Andressen H, Brey T (2018) BenthicPro: Benthic Energy Flow. R package version 1.0. https://github.com/HenrikeAndresen/BenthicPro
Antonio ES, Kasai A, Ueno M, Won N, Ishihi Y, Yokoyama H, Yamashita Y (2010) Spatial variation in organic matter utilization by benthic communities from Yura River–Estuary to offshore of Tango Sea, Japan. Estuarine, Coastal and Shelf Science 86:107–117.
Bachelet G (1990) The choice of a sieving mesh size in the quantitative assessment of marine macrobenthos: a necessary compromise between aims and constraints. Marine Environmental Research 30:21–35.
Bai Y, Huang T-H, He X, Wang S-L, Hsin Y-C, Wu C-R, Zhai W, Lui H-K, Chen C-TA (2015) Intrusion of the Pearl River plume into the main channel of the Taiwan Strait in summer. Journal of Sea Research 95:1–15.
Bartoń K (2022) MuMIn: Multi-Model Inference. R package version 1.46.0. https://CRAN.R-project.org/package=MuMIn
Belley R, Snelgrove PVR (2016) Relative Contributions of Biodiversity and Environment to Benthic Ecosystem Functioning. Frontiers in Marine Science 3:242.
Benke AC, Huryn AD (2010) Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society 29:264–285.
Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography 43:1500–1510.
Blair NE, Aller RC (2012) The Fate of Terrestrial Organic Carbon in the Marine Environment. Annual Review of Marine Science 4:401–423.
Blanco J, Echevarría F, García C (1994) Dealing with size-spectra: Some conceptual and mathematical problems. Scientia Marina 58:17–29.
Blum P (1997) Moisture and density (by mass and volume). In: Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. College Station, Texas, USA
Bonifácio P, Bourgeois S, Labrune C, Amouroux JM, Escoubeyrou K, Buscail R, Romero-Ramirez A, Lantoine F, Vétion G, Bichon S, Desmalades M, Rivière B, Deflandre B, Grémare A (2014) Spatiotemporal changes in surface sediment characteristics and benthic macrofauna composition off the Rhône River in relation to its hydrological regime. Estuarine, Coastal and Shelf Science 151:196–209.
Bouchez J, Beyssac O, Galy V, Gaillardet J, France-Lanord C, Maurice L, Moreira-Turcq P (2010) Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology 38:255–258.
Brey T (2012) A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production. Limnology and Oceanography: Methods 10:581–589.
Brey T (2010) An empirical model for estimating aquatic invertebrate respiration. Methods in Ecology and Evolution 1:92–101.
Brey T (2001) The Virtual Handbook on Population Dynamics of Benthic Invertebrates. http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html (accessed 18 Nov 2021)
Brey T, Müller-Wiegmann C, Zittier ZMC, Hagen W (2010) Body composition in aquatic organisms — A global data bank of relationships between mass, elemental composition and energy content. Journal of Sea Research 64:334–340.
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theorectic approach, 2nd ed. Springer, New York, NY.
Cai W-J, Dai M, Wang Y, Zhai W, Huang T, Chen S, Zhang F, Chen Z, Wang Z (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research 24:1301–1319.
Campanyà-Llovet N, Snelgrove PVR, Parrish CC (2017) Rethinking the importance of food quality in marine benthic food webs. Progress in Oceanography 156:240–251.
Caraco N, Bauer JE, Cole JJ, Petsch S, Raymond P (2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology 91:2385–2393.
Careddu G, Costantini ML, Calizza E, Carlino P, Bentivoglio F, Orlandi L, Rossi L (2015) Effects of terrestrial input on macrobenthic food webs of coastal sea are detected by stable isotope analysis in Gaeta Gulf. Estuarine, Coastal and Shelf Science 154:158–168.
Central Weather Bureau (2019) 2019 Annual report. Central Weather Bureau, Taiwan.
Chen J-M, Li T, Shih C-F (2010) Tropical cyclone– and monsoon-induced rainfall variability in Taiwan. Journal of Climate 23:4107–4120.
Coppock RL, Lindeque PK, Cole M, Galloway TS, Näkki P, Birgani H, Richards S, Queirós AM (2021) Benthic fauna contribute to microplastic sequestration in coastal sediments. Journal of Hazardous Materials 415:125583.
Cusson M, Bourget E (2005) Global patterns of macroinvertebrate production in marine benthic habitats. Marine Ecology Progress Series 297:1–14.
Dagg M, Benner R, Lohrenz S, Lawrence D (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Continental Shelf Research 24:833–858.
Danovaro R, Gambi C, Manini E, Fabiano M (2000) Meiofauna response to a dynamic river plume front. Marine Biology 137:359–370.
Darnaude AM, Salen-Picard C, Polunin NVC, Harmelin-Vivien ML (2004) Trophodynamic linkage between river runoff and coastal fishery yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean). Oecologia 138:325–332.
Dauwe B, Herman PMJ, Heip . H. R. (1998) Community structure and bioturbation potential of macrofauna at four North Sea stations with contrasting food supply. Marine Ecology Progress Series 173:67–83.
De Vlas J (1979) Annual food intake by plaice and flounder in a tidal flat area in the dutch wadden sea, with special reference to consumption of regenerating parts of macrobenthic prey. Netherlands Journal of Sea Research 13:117–153.
Degen R, Vedenin A, Gusky M, Boetius A, Brey T (2015) Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean. Polar Research 34:24008.
Dias E, Morais P, Cotter AM, Antunes C, Hoffman JC (2016) Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs. Marine Ecology Progress Series 554:21–34.
Dolbeth M, Cusson M, Sousa R, Pardal MA (2012) Secondary production as a tool for better understanding of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 69:1230–1253.
Dong L, Su J, Li Y, Xia X, Guan W (2006) Physical processes and sediment dynamics in the Pearl River. In: Wolanski E (ed) The Environment in Asia Pacific Harbours. Springer Netherlands, Dordrecht, p 127–137
Doong R, Lee S, Lee C, Sun Y, Wu S (2008) Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan. Marine Pollution Bulletin 57:846–857.
Doong R, Lin Y (2004) Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research 38:1733–1744.
Dormann CF, Calabrese JM, Guillera-Arroita G, Matechou E, Bahn V, Bartoń K, Beale CM, Ciuti S, Elith J, Gerstner K, Guelat J, Keil P, Lahoz-Monfort JJ, Pollock LJ, Reineking B, Roberts DR, Schröder B, Thuiller W, Warton DI, Wintle BA, Wood SN, Wüest RO, Hartig F (2018) Model averaging in ecology: a review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs 88:485–504.
Edwards A (2021) sizeSpectra: fitting size spectra to ecological data using maximum likelihood. R package version 1.0.0.0. https://github.com/andrew-edwards/sizeSpectra
Edwards AM, Robinson JPW, Blanchard JL, Baum JK, Plank MJ (2020) Accounting for the bin structure of data removes bias when fitting size spectra. Marine Ecology Progress Series 636:19–33.
Edwards AM, Robinson JPW, Plank MJ, Baum JK, Blanchard JL (2017) Testing and recommending methods for fitting size spectra to data. Methods in Ecology and Evolution 8:57–67.
Escobar-Briones EG, Soto LA (1997) Continental shelf benthic biomass in the western Gulf of Mexico. Continental Shelf Research 17:585–604.
Evrard V, Huettel M, Cook PLM, Soetaert K, Heip CHR, Middelburg JJ (2012) Importance of phytodetritus and microphytobenthos for heterotrophs in a shallow subtidal sandy sediment. Marine Ecology Progress Series 455:13–31.
Farnsworth KL, Milliman JD (2003) Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas River example. Global and Planetary Change 39:53–64.
Feller RJ, Warwick RM (1988) Energetics. In: Higgins RP, Thiel H (ed) Introduction to the study of meiofauna. Smithsonian Institution Press, p 181–196
Feng Y, Tang Q, Li J, Sun J, Zhan W (2021) Internal Solitary Waves Observed on the Continental Shelf in the Northern South China Sea From Acoustic Backscatter Data. Frontiers in Marine Science 8:734075.
Fuchs HL, Chant RJ, Hunter EJ, Curchitser EN, Gerbi GP, Chen EY (2020) Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nature Climate Change 10:1052–1056.
Gammal J, Järnström M, Bernard G, Norkko J, Norkko A (2019) Environmental Context Mediates Biodiversity–Ecosystem Functioning Relationships in Coastal Soft-sediment Habitats. Ecosystems 22:137–151.
Gan J, Cheung A, Guo X, Li L (2009) Intensified upwelling over a widened shelf in the northeastern South China Sea. Journal of Geophysical Research 114:C09019.
Gan J, Lu Z, Dai M, Cheung AYY, Liu H, Harrison P (2010) Biological response to intensified upwelling and to a river plume in the northeastern South China Sea: A modeling study. Journal of Geophysical Research 115:C09001.
Ge Q, Liu JP, Xue Z, Chu F (2014) Dispersal of the Zhujiang River (Pearl River) derived sediment in the Holocene. Acta Oceanologica Sinica 33:1–9.
Gerlach S, Hahn A, Schrage M (1985) Size spectra of benthic biomass and metabolism. Marine Ecology Progress Series 26:161–173.
GESAMP (Group of Experts on the Scientific Aspects of Marine Pollution) (1994) Anthropogenic influences on sediment discharge to the coastal zone and environmental consequences. UNESCO-TOC, Paris.
Geyer WR, Hill PS, Kineke GC (2004) The transport, transformation and dispersal of sediment by buoyant coastal flows. Continental Shelf Research 24:927–949.
Giere O (2009) Meiobenthology, 2nd ed. Springer Berlin, Heidelberg.
Glazier DS (2006) The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals. BioScience 56:325–332.
Glud RN (2008) Oxygen dynamics of marine sediments. Marine Biology Research 4:243–289.
Gomez-Canchong P, Blanco J, Quinones R (2013) On the use of biomass size spectra linear adjustments to design ecosystem indicators. Scientia Marina 77(2):257-268.
Górska B, Soltwedel T, Schewe I, Włodarska-Kowalczuk M (2020) Bathymetric trends in biomass size spectra, carbon demand, and production of Arctic benthos (76-5561 m, Fram Strait). Progress in Oceanography 186:102370.
Górska B, Włodarska-Kowalczuk M (2017) Food and disturbance effects on Arctic benthic biomass and production size spectra. Progress in Oceanography 152:50–61.
Gray JS (1974) Animal-sediment relationships. Oceanography and Marine Biology: An Annual Review 12:223–261.
Grebmeier J, McRoy C, Feder H (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Marine Ecology Progress Series 48:57–67.
Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24:699–711.
Guillemette F, Bianchi TS, Spencer RGM (2017) Old before your time: Ancient carbon incorporation in contemporary aquatic foodwebs. Limnology and Oceanography 62:1682–1700.
Hall SJ (2002) The continental shelf benthic ecosystem: current status, agents for change and future prospects. Environmental Conservation 29:350–374.
Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A Global Map of Human Impact on Marine Ecosystems. Science 319:948–952.
Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecology Letters 9:228–241.
Harris CM, McTigue ND, McClelland JW, Dunton KH (2018) Do high Arctic coastal food webs rely on a terrestrial carbon subsidy? Food Webs 15:e00081.
Harris PT (2014) Shelf and deep-sea sedimentary environments and physical benthic disturbance regimes: A review and synthesis. Marine Geology 353:169–184.
Hegyi G, Garamszegi LZ (2011) Using information theory as a substitute for stepwise regression in ecology and behavior. Behavioral Ecology and Sociobiology 65:69–76.
Hermand R, Salen-Picard C, Alliot E, Degiovanni C (2008) Macrofaunal density, biomass and composition of estuarine sediments and their relationship to the river plume of the Rhone River (NW Mediterranean). Estuarine, Coastal and Shelf Science 79:367–376.
Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume Calculation for Pelagic and Benthic Microalgae. Journal of Phycology 35:403–424.
Hillman JR, Lundquist CJ, Pilditch CA, Thrush SF (2020) The role of large macrofauna in mediating sediment erodibility across sedimentary habitats. Limnology and Oceanography 65:683–693.
Hilton RG, Galy A, Hovius N, Horng M-J, Chen H (2010) The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta 74:3164–3181.
Hong H, Xu L, Guo L, Xiao Y (1991) Geochemical study of organic C, N, P and Si in sediments of the southern Taiwan Strait. In: Hong H (ed) Minnan-Taiwan bank fishing gound upwelling ecosystem study. Science press, Beijing, p 289–297
Hsu F-H, Su C-C, Wang C-H, Lin S, Liu J, Huh C-A (2014) Accumulation of terrestrial organic carbon on an active continental margin offshore southwestern Taiwan: Source-to-sink pathways of river-borne organic particles. Journal of Asian Earth Sciences 91:163–173.
Hu J, Li S, Geng B (2011) Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China. Journal of Marine Systems 88:252–266.
Hu J, Peng P, Jia G, Mai B, Zhang G (2006a) Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Marine Chemistry 98:274–285.
Hu J, Zhang H, Peng P (2006b) Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, Southern China. Estuarine, Coastal and Shelf Science 66:346–356.
Hua E, Zhang Z, Warwick RM, Deng K, Lin K, Wang R, Yu Z (2013) Pattern of benthic biomass size spectra from shallow waters in the East China Seas. Marine Biology 160:1723–1736.
Huang H, Lin Y, Li C, Lin Q, Cai W, Gao D, Jia X (2012) Ecology Study on The Benthic Animals of Pearl River Estuary. Acta Ecologica Sinica 22:603–607.
Huang S-F (2012) Small-scale river plume dynamics at the Gaoping River mouth. M.Sc. Thesis, National Sun Yat-sen University
Huettel M, Berg P, Kostka JE (2014) Benthic Exchange and Biogeochemical Cycling in Permeable Sediments. Annual Review of Marine Science 6:23–51.
Huh C-A, Lin H-L, Lin S, Huang Y-W (2009a) Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76:405–416.
Huh C-A, Liu JT, Lin H-L, Xu JP (2009b) Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements. Marine Geology 267:8–17.
Hung J-J, Ho C-M, Shiah F-K (2014) Effects of river inputs on nutrient and organic-carbon conditions and net ecosystem metabolism in the Kaoping (Taiwan) coastal sea. Mar Freshwater Res 65:697–709.
Hung J-J, Wang Y-J, Tseng C-M, Lee Chen Y-L (2020) Controlling mechanisms and cross linkages of ecosystem metabolism and atmospheric CO2 flux in the northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers 157:103205.
Hung J-J, Yang C-Y, Lai I-J (2004) Meteorologic control on physical and chemical weathering rates and material fluxes from a tropical (Kaoping) river watershed in Taiwan. In: Joint AOGS 1st Annual Meeting & 2nd APHW Conference, Singapore. p 759
Hung J-J, Yeh Y-T, Huh C-A (2012) Efficient transport of terrestrial particulate carbon in a tectonically-active marginal sea off southwestern Taiwan. Marine Geology 315–318:29–43.
Hunter WR, Jamieson A, Huvenne V a. I, Witte U (2013) Sediment community responses to marine vs. terrigenous organic matter in a submarine canyon. Biogeosciences 10:67–80.
Jahnke R (2010) Global Synthesis. In: Liu K-K, Atkinson L, Quiñones R, Talaue-McManus L (eds) Carbon and Nutrient Fluxes in Continental Margins. Springer Berlin Heidelberg, p 597–615
Jeng W-L, Wang J, Hanb B-C (1996) Coprostanol distribution in marine sediments off Southwestern Taiwan. Environmental Pollution 94:47–52.
Josefson AB, Widbom B (1988) Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin. Marine Biology 100:31–40.
Jue Z-Y (2021) Applying a holographic instrument to investigate properties of biogenic and floc particles in the water: a case study off the Gaoping River mouth. M.Sc. Thesis, National Sun Yat-sen University
Kao SJ, Dai M, Selvaraj K, Zhai W, Cai P, Chen SN, Yang JYT, Liu JT, Liu CC, Syvitski JPM (2010) Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics. Geophysical Research Letters 37:L21702.
Kao S-J, Hilton RG, Selvaraj K, Dai M, Zehetner F, Huang J-C, Hsu S-C, Sparkes R, Liu JT, Lee T-Y, Yang J-YT, Galy A, Xu X, Hovius N (2014) Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics 2:127–139.
Kao S-J, Lee T-Y, Milliman JD (2005) Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial, Atmospheric, and Ocean Sciences 16:653-675.
Kao SJ, Liu KK (2000) Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochemical Cycles 14:189–198.
Kao SJ, Milliman JD (2008) Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. The Journal of Geology 116:431–448.
Kao S-J, Shiah F-K, Wang C-H, Liu K-K (2006) Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan. Continental Shelf Research 26:2520–2537.
Kerr S, Dickie L (2001) The biomass size spectrum: a predator–prey theory of aquatic production. Columbia University Press.
Kothawala DN, Kellerman AM, Catalán N, Tranvik LJ (2021) Organic matter degradation across ecosystem boundaries: the need for a unified conceptualization. Trends in Ecology & Evolution 36:113–122.
Kozlowski J, Konarzewski M (2004) Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Functional Ecology 18:283–289.
Kristensen E, Andersen FØ, Blackburn TH (1992) Effects of benthic macrofauna and temperature on degradation of macroalgal detritus: The fate of organic carbon. Limnology and Oceanography 37:1404–1419.
Lampadariou N, Karakassis I, Pearson TH (2005) Cost/benefit analysis of a benthic monitoring programme of organic benthic enrichment using different sampling and analysis methods. Marine Pollution Bulletin 50:1606–1618.
LaRowe DE, Arndt S, Bradley JA, Estes ER, Hoarfrost A, Lang SQ, Lloyd KG, Mahmoudi N, Orsi WD, Shah Walter SR, Steen AD, Zhao R (2020) The fate of organic carbon in marine sediments - New insights from recent data and analysis. Earth-Science Reviews 204:103146.
Le Guitton M, Soetaert K, Damsté JSS, Middelburg JJ (2015) Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach. Estuarine, Coastal and Shelf Science 165:117–127.
Leduc D, Nodder SD, Pinkerton M, Pilditch CA (2020a) Benthic metabolism on Chatham Rise, New Zealand continental margin: Temporal and spatial variability, and relationships with macrofauna and environmental factors. Deep Sea Research Part I: Oceanographic Research Papers 159:103239.
Leduc D, Nodder SD, Rowden AA, Gibbs M, Berkenbusch K, Wood A, De Leo F, Smith C, Brown J, Bury SJ, Pallentin A (2020b) Structure of infaunal communities in New Zealand submarine canyons is linked to origins of sediment organic matter. Limnology and Oceanography 65:2303–2327.
Lee J, Liu JT, Lee I-H, Fu K-H, Yang RJ, Gong W, Gan J (2021) Encountering shoaling internal waves on the dispersal pathway of the pearl river plume in summer. Science Report 11:999.
Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69:1–24.
Leithold EL, Blair NE, Wegmann KW (2016) Source-to-sink sedimentary systems and global carbon burial: A river runs through it. Earth-Science Reviews 153:30–42.
Lek S, Guegan J-F (eds) (2000) Artificial neuronal networks: application to ecology and evolution, 1st ed. Springer.
Li R (2003) Macrobenthos on the continental shelves and adjacent waters, China Sea. China Ocean Press, Beijing.
Lin B, Liu Z, Eglinton TI, Kandasamy S, Blattmann TM, Haghipour N, de Lange GJ (2019) Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China. Geochimica et Cosmochimica Acta 259:270–287.
Lin Y-C, Su Y-F, Fu H-H, Wang Y-T, Shih H-J, Liang T-Y, Yeh S-H, Chen W-P, Chang C-H (2020) 2019 Typhoon events. National Science and Technology Center for Disaster Reduction, Taiwan.
Liu JT, Hsu RT, Hung J-J, Chang Y-P, Wang Y-H, Rendle-Bühring RH, Lee C-L, Huh C-A, Yang RJ (2016a) From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth-Science Reviews 153:274–300.
Liu JT, Hung J-J, Huang Y-W (2009) Partition of suspended and riverbed sediments related to the salt-wedge in the lower reaches of a small mountainous river. Marine Geology 264:152–164.
Liu JT, Kao S-J, Huh C-A, Hung C-C (2013) Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review of Marine Science 5:47–68.
Liu JT, Lin H-L, Hung J-J (2006) A submarine canyon conduit under typhoon conditions off Southern Taiwan. Deep Sea Research Part I: Oceanographic Research Papers 53:223–240.
Liu JT, Liu K, Huang JC (2002) The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology 181:357–386.
Liu JT, Wang Y-H, Yang RJ, Hsu RT, Kao S-J, Lin H-L, Kuo FH (2012) Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research: Oceans 117.
Liu Y, Gao S, Wang YP, Yang Y, Long J, Zhang Y, Wu X (2014) Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea. Marine Geology 347:43–57.
Liu Z, Colin C, Li X, Zhao Y, Tuo S, Chen Z, Siringan FP, Liu JT, Huang C-Y, You C-F, Huang K-F (2010) Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology 277:48–60.
Liu Z, Zhao Y, Colin C, Stattegger K, Wiesner MG, Huh C-A, Zhang Y, Li X, Sompongchaiyakul P, You C-F, Huang C-Y, Liu JT, Siringan FP, Le KP, Sathiamurthy E, Hantoro WS, Liu J, Tuo S, Zhao S, Zhou S, He Z, Wang Y, Bunsomboonsakul S, Li Y (2016b) Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews 153:238–273.
McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297.
McGovern M, Poste AE, Oug E, Renaud PE, Trannum HC (2020) Riverine impacts on benthic biodiversity and functional traits: A comparison of two sub-Arctic fjords. Estuarine, Coastal and Shelf Science 240:106774.
McKee BA, Aller RC, Allison MA, Bianchi TS, Kineke GC (2004) Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Continental Shelf Research 24:899–926.
McLeod RJ, Wing SR (2009) Strong pathways for incorporation of terrestrially derived organic matter into benthic communities. Estuarine, Coastal and Shelf Science 82:645–653.
Mermillod-Blondin F (2011) The functional significance of bioturbation and biodeposition on biogeochemical processes at the water–sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society 30:770–778.
Mestdagh S, Bagaço L, Braeckman U, Ysebaert T, De Smet B, Moens T, Van Colen C (2018) Functional trait responses to sediment deposition reduce macrofauna-mediated ecosystem functioning in an estuarine mudflat. Biogeosciences 15:2587–2599.
Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114:289–302.
Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology & Evolution 21:688–695.
Miatta M, Snelgrove PVR (2021) Sedimentary organic matter shapes macrofaunal communities but not benthic nutrient fluxes in contrasting habitats along the Northwest Atlantic continental margin. Frontiers in Marine Science 8:1704.
Middelburg JJ (1989) A simple rate model for organic matter decomposition in marine sediments. Geochimica et Cosmochimica Acta 53:1577–1581.
Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293.
Middelburg JJ, Soetaert K, Herman PMJ (1997) Empirical relationships for use in global diagenetic models. Deep Sea Research Part I: Oceanographic Research Papers 44:327–344.
Milliman JD, Farnsworth KL (2011) Runoff, erosion, and delivery to the coastal ocean. In: Milliman JD, Farnsworth KL (eds) River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, p 3–69
Milliman JD, Kao S (2005) Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super‐Typhoon Herb (1996) on Taiwanese Rivers. The Journal of Geology 113:503–516.
Milliman JD, Syvitski JPM (1992) Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology 100:525–544.
Montagna PA, Baguley JG, Hsiang C-Y, Reuscher MG (2017) Comparison of sampling methods for deep-sea infauna. Limnology and Oceanography: Methods 15:166–183.
Moodley L, Middelburg JJ, Soetaert K, Boschker HTS, Herman PMJ, Heip CHR (2005) Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments. Journal of Marine Research 63:457–469.
Norkko A, Villnäs A, Norkko J, Valanko S, Pilditch C (2013) Size matters: implications of the loss of large individuals for ecosystem function. Scientific Reports 3:2646.
Oksanen J, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, Helene Wagner (2021) Vegan: Community Ecology Package. R package version 2.6-2. https://github.com/vegandevs/vegan
Peng S-Y, Lai Z-N, Jiang W-X, Gao Y, Pang S-X, Yang W-L (2010) Study on community structure of macrozoobenthos and impact factors in Pearl River Estuary. Acta Hydrobiologica Sinica 36:1179–1189.
Petchey OL, Belgrano A (2010) Body-size distributions and size-spectra: universal indicators of ecological status? Biology Letters 6:434–437.
Pilditch C, Leduc D, Nodder S, Probert P, Bowden D (2015) Spatial patterns and environmental drivers of benthic infaunal community structure and ecosystem function on the New Zealand continental margin. New Zealand Journal of Marine and Freshwater Research 49:224–246.
Powell EN, Mann R (2016) How well do we know the infaunal biomass of the continental shelf? Continental Shelf Research 115:27–32.
Pruski AM, Rzeznik-Orignac J, Kerhervé P, Vétion G, Bourgeois S, Péru E, Brosset P, Toussaint F, Rabouille C (2021) Dynamic of organic matter and meiofaunal community on a river-dominated shelf (Rhône prodelta, NW Mediterranean Sea): Responses to river regime. Estuarine, Coastal and Shelf Science 253:107274.
Pusceddu A, Bianchelli S, Canals M, Sanchez-Vidal A, Durrieu De Madron X, Heussner S, Lykousis V, de Stigter H, Trincardi F, Danovaro R (2010) Organic matter in sediments of canyons and open slopes of the Portuguese, Catalan, Southern Adriatic and Cretan Sea margins. Deep Sea Research Part I: Oceanographic Research Papers 57:441–457.
Quinones RA, Platt T, Rodríguez J (2003) Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Progress in Oceanography 57:405–427.
Quiroga E, Gerdes D, Montiel A, Knust R, Jacob U (2014) Normalized biomass size spectra in high Antarctic macrobenthic communities: linking trophic position and body size. Marine Ecology Progress Series 506:99–113.
Quiroga E, Ortiz P, González-Saldías R, Reid B, Tapia FJ, Pérez-Santos I, Rebolledo L, Mansilla R, Pineda C, Cari I, Salinas N, Montiel A, Gerdes D (2016) Seasonal benthic patterns in a glacial Patagonian fjord: the role of suspended sediment and terrestrial organic matter. Marine Ecology Progress Series 561:31–50.
Quiroga E, Quiñones R, Palma M, Sellanes J, Gallardo VA, Gerdes D, Rowe G (2005) Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuarine, Coastal and Shelf Science 62:217–231.
R Core Team (2020) R: A Language and Environment for Statistical Computing.
Rex M, Etter R, Morris J, Crouse J, McClain C, Johnson N, Stuart C, Deming J, Thies R, Avery R (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series 317:1–8.
Rhoads DC, Boesch DF, Zhican T, Fengshan X, Liqiang H, Nilsen KJ (1985) Macrobenthos and sedimentary facies on the Changjiang delta platform and adjacent continental shelf, East China Sea. Continental Shelf Research 4:189–213.
Rodriguez J, Mullin MM (1986) Relation between biomass and body weight of plankton in a steady state oceanic ecosystem1. Limnology and Oceanography 31:361–370.
Rosenberg R (1995) Benthic marine fauna structured by hydrodynamic processes and food availability. Netherlands Journal of Sea Research 34:303–317.
Rosenheim BE, Galy V (2012) Direct measurement of riverine particulate organic carbon age structure. Geophysical Research Letters 39(19):L19703.
Rusch A, Huettel M, Wild C, Reimers CE (2006) Benthic Oxygen Consumption and Organic Matter Turnover in Organic-poor, Permeable Shelf Sands. Aquatic Geochemistry 12:1–19.
Saiz-Salinas J, Ramos A (1999) Biomass size-spectra of macrobenthic assemblages along water depth in Antarctica. Marine Ecology Progress Series 178:221–227.
Saiz-Salinas JI, González-Oreja JA (2000) Stress in estuarine communities: Lessons from the highly-impacted Bilbao estuary (Spain). Journal of Aquatic Ecosystem Stress and Recovery 7:43–55.
Schlacher TA, Wooldridge TH (1996) How sieve mesh size affects sample estimates of estuarine benthic macrofauna. Journal of Experimental Marine Biology and Ecology 201:159–171.
Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J (2021) GGally: Extension to “ggplot2.” R package version 2.1.2. https://CRAN.R-project.org/package=GGally
Schwinghamer P (1988) Influence of pollution along a natural gradient and in a mesocosm experiment on biomass-size spectra of benthic communities. Marine Ecology Progress Series 46:199–206.
Seibel BA (2007) On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda(Mollusca). Journal of Experimental Biology 210:1–11.
Shu Y, Wang Q, Zu T (2018) Progress on shelf and slope circulation in the northern South China Sea. Science China Earth Science 61:560–571.
Slowikowski K (2021) ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2.” R package version 0.9.1. https://CRAN.R-project.org/package=ggrepel
Snelgrove PVR (1998) The biodiversity of macrofaunal organisms in marine sediments. Biodiversity and Conservation 7:1123–1132.
Snelgrove PVR, Butman CA (1995) Animal-sediment relationships revisited: cause versus effect. Oceanographic Literature Review 8:668.
Song G, Liu S, Zhu Z, Zhai W, Zhu C, Zhang J (2016) Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea. Deep Sea Research Part II: Topical Studies in Oceanography 124:53–63.
Sparkes RB, Lin I-T, Hovius N, Galy A, Liu JT, Xu X, Yang R (2015) Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system. Marine Geology 363:191–201.
Sprules W, Munawar M (1986) Plankton Size Spectra in Relation to Ecosystem Productivity, Size, and Perturbation. Canadian Journal of Fisheries and Aquatic Sciences 43:1789–1794.
Sprules WG, Barth LE (2015) Surfing the biomass size spectrum: some remarks on history, theory, and application. Canadian Journal of Fisheries and Aquatic Sciences. 73(4):477–495.
Tanaka MO, Leite FPP (1998) The effect of sieve mesh size on the abundance and composition of macrophyte-associated macrofaunal assemblages. Hydrobiologia 389:21–28.
Thiel H (1979) Structural Aspects of the Deep-Sea Benthos. Ambio Special Report:25–31.
Thrush S, Hewitt J, Pilditch C, Norkko A (2021) Ecology of Coastal Marine Sediments: Form, Function, and Change in the Anthropocene. Oxford University Press.
Thrush SF, Hewitt JE, Cummings VJ, Ellis JI, Hatton C, Lohrer A, Norkko A (2004) Muddy Waters: Elevating Sediment Input to Coastal and Estuarine Habitats. Frontiers in Ecology and the Environment 2:299–306.
Tomašových A, Kidwell SM (2017) Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf. Proceedings of the Royal Society B: Biological Sciences 284:20170328.
Trebilco R, Baum JK, Salomon AK, Dulvy NK (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends in Ecology & Evolution 28:423–431.
Tyson RV (2001) Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32:333–339.
Unisense A/S (2020) Oxygen sensor user manual.
Valiela I (2015) Marine ecological processes, 3rd ed. Springer, New York.
Van Diggelen AD, Montagna PA (2016) Is Salinity Variability a Benthic Disturbance in Estuaries? Estuaries and Coasts 39:967–980.
Varzim CS, Hadlich HL, Andrades R, Mazzuco AC de A, Bernardino AF (2019) Tracing pollution in estuarine benthic organisms and its impacts on food webs of the Vitoria Bay estuary. Estuarine, Coastal and Shelf Science 229:106410.
Vidondo B, Prairie YT, Blanco JM, Duarte CM (1997) Some aspects of the analysis of size spectra in aquatic ecology. Limnology and Oceanography 42:184–192.
Volvenko IV, Gebruk AV, Katugin ON, Ogorodnikova AA, Vinogradov GM, Maznikova OA, Orlov AM (2020) Commercial value of trawl macrofauna of the North Pacific and adjacent seas. Environmental Reviews 28:269–283.
Wai OWH, Wang CH, Li YS, Li XD (2004) The formation mechanisms of turbidity maximum in the Pearl River estuary, China. Marine Pollution Bulletin 48:441–448.
Wang Y, Ren M-E, Zhu D (1986) Sediment supply to the continental shelf by the major rivers of China. Journal of the Geological Society 143:935–944.
Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE (2013) Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geoscience 6:530–533.
Warrick JA, Milliman JD (2003) Hyperpycnal sediment discharge from semiarid southern California rivers: Implications for coastal sediment budgets. Geology 31:781–784.
Water Resource Agency (2020) Hydrological year book of Taiwan, Republic of China.
Wei B, Mollenhauer G, Hefter J, Grotheer H, Jia G (2020) Dispersal and aging of terrigenous organic matter in the Pearl River Estuary and the northern South China Sea Shelf. Geochimica et Cosmochimica Acta 282:324–339.
Wei C-L, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T, Caley MJ, Soliman Y, Huettmann F, Qu F, Yu Z, Pitcher CR, Haedrich RL, Wicksten MK, Rex MA, Baguley JG, Sharma J, Danovaro R, MacDonald IR, Nunnally CC, Deming JW, Montagna P, Lévesque M, Weslawski JM, Wlodarska-Kowalczuk M, Ingole BS, Bett BJ, Billett DSM, Yool A, Bluhm BA, Iken K, Narayanaswamy BE (2010a) Global Patterns and Predictions of Seafloor Biomass Using Random Forests. PLOS ONE 5:e15323.
Wei X, Yi W, Shen C, Yechieli Y, Li N, Ding P, Wang N, Liu K (2010b) 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268:1094–1097.
Wheatcroft RA (2000) Oceanic flood sedimentation: a new perspective. Continental Shelf Research 20:2059–2066.
Wheatcroft RA (2006) Time-series measurements of macrobenthos abundance and sediment bioturbation intensity on a flood-dominated shelf. Progress in Oceanography 71:88–122.
Wheatcroft RA, Borgeld JC (2000) Oceanic flood deposits on the northern California shelf: large-scale distribution and small-scale physical properties. Continental Shelf Research 20:2163–2190.
Wheatcroft RA, Borgeld JC, Born RS, Drake DE, Leithold EL, Nittrouer CA, Sommerfield CK (1996) The Anatomy of an Oceanic Flood Deposit. Oceanography 9:158–162.
Wheatcroft RA, Sommerfield CK, Drake DE, Borgeld JC, Nittrouer CA (1997) Rapid and widespread dispersal of flood sediment on the northern California margin. Geology 25:163.
White EP, Enquist BJ, Green JL (2008) On Estimating the Exponent of Power-Law Frequency Distributions. Ecology 89:905–912.
White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22:323–330.
Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wilson WH (1990) Competition and Predation in Marine Soft-Sediment Communities. Annual Review of Ecology and Systematics 21:221–241.
WoRMS Editorial Board (2021) World Register of Marine Species. https://www.marinespecies.org/imis.php?dasid=1447&doiid=170 (accessed 21 Sep 2021)
Xu JL, Li YX, Can FX, Chen QD (1985) Evolution of Channels and Shoals in Lingding Sea Pearl River Estuary. Ocean Press, Beijing (in Chinese).
Yang Y, Guan W, Deleersnijder E, He Z (2022) Hydrodynamic and sediment transport modelling in the Pearl River Estuary and adjacent Chinese coastal zone during Typhoon Mangkhut. Continental Shelf Research 233:104645.
Yu H-S, Chiang C-S (1997) Kaoping shelf: morphology and tectonic significance. Journal of Asian Earth Sciences 15:9–18.
Yu H-S, Huang Z-Y (2009) Morphotectonics and sedimentation in convergent margin basins: An example from juxtaposed marginal sea basin and foreland basin, Northern South China Sea. Tectonophysics 466:241–254.
Zhang J (2014) The variation of biodiversity of macrobenthic fauna with salinity and water depth near the Pearl Estuary of the northern South China Sea. Biodiversity Science 22:302.
Zhang S, Lu XX, Higgitt DL, Chen C-TA, Han J, Sun H (2008) Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change 60:365–380.
Zhang W, Wei X, Jinhai Z, Yuliang Z, Zhang Y (2012) Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Continental Shelf Research 38:35–46.
Zheng L-W, Ding X, Liu JT, Li D, Lee T-Y, Zheng X, Zheng Z, Xu MN, Dai M, Kao S-J (2017) Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea. Earth and Planetary Science Letters 465:103–111.
Zhong Y, Chen Z, Li L, Liu J, Li G, Zheng X, Wang S, Mo A (2017) Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: Evidence from grain size of the terrigenous sediments. Continental Shelf Research 140:11–26.
Zhou H, Wang Z, Wu X, Chen Y, Zhong Y, Li Z, Chen J, Li J, Guo S, Chen X (2019a) Spatiotemporal Variation of Annual Runoff and Sediment Load in the Pearl River during 1953–2017. Sustainability 11:5007.
Zhou X, Li Z, Wu P, Wu X, Chen Y, Liu K, Liu D, Wang Y, Wang Y (2019b) The structure of macrobenthic community in Pearl River Estuary. Biodiversity Science 27:1112–1121.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89604-
dc.description.abstract大陸棚是最具生產力的海洋環境之一,尤其是河流主導的海洋邊緣(River-influenced ocean margins;RiOMar)大陸棚,接收來自鄰近河流大量的淡水與沉積物,通常具有特別高的初級生產力、有機碳再礦化能力、與碳埋藏的速率。儘管RiOMar具有重要的生態意義,針對該區域的底棲生物研究仍然十分缺乏,且大多數研究僅限於溫帶地區的河海系統。然而這些少量的研究仍指出RiOMar的底棲生物群聚同時受到(一)沉積物沉降的物理擾動以及(二)河水營養鹽促進食物供給的調控。即使不同區域的生態研究已確認河流對於底棲生物的影響,不同類型的大陸邊緣(主動與被動大陸邊緣)是否會影響陸棚底棲生物仍屬未知。過去的地質學研究指出主動與被動大陸邊緣的RiOMar透過迥異的沉積物傳輸機制與陸源有機碳組成的差異,在地球碳循環上扮演著不同的角色。例如,位處被動大陸邊緣的大型河川的輸沙與沖淡水較為穩定,而坐落於主動大陸邊緣的山溪型河川則多仰賴洪泛等偶發事件來輸送沉積物。另一方面,大型河川的有機碳會經歷數次的有機碳降解循環,不分活性的將有機碳從沉積物中釋放到水層與大氣之中。相較之下,狹窄且陡峭的主動大陸邊緣能迅速的將有機碳從河流送到沿岸地區,讓陸棚的沉積物維持較高的化石有機碳與現代陸源有機碳訊號。若將這些地質學的發現轉換到生態學的研究上,沉積物傳輸的差異可能會影響沿岸地區的沉積物沉降機制,進而帶給底棲生物不同類型的物理干擾;河流有機碳組成的差異則是可能影響底棲生物食物供給。為了探討大陸邊緣類型對於陸棚底棲生物的影響,本研究調查南中國海北緣同為於亞熱帶的高屏溪與珠江陸棚,比較主動與被動大陸邊緣之生地化過程對大型底棲動物群聚的影響。其中,高屏溪-陸棚系統位於歐亞大陸板塊與菲律賓海板塊匯聚邊界上,具有典型的主動大陸邊緣特徵,如其狹窄的陸棚與陡峭的陸坡,且連接著短促、坡陡流急及高輸砂量的山溪型河川—高屏溪。珠江-陸棚系統則位於歐亞大陸板塊的被動大陸邊緣上,有寬廣的南海大陸棚連接中國的第二大河—珠江。本研究利用海研一號與勵進號共三個研究航次(2019-2020)收集兩個河海系統之水文,沉積物化學、與大型底棲生物資料。分析結果發現,高屏溪-陸棚系統的大型底棲生物群聚主要受到洪水沉積物沉降的影響,而珠江-陸棚系統的大型底棲生物則受多個環境因子共同影響。兩個河川-陸棚系統內的大型底棲生物的生物密度、生物量、次級生產、呼吸率、生物體型頻譜的斜率,與物種組成皆有顯著不同。生物密度的差異與總有機碳與葉綠素a濃度相關,而生物量、次級生產、呼吸率,與生物體形頻譜的斜率的差異則能以兩個區域水層初級生產力的差異來解釋。區域間的物種組成差異更是受到碳同位素、碳氮比、葉綠素a濃度等有機碳品質指標的影響。儘管大型底棲生物群聚結構的各個面向都顯示了高屏溪-陸棚系統與珠江-陸棚系統的顯著差異,採樣區的空間尺度差異及採樣過程造成的誤差皆有可能影響本研究的結果,因此雖然本研究結果顯示兩個河川-陸棚系統間的大型底棲生物群聚有顯著差異,本研究所提出的物理擾動假說與食物供給假說仍無法完全被驗證。後續研究建議以更高解析度的生物多樣性資料與生地化指標,以及更適當的採樣計畫與與工具來檢驗河川類型與地形地貌對於陸棚底棲動物群聚的影響。zh_TW
dc.description.abstractThe continental shelf is one of the most productive regions in the marine environment. In the river-dominant ocean margins (RiOMar), the continental shelves receive significant inputs of freshwater and sediments from adjacent rivers, facilitating primary production, carbon remineralization, and carbon burial at exceptional rates. Despite their ecological significance, studies investigating the RiOMar benthos remained scarce, scattered, and mainly focused on temperate regions. These limited studies nevertheless suggested that the RiOMar benthic community may be controlled by the interplays between (1) physical disturbance induced by sedimentation and (2) increased food inputs with nutrients from the river discharges. Although these studies spanning different regions confirmed the impacts of river discharges on the shelf benthos, whether the different continental margin types (i.e., active vs. passive) could also play some roles was left unchecked. In a geological context, RiOMars on the active and passive margins play different roles in the global sediment organic carbon cycling via variations in river discharge regime and organic carbon age composition. Large rivers (LR) on passive margins discharge freshwater and sediments more consistently, while small mountainous rivers (SMR) on active margins are more episodic. With large drainage basins, LRs allow multiple organic carbon degradation cycles, removing organic carbon with various reactivities from the sediment into the water column and atmosphere. On the other hand, the narrow and steep active margins immediately deliver the organic carbon from the river into the coastal system, enriching the shelf seabed with fossilized and modern terrestrial organic carbon. Translating geological evidence to ecological context, the difference in sediment discharge regimes could affect the sedimentation regime, inducing various types of disturbances to the benthos. The age difference in riverine organic carbon might also alter the available food source for the shelf benthos. To understand the effects of margin types on the river-shelf seabed, this study compared macrobenthic communities between the active and passive margins in the northern South China Sea in a subtropical setting. The Gaoping river-shelf (GRS) situates on a complex convergent boundary between the Eurasian and Philippine plates, representing a typical active margin. It also connects to an SMR with a narrow shelf receiving large fluvial discharges characterized by high sediment loading. The Pearl river-shelf (PRS) connects to China's second-largest river, the Pearl River, with a broad continental shelf on a classic passive margin setting. This study conducted three research cruises (2019-2020) to compare the hydrography, sediment geochemistry, and macrobenthos community structure between the GRS and PRS. In the GRS, flood sedimentation was the major factor controlling the macrofauna community, while a suite of factors collectively explained the macrofauna community in the PRS. The macrofauna density, biomass, production, respiration, NBSS slopes, and taxonomic composition differed significantly between the GRS and PRS. The macrofauna density corresponded with organic carbon quantity (TOC) and quality (sediment chlorophyll a) indicators, while the macrofaunal biomass, production, and respiration reflected regional primary productivity differences. The organic carbon quality indicators such as δ13C, C/N ratio, and sediment chlorophyll a concentration correlated with the regional taxonomic compositional differences. Although various aspects of the macrofauna communities differed between the two river shelves, the differences in sampling scale, sieving efficiency, and scale-dependent processes might confound the observed patterns. Hence, this study cannot confirm the hypothesized influence of riverine sedimentation disturbance and food supply. Future studies with better taxonomic resolution, enhanced geochemical proxies, relevant sampling designs, and revised sieving protocol are required to verify the geomorphological effect on the RiOMar benthos.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-11T16:27:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-11T16:27:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
Acknowledgments ii
摘要 iii
Abstract v
Table of contents viii
List of tables xi
List of figures xiii
1. Introduction 1
1.1. The river-influenced ocean margins (RiOMar) 1
1.2. Macrofauna in the river-influenced ocean margins (RiOMar) 2
1.3. Possible geomorphological control on the biological dynamics in the river-dominated ocean margin (RiOMar) 5
1.4. Northern South China Sea (nSCS) 8
1.5. Research hypothesis and objective 10
2. Method 12
2.1. Study area 12
2.1.1. Gaoping River-Shelf (GRS) 12
2.1.2. Pearl River-Shelf (PRS) 14
2.2. Onboard sampling 16
2.3. Laboratory analysis 19
2.3.1. Macrofauna sorting and measurements 19
2.3.2. Oxygen utilization measurements 20
2.3.3. Geochemical data measurements 21
2.4. Data analysis 23
2.4.1. Software and packages 23
2.4.2. Variable selection criteria 23
2.4.3. Macrofauna community univariate calculation 27
2.4.4. Macrofauna community univariate analysis 31
2.4.5. Non-parametric multivariate analysis 34
3. Result 36
3.1. CTD profile 36
3.2. Univariate and multivariate analysis on the environmental variables 36
3.2.1. Univariate tests between the two river shelves and between the GRS cruises 36
3.2.2. Multivariate analysis between the two river shelves, between the GRS cruises, and the PRS 37
3.3. Macrofauna community univariates analysis 38
3.3.1. Univariate analysis 38
3.3.2. Spatial patterns 39
3.3.3. The averaged models for the GRS data set 39
3.3.4. The averaged models for the PRS data set 40
3.3.5. The averaged models for the reduced PRS data set 41
3.3.6. The averaged models for the full data set 41
3.3.7. Normalized biomass size spectra (NBSS) slope MLR model 42
3.3.8. Taxonomic assemblage 42
3.3.9. Drivers of taxonomic assemblage 44
4. Discussion 46
4.1. Study limitation 46
4.2. The Gaoping River-Shelf (GRS) 46
4.2.1. Environmental condition 46
4.2.2. Chla δ13C mismatch 47
4.2.3. Spatial variations in macrofauna univariates 48
4.2.4. Environmental variables shaping the macrofauna univariate indicators 49
4.2.5. Potential causes of the NBSS patterns 53
4.2.6. Community composition 55
4.3. The Pearl River-shelf (PRS) 57
4.3.1. The influence of the Taiwan Shoal stations on the modeling result 57
4.3.2. Environmental relationships with macrofauna univariates 58
4.4. Cross-RiOMar comparisons 60
4.4.1. Macrofauna density 60
4.4.2. Macrofauna biomass, production, and respiration 62
4.4.3. Normalized biomass size spectra (NBSS) 64
4.4.4. Macrofauna taxonomic assemblage 65
4.5. Is there a geomorphological control over the ecological functioning of macrofauna? 67
5. Conclusion 70
6. References 71
7. Tables 91
8. Figures 111
-
dc.language.isoen-
dc.subject大型河川zh_TW
dc.subject大陸棚zh_TW
dc.subject河流主導的海洋邊緣zh_TW
dc.subject大型底棲動物zh_TW
dc.subject山溪型河川zh_TW
dc.subjectriver-influenced ocean marginsen
dc.subjectcontinental shelfen
dc.subjectsmall mountainous riveren
dc.subjectlarge riveren
dc.subjectmacrofaunaen
dc.title主動與被動大陸邊緣的河流-陸棚大型底棲無脊椎動物群聚結構與影響環境因子:珠江與高屏溪之個案研究zh_TW
dc.titleDrivers of river-shelf macrobenthos composition at active and passive margins: a case study comparing the Pearl and the Gaoping Riversen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林玉詩;單偉彌zh_TW
dc.contributor.oralexamcommitteeYu-Shih Lin;Vianney Denisen
dc.subject.keyword大陸棚,河流主導的海洋邊緣,大型底棲動物,大型河川,山溪型河川,zh_TW
dc.subject.keywordcontinental shelf,river-influenced ocean margins,macrofauna,large river,small mountainous river,en
dc.relation.page142-
dc.identifier.doi10.6342/NTU202301072-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-06-28-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2025-07-01-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved