請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89515完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國儀 | zh_TW |
| dc.contributor.advisor | Kuo-I Lin | en |
| dc.contributor.author | 楊璨滋 | zh_TW |
| dc.contributor.author | Tsan-Tzu Yang | en |
| dc.date.accessioned | 2023-09-08T16:07:33Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | 1. Jason Gill, et al. (2003) Thymic generation and regeneration. Immunol Rev. 195:28-50.
2. Klein L, Hinterberger M, Wirnsberger G, & Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nature Reviews Immunology 9(12):833-844. 3. Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nature Reviews Immunology 6(2):127-135. 4. Daniels MA, et al. (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444(7120):724-729. 5. Markus G Rudolph, Robyn L Stanfield, & Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 24:419-466. 6. Timothy K Starr, Stephen C Jameson, & Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol. 21:139-176. 7. J P Cabaniols, N Fazilleau, A Casrouge, P Kourilsky, & Kanellopoulos JM (2001) Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. 194 9(1385-90). 8. E P Rock, P R Sibbald, M M Davis, & Chien YH (1994) CDR3 length in antigen-specific immune receptors. J Exp Med. 179(1):323-328. 9. Emmanuel Treiner & Lantz O (2006) CD1d- and MR1-restricted invariant T cells: of mice and men. Curr Opin Immunol. 18(5):519-526. 10. S Ashkar, et al. (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287(5454):860-864. 11. X Tao, S Constant, P Jorritsma, & Bottomly K (1997) Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J Immunol. 159(12):5956-5963. 12. Kohu K, et al. (2009) The Runx3 Transcription Factor Augments Th1 and Down-Modulates Th2 Phenotypes by Interacting with and Attenuating GATA3. The Journal of Immunology 183(12):7817-7824. 13. Giorgio Trinchieri, Stefan Pflanz, & Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19(5):641-644. 14. Maryam Afkarian, et al. (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol. 3(6):549-557. 15. Geanncarlo Lugo-Villarino, Roberto Maldonado-López, Richard Possemato, & Glimcher LH (2003) T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. Biological Sciences 100(13):7749-7754. 16. Lazarevic V, et al. (2010) T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nature Immunology 12(1):96-104. 17. A A Lighvani, et al. (2001) T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci USA. 98(26):15137-15142. 18. Djuretic IM, et al. (2006) Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nature Immunology 8(2):145-153. 19. al. ESHe (2005) T Helper Cell Fate Specified by Kinase-Mediated Interaction of T-bet with GATA-3. Science 307:430-433. 20. W E Thierfelder, et al. (1996) Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382(6587):171-174. 21. Thieu VT, et al. (2008) Signal Transducer and Activator of Transcription 4 Is Required for the Transcription Factor T-bet to Promote T Helper 1 Cell-Fate Determination. Immunity 29(5):679-690. 22. M H Kaplan, U Schindler, S T Smiley, & Grusby MJ (1996) Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4(3):313-319. 23. L H Glimcher & Murphy KM (2000) Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14(14):1693-1711. 24. Zhu J, Guo L, Watson CJ, Hu-Li J, & Paul WE (2001) Stat6 Is Necessary and Sufficient for IL-4’s Role in Th2 Differentiation and Cell Expansion. The Journal of Immunology 166(12):7276-7281. 25. Zhu J, Yamane H, Cote-Sierra J, Guo L, & Paul WE (2006) GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Research 16(1):3-10. 26. Takashi Usui, Ryuta Nishikomori, Atsushi Kitani, & Strober W (2003) GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 18(3):415-428. 27. Javier Cote-Sierra, et al. (2004) Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci USA. 101(11):3880-3885. 28. Jinfang Zhu, Javier Cote-Sierra, Liying Guo, & Paul WE (2003) Stat5 activation plays a critical role in Th2 differentiation. Immunity 19(5):739-748. 29. Marc Veldhoen, Richard J Hocking, Christopher J Atkins, Richard M Locksley, & Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179-189. 30. Mangan PR, et al. (2006) Transforming growth factor-β induces development of the TH17 lineage. Nature 441(7090):231-234. 31. Bettelli E, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235-238. 32. Manel N, Unutmaz D, & DR. L (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 9(6):641-649. 33. Volpe E, et al. (2008) A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunology 9(6):650-657. 34. Chen W, et al. (2003) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. Journal of Experimental Medicine 198(12):1875-1886. 35. Zhou L, et al. (2008) TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453(7192):236-240. 36. Qin H, et al. (2009) TGF-β Promotes Th17 Cell Development through Inhibition of SOCS3. The Journal of Immunology 183(1):97-105. 37. Ivanov II, et al. (2006) The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell 126(6):1121-1133. 38. Yang XO, et al. (2008) T Helper 17 Lineage Differentiation Is Programmed by Orphan Nuclear Receptors RORα and RORγ. Immunity 28(1):29-39. 39. Van Nguyen T, et al. (2012) SUMO-Specific Protease 1 Is Critical for Early Lymphoid Development through Regulation of STAT5 Activation. Mol. Cell 45(2):210-221. 40. Cua DJ SJ, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD. (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744-748. 41. McGeachy MJ, et al. (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nature Immunology 10(3):314-324. 42. Jäger A, Dardalhon Vr, Sobel RA, Bettelli E, & Kuchroo VK (2009) Th1, Th17, and Th9 Effector Cells Induce Experimental Autoimmune Encephalomyelitis with Different Pathological Phenotypes. The Journal of Immunology 183(11):7169-7177. 43. Esplugues E, et al. (2011) Control of TH17 cells occurs in the small intestine. Nature 475(7357):514-518. 44. Morishima N MI, Takeda K, Mizuguchi J, Yoshimoto T. (2009) TGF-beta is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23. Biochem Biophys Res Commun. 386(1):105-110. 45. Peters A LY, Kuchroo VK. (2011) The many faces of Th17 cells. Curr Opin Immunol. 23(6):702-706. 46. Aarts J, et al. (2022) Local inhibition of TGF-β1 signaling improves Th17/Treg balance but not joint pathology during experimental arthritis. Scientific Reports 12(1). 47. McGeachy MJ, et al. (2007) TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nature Immunology 8(12):1390-1397. 48. Aschenbrenner D, et al. (2018) An immunoregulatory and tissue-residency program modulated by c-MAF in human TH17 cells. Nature Immunology 19(10):1126-1136. 49. Wu B & Wan Y (2020) Molecular control of pathogenic Th17 cells in autoimmune diseases. International Immunopharmacology 80:106187. 50. Codarri L, et al. (2011) RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunology 12(6):560-567. 51. Akihiko Yoshimura & Muto G (2011) TGF-β function in immune suppression. Curr Top Microbiol Immunol. 350:127-147. 52. Fontenot JD, Gavin MA, & Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology 4(4):330-336. 53. Yagi H, et al. (2004) Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. International Immunology 16(11):1643-1656. 54. Takimoto T WY, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T, Hasegawa E, Saika S, Hara T, Nomura M, Yoshimura A. (2010) Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J Immunol. 185(2):842-855. 55. Tone Y, et al. (2007) Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nature Immunology 9(2):194-202. 56. Martinez GJ, et al. (2009) Smad3 Differentially Regulates the Induction of Regulatory and Inflammatory T Cell Differentiation. J. Biol. Chem. 284(51):35283-35286. 57. Laurence A, et al. (2007) Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity 26(3):371-381. 58. Davidson TS, DiPaolo RJ, Andersson J, & Shevach EM (2007) Cutting Edge: IL-2 Is Essential for TGF-β-Mediated Induction of Foxp3+ T Regulatory Cells. The Journal of Immunology 178(7):4022-4026. 59. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, & Farrar MA (2007) IL-2 Receptor β-Dependent STAT5 Activation Is Required for the Development of Foxp3+ Regulatory T Cells. The Journal of Immunology 178(1):280-290. 60. Brandenburg S, et al. (2008) IL-2 induces in vivo suppression by CD4+CD25+Foxp3+ regulatory T cells. Eur. J. Immunol. 38(6):1643-1653. 61. Kaplan MH, et al. (2011) STAT3-dependent IL-21 production from T helper cells regulates hematopoietic progenitor cell homeostasis. Blood 117(23):6198-6201. 62. H Saitoh, R T Pu, & Dasso M (1997) SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem Sci. 22(10):374-376. 63. E T Yeh, L Gong, & Kamitani T (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248:1-14. 64. Saitoh H & Hinchey J (2000) Functional Heterogeneity of Small Ubiquitin-related Protein Modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275(9):6252-6258. 65. Tatham MH, et al. (2001) Polymeric Chains of SUMO-2 and SUMO-3 Are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276(38):35368-35374. 66. Kumar A & Zhang KYJ (2015) Advances in the development of SUMO specific protease (SENP) inhibitors. Computational and Structural Biotechnology Journal 13:204-211. 67. Kunz K, Piller T, & Müller S (2018) SUMO-specific proteases and isopeptidases of the SENP family at a glance. J. Cell Sci. 131(6):jcs211904. 68. Tan M-Y, et al. (2013) SUMO-Specific Protease 2 Suppresses Cell Migration and Invasion through Inhibiting the Expression of MMP13 in Bladder Cancer Cells. Cellular Physiology and Biochemistry 32(3):542-548. 69. Werner A MM, Möller U, Melchior F. (2009) Performing in vitro sumoylation reactions using recombinant enzymes. Methods Mol Biol. 497:187-199. 70. Seeler J-S & Dejean A (2003) Nuclear and unclear functions of SUMO. Nature Reviews Molecular Cell Biology 4:690–699. 71. Seki Y-i, et al. (2007) IL-7/STAT5 Cytokine Signaling Pathway Is Essential but Insufficient for Maintenance of Naive CD4 T Cell Survival in Peripheral Lymphoid Organs. The Journal of Immunology 178(1):262-270. 72. Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18(17):2046-2059. 73. Won TJ LY, Hyung KE, Yang E, Sohn UD, Min HY, Lee DI, Park SY, Hwang KW. (2015) SUMO2 overexpression enhances the generation and function of interleukin-17-producing CD8⁺ T cells in mice. Cell Signal. 27(6). 74. Singh AK, et al. (2018) SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nature Communications 9(1):4515. 75. He Z, et al. (2018) Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nature Communications 9(1). 76. Wang X, et al. (2020) Febrile Temperature Critically Controls the Differentiation and Pathogenicity of T Helper 17 Cells. Immunity 52(2):328-341.e325. 77. Ding X, et al. (2016) Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function. Cell Reports 16(4):1055-1066. 78. Hickey CM, Wilson NR, & Hochstrasser M (2012) Function and regulation of SUMO proteases. Nature Reviews Molecular Cell Biology 13(12):755-766. 79. Lin B-S, et al. (2010) SUMOylation attenuates c-Maf-dependent IL-4 expression. Eur. J. Immunol. 40(4):1174-1184. 80. Jinke Cheng XK, Sui Zhang, and Edward T.H. Yeh (2007) SUMO-specific Protease 1 is Essential for Stabilization of Hypoxia-inducible factor-1α During Hypoxia. Cell 131(3):584–595. 81. Shen H-J, Zhu H-Y, Yang C, & Ji F (2012) SENP2 Regulates Hepatocellular Carcinoma Cell Growth by Modulating the Stability of β-catenin. Asian Pacific Journal of Cancer Prevention 13(8):3583-3587. 82. Chiu SY AN, Costantini F, Hsu W. (2008) SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol. 6(12):e310. 83. Yu X, et al. (2018) SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nature Communications 9(1). 84. Ungureanu D, et al. (2003) PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102(9):3311-3313. 85. Rogers RS, Horvath CM, & Matunis MJ (2003) SUMO Modification of STAT1 and Its Role in PIAS-mediated Inhibition of Gene Activation. J. Biol. Chem. 278(32):30091-30097. 86. Mueller TD (2015) Mechanisms of BMP-Receptor Interaction and Activation. Vitam Horm. 99:1-61. 87. Massagué J SJ, Wotton D. (2005) Smad transcription factors. Genes Dev. 19(23):2783-2810. 88. Zhou Z, et al. (2016) SUMOylation and SENP3 regulate STAT3 activation in head and neck cancer. Oncogene 35(45):5826-5838. 89. Zhang S TM, Zou L, Gu AD, Chou WC, Zhang G, Wu B, Kong Q, Thomas SY, Serody JS, Chen X, Xu X, Wade PA, Cook DN, Ting JPY, Wan YY. (2017) Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551(7678):105-109. 90. Chang C-C, et al. (2018) The role of sentrin-specific protease 2 substrate recognition in TGF-β-induced tumorigenesis. Scientific Reports 8(1):9786. 91. Kayraklioglu N, Scheiermann J, Alvord WG, & Klinman DM (2017) Effect of Calcium Carbonate Encapsulation on the Activity of Orally Administered CpG Oligonucleotides. Mol Ther Nucleic Acids 8:243-249. 92. Ying HY, et al. (2012) SUMOylation of Blimp-1 is critical for plasma cell differentiation. EMBO Rep 13(7):631-637. 93. Lin KI CK (Introduction of genes into primary murine splenic B cells using retrovirus vectors. Methods Mol Biol. 271:139-148. 94. CM H, NR W, & M H (2012) Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol. 2012 Dec;13(12):755-66. doi: 10.1038/nrm3478. (1471-0080 (Electronic)):755-766. 95. Maruyama EO, et al. (2016) Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development. Scientific Reports 6:20999. 96. Goodell MA, Chiu S-Y, Asai N, Costantini F, & Hsu W (2008) SUMO-Specific Protease 2 Is Essential for Modulating p53-Mdm2 in Development of Trophoblast Stem Cell Niches and Lineages. PLoS Biology 6(12):e310. 97. Hayashi S & McMahon AP (2002) Efficient Recombination in Diverse Tissues by a Tamoxifen-Inducible Form of Cre: A Tool for Temporally Regulated Gene Activation/Inactivation in the Mouse. Developmental Biology 244(2):305-318. 98. Maxwell JR & Viney JL (2009) Overview of Mouse Models of Inflammatory Bowel Disease and Their Use in Drug Discovery. Current Protocols in Pharmacology 47(1). 99. Kaskow BJ & Baecher-Allan C (2018) Effector T Cells in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine 8(4):a029025. 100. Ostanin DV, et al. (2009) T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am. J. Physiol.-Gastroint. Liver Physiol. 296(2):G135-G146. 101. Sheikh SZ, Gipson GR, & Steinbach EC (2015) Induction of Murine Intestinal Inflammation by Adoptive Transfer of Effector CD4<sup>+</sup>CD45RB<sup>high</sup> T Cells into Immunodeficient Mice. Journal of Visualized Experiments (98). 102. Li M, et al. (2017) Upregulation of Intestinal Barrier Function in Mice with DSS-Induced Colitis by a Defined Bacterial Consortium Is Associated with Expansion of IL-17A Producing Gamma Delta T Cells. Frontiers in Immunology 8:824. 103. Sczesnak A, et al. (2011) The Genome of Th17 Cell-Inducing Segmented Filamentous Bacteria Reveals Extensive Auxotrophy and Adaptations to the Intestinal Environment. Cell Host & Microbe 10(3):260-272. 104. Lee MH, Mabb AM, Gill GB, Yeh ET, & Miyamoto S (2011) NF-κB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Mol. Cell 43(2):180-191. 105. Koo YD, et al. (2015) SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle. Metabolism 64(7):2420–2431. 106. Liu T, Zhang L, Joo D, & Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2(1):e17023. 107. Li Y-Y, et al. (2022) TCR-Induced Tyrosine Phosphorylation at Tyr270 of SUMO Protease SENP1 by Lck Modulates SENP1 Enzyme Activity and Specificity. Frontiers in Cell and Developmental Biology 9. 108. Su HL LS (2002) Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296(1-2):65-73. 109. Hirota K DJ, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, Garefalaki A, Potocnik AJ, Stockinger B. (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. 12(3):255-263. 110. Cohen CJ, et al. (2011) Human Th1 and Th17 Cells Exhibit Epigenetic Stability at Signature Cytokine and Transcription Factor Loci. The Journal of Immunology 187(11):5615-5626. 111. Raphael I NS, Eagar TN, Forsthuber TG. (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5-17. 112. Mandy J McGeachy, et al. (2007) TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nature Immunology 8:1390–1397. 113. Wu B WY (2020) Molecular control of pathogenic Th17 cells in autoimmune diseases. Int Immunopharmacol. 80:106187. 114. O'Shea JJ S-TS, Laurence A, Watford WT, Wei L, Adamson AS, Fan S. (2009) Signal transduction and Th17 cell differentiation. Microbes Infect. 11(5):599-611. 115. Tesmer LA, Lundy SK, Sarkar S, & Fox DA (2008) Th17 cells in human disease. Immunological Reviews 223(1):87-113. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89515 | - |
| dc.description.abstract | 近日越來越多的研究顯示轉譯後修飾(Posttranslational modification)具有調節細胞功能的作用及影響疾病發展的進程。有一些研究報告指出,SUMOylation這種轉譯後的修飾會透過調節細胞訊息傳遞及影響細胞生理功能進而導致疾病發生。在本篇研究中,我們將探討SUMOylation在免疫細胞發育中的分子機制以及SUMOylation在疾病發展過程中所扮演的角色。
SUMO是一種類小泛素的修飾蛋白,可以修飾在特定蛋白質的氨基酸羧基上。被SUMO修飾的蛋白以可透過去類小泛素特異性蛋白酶 (SUMO-specific protease, SENP) 去除SUMO使其能再循環被重複使用。SUMOylation是對於調節細胞內訊息傳遞、核質脂蛋白運輸和調節基因表有重要功能的轉譯後修飾。文獻研究結果顯示轉錄調節因子Smad4可以被SUMO1修飾,並被Senp2去除SUMO的修飾。此外,Smad4在Th17分化中扮演重要的角色。 Smad4也可以透過與負向調控因子SKI的相互作用進而抑制Th17分化中RORγt的表現。然而,目前仍不清楚Senp2是否通過Smad4調節T細胞的穩定平衡或Th17分化。在本篇論文中,我們將探討SUMOylation在免疫細胞發育中的所扮演的調控角色與其中的分子機制,以及其作用與疾病發展的關係。 先前的研究觀察到小鼠的飲水中若含有帶負電荷硫酸葡聚醣 (Dextran sulfate sodium, DSS) 會誘發的結腸炎的發生,且在小鼠的結腸炎模式中可以觀察到健康部位和病變部位之間調控SUMOylation的 E2連接酶 (UBC9) 的表現量有顯著差異,但SUMOylation在免疫細胞發育中的調節機制及其在結腸炎致病過程中的角色仍不清楚。在本篇論文中,我們使用了帶有T細胞專一性Senp2剔除的小鼠進行研究,以探討Senp2在調控T細胞發育和細胞功能中所扮演的角色。結果顯示Senp2具有負向調控致病性Th17細胞的分化的功能,進一步導致結腸炎發展的更嚴重並影響小鼠的腸道微生物群的菌相平衡。此外,與過繼轉移野生型CD4+ T細胞的小鼠相比,轉移了缺乏Senp2 CD4+ T細胞的Rag2剔除小鼠會導致更為嚴重的結腸炎的發展。使用誘發性剔除Senp2於T細胞的實驗,顯示T細胞內源之Senp2具有調控Th1和Th17細胞分化的作用。在剔除Senp2之Th17細胞中表現缺乏酵素活性的Senp2,我們發現Senp2的酵素活性是抑制Th17分化所必需的。在分子機制上,我們發現被SUMO修飾的Smad4的表現量在缺乏Senp2的 Th17中較對照組的 Th17有增加,並且SUMO修飾在Smad4的氨基酸K159的位點對於T細胞中Smad4的入核非常重要,並調控RORγt在Th17細胞中的表現。 總結,此論文發現在致病性Th17細胞中的Senp2可藉由調控Smad4的SUMOylation與影響其入核表現基因,進而避免過度產生IL-17A 和GM-CSF,並抑制結腸炎的發展。 | zh_TW |
| dc.description.abstract | Recently, accumulating evidence suggested that posttranslational modifications (PTMs) play a critical role in the regulation of cellular functions and disease progression. Several reports indicated that SUMOylation, a type of PTMs, contributed to diseases through modulation of cell signaling and functions. Here, we aim to study the insights of the molecular mechanisms of SUMOylation in immune cell development and the association of SUMOylation with diseases.
SUMO is a small ubiquitin-like modifier protein that can be attached to target proteins on specific lysine residues. SUMOylation is a type of post-translational modifications (PTMs) which is crucial for signaling regulation, nucleocytoplasmic transportation and the regulation of gene expression. SUMOylation can be regulated by sentrin-specific protease (SENP) family, The process of SUMOylation is dynamic and reversibly removed by the SUMO proteases. Some studies indicated that the transcription factor Smad4 can be modified by SUMO1, and deSUMOylated by Senp2. In addition, Smad4 plays a role in Th17 differentiation, and that Smad4 can suppress the RORt expression through the interaction with the repressor SKI. However, whether Senp2 regulates T-cell homeostasis or Th17 differentiation through Smad4 is unclear. Here, we sought to study the molecular actions of SUMOylation in immune cell development and its association with diseases. Previous studies observed that the expression level of SUMO E2 enzyme UBC9 was different between the healthy and lesion sites of dextran sulfate sodium (DSS)-induced colitis model, but the underlying regulatory mechanisms of SUMOylation in immune cell development and its association with diseases remain elusive. In this study, we generated T-cell specific Senp2 knockout mice to investigate the role of Senp2 in regulation of T-cell development and functions. We found Senp2 restricts the differentiation of pathogenic Th17 cells, which results in the more severe development of colitis and affects gut microbiota in mice. Besides, adoptive transfer of naïve CD4+ T cells lacking Senp2 also showed more severe development of colitis in Rag2 knockout recipient mice as compared with mice received WT naïve CD4+ T cells. Using an inducible culture in which Senp2 in T cells can be deleted upon the addition of 4-hydroxytomaxifan, we demonstrated that Senp2 plays a role in Th1 and Th17 cell differentiation. Re-introduction of Senp2 enzymatic mutant into Senp2 deficient Th17 cells revealed that the enzymatic activity of Senp2 is required for the suppression of Th17 differentiation. Mechanistically, we demonstrated that Smad4 is an important SUMO targeted substrate in Th17 cells, and the levels of Smad4 SUMOylation is different between control and Senp2 deficient Th17 cells and SUMOylation at K159 site of Smad4 is important for the nuclear translocation of Smad4 in T cells, and RORγt expression in Th17 differentiation. Taken together, in this study, we found that Senp2 negatively regulates the differentiation of pathogenic Th17 cells by modulating the SUMOylation of Smad4 and its nuclear translocation and gene expression, thereby preventing the excessive production of IL-17A and GM-CSF in the progression of DSS-induced colitis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-08T16:07:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-08T16:07:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 .............................................................. 1
中文摘要 .......................................................... 2 英文摘要 .......................................................... 4 Abbreviation list ................................................. 6 Contents .......................................................... 7 Chapter 1: Introduction 1.1 Lymphopoiesis of T Cells ...................................... 10 1.2 The differentiation of Th subsets ............................. 12 1.3 Pathogenic and non-pathogenic Th17 cells ...................... 15 1.4 The post-translational modification by SUMOylation ............ 17 1.5 SUMOylation in T cells ........................................ 19 1.6 The SUMO-specific proteases (SENP) ............................ 20 1.7 The SUMOylation on the intracellular protein involved in regulation of immune responses .................................................. 22 1.8 The role of Smad4 in Th17 differentiation ..................... 23 Chapter 2: Rationale and aims of this study ....................... 24 Chapter 3: Materials and Methods .................................. 25 Chapter 4: Results ................................................ 35 Chapter 5: Discussion ............................................. 48 Chapter 6: Figures Figure 1. Generation of T cell-specific Senp2 deficient mice. ..... 53 Figure 2. T-cell development and homeostasis in WT and Senp2-CKO mice. Figure 3. The expression of Senp2 in T cells. ..................... 55 Figure 4. Cell proliferation and apoptosis were not affected by deletion of Senp2 in T cells. ....................................................... 56 Figure 5. Increased frequency of generation of pathogenic Th17 cells in culture in the absence of Senp2. .......................................... 57 Figure 6. Inducible deletion of Senp2 confirmed the role of Senp2 in Th1 and Th17 differentiation. ............................................. 58 Figure 7. The catalytic activity of Senp2 was required for suppression of Th17 differentiation. .................................................. 59 Figure 8. Senp2-deficiency in T cells promotes the progression of DSS-induced colitis. .......................................................... 60 Figure 9. Evaluation of Th subsets in the colon from WT and Senp2-CKO mice after DSS-induced colitis. ........................................ 61 Figure 10. Elevated levels of pathogenic Th17 cells in the WT and Senp2-CKO mice after DSS-induced colitis. ................................... 62 Figure 11. Elevated levels of Th17 cells contribute to the exacerbated colitis in the absence of Senp2. ............................................. 63 Figure 12. Elevated levels of Th17 cells contribute to the exacerbated colitis in the absence of Senp2. ............................................ 64 Figure 13. The cell-intrinsic effect of Senp2 on inhibiting Th17 cell generation. Figure 14. Senp2-deficiency in Th17 cells reduces the progression of DSS- induced colitis. .................................................. 66 Figure 15. The gut bacterial composition was altered in DSS-treated Senp2- deficient mice. ................................................... 67 Figure 16. Senp2-deficiency enhances the progression of experimental autoimmune encephalomyelitis (EAE). ............................... 68 Figure 17. Senp2 did not regulate the expression of phospho-STAT3 in pathogenic Th17 cells. ............................................ 69 Figure 18. The interaction between Senp2 and Smad4. ............... 70 Figure 19. Senp2 may modulate the level of SUMO1-conjugated Smad4 in pathogenic Th17 cells. ............................................ 71 Figure 20. Senp2 modulates the level of SUMO-1-conjugated Smad4 in pathogenic Th17 cells and Smad4 nuclear localization. ............. 72 Figure 21. Senp2-mediated deSUMOylation of Smad4 modulates Rorc transcription in the pathogenic Th17 cells. ....................... 73 Figure 22. The proposed mode of action of Senp2 in preventing excessive inflammation in pathogenic Th17 cells. ............................ 74 Chapter 7: References ............................................. 75 | - |
| dc.language.iso | en | - |
| dc.subject | 去類小泛素特異性蛋白酶 | zh_TW |
| dc.subject | 轉譯後修飾 | zh_TW |
| dc.subject | Th17細胞 | zh_TW |
| dc.subject | SUMO | en |
| dc.subject | Senp2 | en |
| dc.subject | Th17 | en |
| dc.title | 去類小泛素特異性蛋白酶2在Th17細胞分化中所扮演的角色 | zh_TW |
| dc.title | The roles of SUMO-specific protease 2 (Senp2) in Th17 differentiation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 柯俊榮;徐志文;廖南詩;繆希椿 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Jung Ko;Jr-Wen Shui;Nan-Shih Liao;Shi-Chuen Miaw | en |
| dc.subject.keyword | 轉譯後修飾,去類小泛素特異性蛋白酶,Th17細胞, | zh_TW |
| dc.subject.keyword | SUMO,Senp2,Th17, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202301166 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
