Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚婉玉zh_TW
dc.contributor.advisorWoan-Yuh Tarnen
dc.contributor.author楊謦潞zh_TW
dc.contributor.authorSabrina Yeo Samuelen
dc.date.accessioned2023-09-08T16:05:12Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-08-
dc.date.issued2023-
dc.date.submitted2023-07-27-
dc.identifier.citationAbakir, A., Giles, T. C., Cristini, A., Foster, J. M., Dai, N., Starczak, M., Li, M., Eleftheriou, M., Crutchley, J., Flatt, L., Young, L., Gaffney, D. J., Denning, C., Dalhus, B., Emes, R. D., Gackowski, D., Corrêa, I. R., Garcia -Perez, L., J., Klungland, A., Gromak, N., Ruzov, A. (2020). N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nature Genetics, 52(1), 48- 55. https://doi.org/10.1038/s41588-019-0549-x
Alberti, S., Gladfelter, A. S., & Mittag, T. (2019). Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 176(3), 419–434. https://doi.org/10.1016/j.cell.2018.12.035
André, A. A. M., and Spruijt, E. (2020). Liquid -liquid phase separation in crowded environments. International Journal of Molecular Sciences, 21(16), 5908–5908. https://doi.org/10.3390/ijms21165908
Banani, S. F., Lee, H., Hyman, A. A., & Rosen, M. J. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 18(5), 285–298. https://doi.org/10.1038/nrm.2017.7
Bekker-Jensen, S., Lukas, C., Kitagawa, R., Melander, F., Kastan, M. B., Bartek, J., & Lukas, J. (2006). Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. Journal of Cell Biology, 173(2), 195–206. https://doi.org/10.1083/jcb.200510130
Boehm, V., & Gehring, N. H. (2016). Exon Junction Complexes: Supervising the Gene Expression Assembly Line. Trends in Genetics, 32(11), 724–735. https://doi.org/10.1016/j.tig.2016.09.003
Chuang, T.W., Lee, K.M., Lou, Y.C., Lu, C.C., & Tarn, W.Y. (2016). A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. Journal of Biological Chemistry, 291(16), 8565-8574. https://doi.org/10.1074/jbc.M115.704544
Chuang, T.W., Lu, C.C., Su, C.H., Wu, P.Y., Sarasvathi E., Lee, C.C., Kuo, H.C., Hung, K.Y., Lee, K.M., Tsai, C.Y., & Tarn, W.Y. (2019). The RNA Processing Factor Y14 Participates in DNA Damage Response and Repair. IScience, 13, 402–415. https://doi.org/10.1016/j.isci.2019.03.005
Chen, K., Lu, Z., Wang, X., Fu, Y., Luo, Z., Liu, N., Han, D., Dominissini, D., Dai, Q., Pan, T., & He, C. (2015). High-Resolution N6-Methyladenosine (m6A) Map Using Photo-Crosslinking-Assisted m6A Sequencing.
Angewandte Chemie (International ed. in English), 54(5), 1587. https://doi.org/10.1002/anie.201410647
Chuang, T.W., Su, C.H., Wu, P.Y., Chang, Y.M., & Tarn, W.Y. (2023). LncRNA HOTAIRM1 functions in DNA double-strand break repair via its association with DNA repair and mRNA surveillance factors. Nucleic Acids Research. https://doi.org/10.1093/nar/gkad143
Ciccia, A., & Elledge, S. J. (2010). The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell, 40(2), 179–204. https://doi.org/10.1016/j.molcel.2010.09.019
Diaz-Lagares, A., Crujeiras, A. B., Lopez-Serra, P., Soler, M., Setien, F., Goyal, A., Sandoval, J., Hashimoto, Y., Martínez -Cardús, A., Gomez, A., Heyn, H., Moutinho, C., Espada, J., Vidal, A., Paules M., Galán M., Sala, N., Akiyama, Y., Martínez -Iniesta M., & Farre, L. (2016) Epigenetic inactivation of the p53- induced long noncoding RNA TP53 target 1 in human cancer. Proceedings of the National Academy of Sciences, 113(47), E7535-E7544. https://doi.org/10.1073/pnas.1608585113
D’Alessandro, G., & d’Adda di Fagagna, F. (2017). Transcription and DNA Damage: Holding Hands or Crossing Swords? Journal of Molecular Biology, 429(21), 3215–3229. https://doi.org/10.1016/j.jmb.2016.11.002
Espinosa, J. R., Joseph, J. A., Sanchez-Burgos, I., Adiran Garaizar, Frenkel, D., & Collepardo-Guevara, R. (2020). Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proceedings of the National Academy of Sciences of the United States of America, 117(24), 13238–13247. https://doi.org/10.1073/pnas.1917569117
Fay, M. M., & Anderson, P. J. (2018). The Role of RNA in Biological Phase Separations. Journal of Molecular Biology, 430(23), 4685-4701. https://doi.org/10.1016/j.jmb.2018.05.003
Fukumura, K., Wakabayashi, S.-I., Kataoka, N., Sakamoto, H., Suzuki, Y., Nakai, K., Mayeda, A., & Inoue, K. (2016). The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression. International Journal of Molecular Sciences, 17(8), 1153–1153. https://doi.org/10.3390/ijms17081153
Fung, H. Y. J., Birol, M., & Rhoades, E. (2018). IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Current Opinion in Structural Biology, 49, 36–43. https://doi.org/10.1016/j.sbi.2017.12.007
Haemmig, S., Yang, D., Sun, X., Das, D., Ghaffari, S., Molinaro, R., Chen, L., Deng, Y., Freeman, D., Moullan, N., Tesmenitsky, Y., Khyrul Wara, K. M., Simion, V., Shvartz, E., Lee, J. F., Yang, T., Sukova, G., Marto, J. A., Stone, P. H., Lee,
W. L., Auwerx J., Libby P., Feinberg, M. W. (2020). Long noncoding RNA SNHG12 integrates a DNA-PK–mediated DNA damage response and vascular senescence. Science Translational Medicine. https://doi.org/aaw1868
Hawley, B. R., Lu, W., Wilczynska, A., & Bushell, M. (2017). The emerging role of RNAs in DNA damage repair. Cell Death & Differentiation, 24(4), 580-587. https://doi.org/10.1038/cdd.2017.16
Hingorani, K., Attila Szebeni, & Olson, M. E. (2000). Mapping the Functional Domains of Nucleolar Protein B23. 275(32), 24451–24457. https://doi.org/10.1074/jbc.m003278200
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O., & Pappu, R. V. (2017). CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. Biophysical Journal, 112(1), 16-21. https://doi.org/10.1016/j.bpj.2016.11.3200
Hyman, A. A., Weber, C. A. & Jülicher, F. (2014) Liquid-Liquid Phase Separation in Biology Annual Review of Cell and Developmental Biology 30, 39–58. https://doi.org/10.1146/annurev-cellbio-100913-013325
Kai, M. (2016). Roles of RNA-Binding Proteins in DNA Damage Response.
International Journal of Molecular Sciences, 17(3). https://doi.org/10.3390/ijms17030310
Langdon, E. M., Qiu, Y., Niaki, A. G., McLaughlin, G. A., Weidmann, C. A., Gerbich,
T. M., Smith, J. A., Crutchley, J. M., Termini, C. M., Weeks, K. M., Myong, S., & Gladfelter, A. S. (2018). mRNA structure determines specificity of a polyQ- driven phase separation. Science, 360(6391), 922-927 https://doi.org/10.1126/science.aar7432
Lee, H. G., Kim, J., & Seo, P. J. (2022). N6-methyladenosine–modified RNA acts as a molecular glue that drives liquid–liquid phase separation in plants. Plant Signaling & Behavior, 17(1). https://doi.org/10.1080/15592324.2022.2079308
Levone, B. R., Lenzken, S. C., Antonaci, M., Maiser, A., Rapp, A., Conte, F., Reber, S., Mechtersheimer, J., Ronchi, A. E., Mühlemann, O., Leonhardt, H., Cardoso,
M. C., Ruepp, M.-D., & Barabino, S. M. L. (2021). FUS-dependent liquid–liquid phase separation is important for DNA repair initiation. Journal of Cell Biology, 220(5). https://doi.org/10.1083/jcb.202008030
Li, Q., Peng, X., Li, Y., Tang, W., Zhu, J., Huang, J., Qi, Y., & Zhang, Z. (2020). LLPSDB: A database of proteins undergoing liquid–liquid phase separation in vitro. Nucleic Acids Research, 48(D1), D320-D327. https://doi.org/10.1093/nar/gkz778
Lin, Y., Protter, D. S., Rosen, M. K., & Parker, R. (2015). Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Molecular Cell, 60(2), 208-219. https://doi.org/10.1016/j.molcel.2015.08.018
Lisby, M., Barlow, J. H., Burgess, R. C., & Rothstein, R. (2004). Choreography of the DNA Damage Response. Cell, 118(6), 699–713. https://doi.org/10.1016/j.cell.2004.08.015
Lu, C.-C., Lee, C.-C., Tseng, C.-T., & Tarn, W.-Y. (2017). Y14 governs p53 expression and modulates DNA damage sensitivity. Scientific Reports, 7(1). https://doi.org/10.1038/srep45558
Maharana, S., Wang, J., Papadopoulos, D. K., Richter, D., Pozniakovsky, A., Poser, I., Bickle, M., Rizk, S., Guillén -Boixet, J., Franzmann, T. M., Jahnel, M., Marrone, L., Chang, T., Sterneckert, J., Tomancak, P., Hyman, A. A., & Alberti, S. (2018). RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science, 360, 918-921. https://doi.org/10.1126/science.aar7366
Meng, X., Yang, S., & Camp, V. J. A. (2020). The Interplay Between the DNA Damage Response, RNA Processing and Extracellular Vesicles. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.01538
Michelle, L., Cloutier, A., Toutant, J., Lulzim Shkreta, Thibault, P., Durand, M., Garneau, D., Gendron, D., Lapointe, E., Couture, S., Hervé Le Hir, Klinck, R., Sherif Abou Elela, Panagiotis Prinos, & Chabot, B. (2012). Proteins Associated with the Exon Junction Complex Also Control the Alternative Splicing of Apoptotic Regulators. Molecular and Cellular Biology, 32(5), 954–967. https://doi.org/10.1128/mcb.06130-11
Michelini, F., Pitchiaya, S., Vitelli, V., Sharma, S., Gioia, U., Pessina, F., Cabrini, M., Wang, Y., Capozzo, I., Iannelli, F., Matti, V., Francia, S., Shivashankar, G. V., & Walter, N. G. (2017). Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nature cell biology, 19(12), 1400. https://doi.org/10.1038/ncb3643
Navarro, M. G., Kashida, S., Chouaib, R., Souquere, S., Pierron, G., Weil, D., & Gueroui, Z. (2019). RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nature Communications, 10(1), 1-13. https://doi.org/10.1038/s41467-019-11241-6
Qu, F., Tsegay, P. S., & Liu, Y. (2021). N6-Methyladenosine, DNA Repair, and Genome Stability. Frontiers in Molecular Biosciences, 8, 645823. https://doi.org/10.3389/fmolb.2021.645823
Ray Chaudhuri, A., & Nussenzweig, A. (2017). The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nature Reviews Molecular Cell Biology, 18(10), 610-621. https://doi.org/10.1038/nrm.2017.53
Sharma, V., Khurana, S., Kubben, N., Abdelmohsen, K., Oberdoerffer, P., Gorospe, M., & Misteli, T. (2015). A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Reports, 16(11), 1520-1534. https://doi.org/10.15252/embr.201540437
Sukhanova, M. V., Singatulina, A. S., Pastré, D., & Lavrik, O. I. (2020). Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA. International Journal of Molecular Sciences, 21(19). https://doi.org/10.3390/ijms21197020
Wang, J., Choi, J. M., Holehouse, A. S., Lee, H. O., Zhang, X., Jahnel, M., et al. (2018). A molecular grammar governing the driving forces for phase separation of prion- like RNA binding proteins. Cell 174, 688–699. https://doi.org/10.1016/j.cell.2018.06.006
Wang, J., Wang, L., Diao, J., Shi, Y. G., Shi, Y., Ma, H., & Shen, H. (2020). Binding to m6A RNA promotes YTHDF2-mediated phase separation. Protein & Cell, 11(4), 304-307. https://doi.org/10.1007/s13238-019-00660-2
Whelan, D. R., Howard, S. M., Vitelli, V., Renaudin, X., Adamowicz, M., Iannelli, F., Winston, C., Lee, M., Matti, V., Lee, W. T., Morten, M. J., Venkitaraman, A. R., Cejka, P., & Rothenberg, E. (2018). BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nature Communications, 9(1), 1-17. https://doi.org/10.1038/s41467-018-07799-2
Van Treeck, B., Protter, D. S., Matheny, T., Khong, A., Link, C. D., & Parker, R. (2018). RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proceedings of the National Academy of Sciences, 115(11), 2734-2739. https://doi.org/10.1073/pnas.1800038115
Vohhodina, J., Barros, E. M., Savage, A. L., Liberante, F. G., Manti, L., Bankhead, P., Cosgrove, N., Madden, A. F., Harkin, D. P., & Savage, K. I. (2017). The RNA processing factors THRAP3 and BCLAF1 promote the DNA damage response through selective mRNA splicing and nuclear export. Nucleic Acids Research, 45(22), 12816-12833. https://doi.org/10.1093/nar/gkx1046
Yu, C.L., Chuang, T.W., Samuel, S. Y., Lou, Y.C., & Tarn, W.Y. (2023). Co-phase separation of Y14 and RNA in vitro and its implication for DNA repair. RNA, rna.079514.122. https://doi.org/10.1261/rna.079514.122
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89508-
dc.description.abstractnonezh_TW
dc.description.abstractY14 is a multifunctional RNA processing factor that plays an essential role in RNA metabolism and also participates in non-homologous end joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs). Our recent study has uncovered a long non-coding RNA (lncRNA) HOTAIRM1 that mediates the interaction between Y14 and the NHEJ factors. In this study, I first examined the molecular interaction between Y14 and RNA, in particular, HOTAIRM1. RNA electrophoretic mobility shift assay (REMSA) revealed that Y14 bound to multiple regions of HOTAIRM1. Our recent study also revealed that Y14 has the capability to undergo liquid-liquid phase separation (LLPS), and can co-phase-separate with HOTAIRM1. Therefore, I evaluated whether RNA structure or modification affects the LLPS properties of Y14. Moreover, since DNA damage induced m6A modification of HOTAIRM1, I also evaluated whether RNA methylation also affects the LLPS of Y14. My apparent data revealed that methylation enhanced Y14 LLPS. Since LLPS may involve electrostatic interactions of intrinsically disordered domains, I evaluated whether specific charge patterns can modulate a protein’s LLPS capacity. The multifunctionality of Y14 and its biochemical properties make it a valuable target for further research in understanding its role in RNA metabolism and DSB repair.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-08T16:05:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-08T16:05:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents

Acknowledgements i
Abstract ii
Table of Contents iii
List of Figures/Appendixes v
Introduction
1. Liquid-liquid phase separation 1
2. Phase separation regulates DNA repair 3
3. Role of RNA and RNA processing factors in DNA damage repair 4
4. Y14 is an RNA processing factor involved in DNA damage repair 5
Results
1. RNA binding analysis of recombinant human Y14 protein 7
2. Characterization of Y14 LLPS 8
3. Different RNAs modulate Y14 LLPS differently 9
4. RNA methylation promotes Y14 LLPS 10
5. Bioinformatics analysis of charged IDRs in RNA processing and DNA repair factors 11
Discussion 14
Experimental Procedures 16
References 21
Figures 29
Appendixes 41
-
dc.language.isoen-
dc.subjectnonezh_TW
dc.subjectLiquid-liquid phase separationen
dc.subjectElectrostatic interactionen
dc.subjectN6-methyladenosine modificationen
dc.subjectDNA damage repairen
dc.subjectRNA processing factoren
dc.subjectIntrinsically disordered domainen
dc.titleStudying Y14-RNA interaction and co-phase separationzh_TW
dc.titleStudying Y14-RNA interaction and co-phase separationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳惠南;蔡欣祐;蔡松智zh_TW
dc.contributor.oralexamcommitteeHuey-Nan Wu;Hsin-Yue Tsai;Kevin Tsaien
dc.subject.keywordnone,zh_TW
dc.subject.keywordLiquid-liquid phase separation,Electrostatic interaction,RNA processing factor,DNA damage repair,N6-methyladenosine modification,Intrinsically disordered domain,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202302064-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-27-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.75 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved