請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8946完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊永斌 | |
| dc.contributor.author | Chun-Teh Chen | en |
| dc.contributor.author | 陳俊德 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:04:47Z | - |
| dc.date.available | 2009-08-19 | |
| dc.date.available | 2021-05-20T20:04:47Z | - |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | Asfar, K. R., and Masoud, K. K. (1992), “On the period-doubling bifurcations in the Duffing’s oscillator with negative linear stiffness,” Journal of Vibration and Acoustics, ASME, Vol. 114, 489-494.
Bathe K. J. (1996), “Finite Element Procedures,” Prentice-Hall. Batoz, J. L. and Dhatt, G. (1979), “Incremental displacement algorithms for nonlinear problems,” Int. J. Numer. Meth. Eng., Vol. 14, 1262-1266. Berg, P., Pomeau, Y., and Vidal, C. (1984), “Order within chaos,” John Wiley & Sons, New York. N.Y. Cook, R. D., Malkus, D. S., Plesha, M. E. and Witt, R. J. (2002), “Concepts and Applications of Finite Element Analysis,” John Wiley & Sons, New York. N.Y. Dowell, E. H., and Pezeshki, C. (1986), “On the understanding of chaos in Duffing’s equation including a comparison with experiment,” J. Appl. Mech., ASME, Vol. 53, 5-9. Dowell, E. H., and Pezeshki, C. (1988), “On necessary and sufficient conditions for chaos to occur in Duffing’s equation: an heuristic approach,” Journal of Sound and Vibration, Vol. 121(2), 195-200. Holmes, P. J., and Moon, F. C. (1983), “Strange attractors and chaos in nonlinear mechanics,” J. Appl. Mech., ASME, Vol. 50, 1021-1032. Huang, N. E. et al. (1998), “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London, A454, 903-995. Huang, N. E. et al. (1999), “A new view of nonlinear water waves: the Hilbert spectrum,” Annual Review of Fluid Mechanics, Vol. 31, 417-457. Huang, N. E. et al. (2003), “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proceedings of the Royal Society of London, A459, 2317-2345. Leu, L. J. and Yang, Y. B. (1990), “Effects of rigid body and stretching on nonlinear analysis of trusses,” J. Struct. Eng., ASCE Vol. 116(10), 2582-2598. Moon, F. C. (1980), “Experiments on chaotic motions of a forced nonlinear oscillator: strange attractors,” J. Appl. Mech., ASME, Vol. 47, 639-644. Moon, F. C. (1987), “Chaotic vibration,” John Wiley & Sons, New York. N.Y. Novak, S., and Frehlich, R. G. (1982). “Transition to chaos in the Duffing oscillator,” Physical Review A, The American Physical Society, Vol. 26, 3660-3663. Pecknold, D. A., Ghaboussi, J., and Healey, T. J. (1985), “Snap-through and bifurcation in a simple structure,” J. Eng. Mech., ASCE, Vol. 111(7), 909-922. Tongue, B. H. (1987), “Characteristics of numerical simulations of chaotic system,” J. Appl. Mech., ASME, Vol. 54, 695-699. Yang, Y. B. and McGuire, W. (1986a), “Stiffness matrix for geometric nonlinear analysis,” J. Struct. Eng., ASCE, Vol. 112(4), 853-877. Yang, Y. B. and McGuire, W. (1986b), “Joint rotation and geometric nonlinear analysis,” J. Struct. Eng., ASCE, Vol. 112(4), 879-905. Yang, Y. B. and Chiou, H. T. (1987), “Rigid body motion test for nonlinear analysis with beam elements,” J. Eng. Mech., ASCE, Vol. 113(9), 1404-1419. Yang, Y. B. and Shieh, M. S. (1990), “Solution method for nonlinear problems with multiple critical points,” AIAA J., Vol. 28(12), 2110-2116. Yang, Y. B. and Leu, L. J. (1990), “Postbuckling analysis of trusses with various Lagrangian formulations,” AIAA J., Vol. 28(5), 946-948. Yang, Y. B. and Leu, L. J. (1991a), “Constitutive laws and force recovery procedures in nonlinear analysis of trusses,” Comp. Meth. Appl. Mech. Eng., Vol. 92, 121-131. Yang, Y. B. and Leu, L. J. (1991b), “Force recovery procedures in nonlinear analysis,” Comp. & Struct., Vol. 41(6), 1255-1261. Yang, Y. B., and Kuo, S. R. (1991a), “Out-of plane buckling of angled frames,” Int. J. Mech. Sci., Vol. 33(1), 55-67. Yang, Y. B., and Kuo, S. R. (1991b), “Consist frame buckling analysis by finite element method,” J. Struct. Eng. Mech., ASCE Vol. 117(4), 1053-1069. Yang, Y. B., and Kuo, S. R. (1992), “Frame buckling analysis with full consideration of joint compatibilities,” J. Eng. Mech., ASCE Vol. 118(5), 871-889. Yang, Y. B., and Kuo, S. R. (1994), “Theory and Analysis of Nonlinear Framed Structures,” Prentice-Hall, Singapore. Yang, Y. B., Kuo, S. R. and Wu, Y. S. (2002), “Incrementally small-deformation theory for nonlinear analysis of structural frames,” Eng. Struct., Vol. 24, 783-798. Yang, Y. B., Lin, S. P., and Chen, C. S. (2006), “Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation,” Comp. Meth. Appl. Mech. Eng., Vol. 196, 1178-1192. Yang, Y. B., Lin, S. P., and Wang, C. M. (2007), “Rigid element approach for deriving the geometric stiffness of curved beams for use in buckling analysis,” J. Struct. Eng., ASCE, Vol. 133(12), 1762-1771. Yang, Y. B., Lin, S. P., and Leu, L. J. (2007), “Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation,” Eng. Struct. Vol. 29, 1189-1200. 呂良正 (民國七十八年),「桁架及構架之非線性理論」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。 郭世榮 (民國八十年),「空間構架的靜力及動力穩定理論」,國立台灣大學土木研究所博士論文,楊永斌教授指導。 楊健泰 (民國八十二年),「桁架非線性分析」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。 吳演聲 (民國八十三年),「桁架之非線性動力及混沌現象」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。 楊順欽 (民國八十五年),「構架非線性簡易有限元素分析方法」,國立台灣大學土木研究所博士論文,楊永斌教授指導。 劉國瑞 (民國九十三年),「桁架系統之非線性動力及混沌現象與機制」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。 林詩渤 (民國九十四年),「簡易非線性三角板元素」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。 彭星瑋 (民國九十四年),「HHT於線性與非線性動力系統識別之應用」,國立台灣大學土木研究所碩士論文,呂良正教授指導。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8946 | - |
| dc.description.abstract | 傅立葉轉換(Fourier Transformation)之應用有諸多限制條件,無法完全適用於非線性系統。為了能分析非穩態(non-stationary)或非線性過程(nonlinear processes)之訊號,本文採用具有較高適用性之希爾伯特–黃轉換(Hilbert-Huang Transform–HHT)作為分析工具之一。
希爾伯特–黃轉換主要包含兩部分之處裡流程:(1)經驗模態分離法(Empirical Mode Decomposition–EMD):可將訊號分離成數個內建模態函數(Intrinsic Mode Function–IMF),而每個IMF皆具有良好的希爾柏特轉換特性。(2)希爾柏特轉換(Hilbert Transform):可得到訊號之即時頻率與即時振幅,若繪製成能量–頻率–時間分佈圖,則稱為希爾伯特頻譜(Hilbert Spectrum)。 本文以雙桿桁架系統作為測試模型,考慮幾何非線性效應,利用有限元素法配合Newmark法進行數值分析,並提供對應之達芬方程式參數。本文嘗試由頻率的角度,研究非線性系統之動力行為,比較FFT與HHT分析結果之差別,並針對振動頻率的變化、週期倍增以及混沌現象等,進行較為系統的探討。 | zh_TW |
| dc.description.abstract | In the Fourier analysis, the fundamental assumption of linear and stationary process is required for the data. Applying the Fourier analysis to those data generated from nonlinear systems may cause misunderstanding of the physical phenomena hidden in the data. On the other hand, the Hilbert-Huang transform (HHT) is considered more suitable for analyzing nonlinear and non-stationary data.
HHT includes two major parts: (1) empirical mode decomposition (EMD): a sifting process by which the data can be decomposed into a collection of intrinsic mode functions (IMF) that admit well-behaved Hilbert transforms; (2) Hilbert transform: a type of transform by which the instantaneous frequency and amplitude can be calculated for any instant. The energy distribution being plotted in a 3-D energy-frequency-time space is designated as the Hilbert spectrum. A two-member truss system with the effect of geometric nonlinearity considered is taken as the example in this study. The dynamic response of such a system is numerically analyzed by the finite element method along with the Newmark method, with the corresponding parameters in the Duffing equation given in each case. By comparing the results obtained from both the FFT and HHT analyses in frequency domain, the dynamic behavior of the nonlinear system is systematically studied, especially with respect to the variation in frequency caused by the geometric nonlinearity, period-doubling, chaos phenomenon, and so on. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:04:47Z (GMT). No. of bitstreams: 1 ntu-98-R95521224-1.pdf: 2925125 bytes, checksum: a579159061288ec97071adf9d16858bf (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌 謝 ......................................... I
摘 要 ......................................... II 英文摘要....................................... III 第一章 導論 1.1 研究動機與目的 ............................ 1 1.2 研究範圍 .................................. 2 第二章 結構非線性增量理論 2.1 非線性推演法簡介 .......................... 3 2.2 參考狀態說明 .............................. 3 2.3 虛功方程式推導 ............................ 4 2.4 更新式Lagrange推演法 ...................... 5 2.5 剛體運動法則 .............................. 8 2.6 結論 ...................................... 8 第三章 有限元素增量分析 3.1 有限元素增量平衡方程式推導 ................ 11 3.1.1 二維桁架元素之勁度矩陣 .................. 11 3.1.2 二維桁架元素之質量矩陣 .................. 16 3.1.3 二維桁架元素之阻尼矩陣 .................. 17 3.2 二維桁架元素之剛體測試 .................... 17 3.3 廣義位移控制法 ............................ 18 3.4 有限元素非線性靜力分析流程 ................ 22 3.4.1 預測階段與校正階段 ...................... 22 3.4.2 增量–迭代分析流程 ...................... 23 3.5 有限元素非線性動力分析流程 ................ 25 3.5.1 預測階段與校正階段 ...................... 26 3.5.2 增量–迭代分析流程 ...................... 28 3.6 結論 ...................................... 30 第四章 希爾伯特–黃轉換之基本理論 4.1 前言 ...................................... 32 4.2 希爾伯特轉換 .............................. 32 4.3 經驗模態分離法 ............................ 34 4.4 曲率篩選法 ................................ 35 第五章 桁架系統動力分析 5.1 前言 ...................................... 43 5.2 雙桿桁架系統介紹 .......................... 43 5.3 分析結果說明 .............................. 45 5.3.1 無阻尼之自由振動系統 .................... 45 5.3.2 含阻尼之自由振動系統 .................... 48 5.3.3 含阻尼之強迫振動系統 .................... 49 第六章 結論與未來展望 6.1 結論 ...................................... 82 6.2 未來展望 .................................. 83 參考文獻 ...................................... 84 | |
| dc.language.iso | zh-TW | |
| dc.title | HHT於桁架非線性動力分析之應用 | zh_TW |
| dc.title | Application of HHT Techniques to Nonlinear Dynamic Analysis of Trusses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭世榮,陳俊杉,宋裕祺 | |
| dc.subject.keyword | 桁架,非線性,動力,混沌,希爾柏特轉換, | zh_TW |
| dc.subject.keyword | truss,nonlinear,dynamic,chaos,Hilbert Transform,FFT,HHT, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 2.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
