請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89464完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳國慶 | zh_TW |
| dc.contributor.advisor | Kuo-Ching Chen | en |
| dc.contributor.author | 王意程 | zh_TW |
| dc.contributor.author | Yi-Cheng Wang | en |
| dc.date.accessioned | 2023-09-07T17:07:35Z | - |
| dc.date.available | 2024-05-09 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-31 | - |
| dc.identifier.citation | [1] Saxena, S., Le Floch, C., MacDonald, J., Moura, S., 2015. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J. Power Sources 282, 265-276.
[2] Lai, X., Qiao, D., Zheng, Y., Ouyang, M., Han, X., Zhou, L., 2019. A rapid screening and regrouping approach based on neural networks for large-scale retired lithium-ion cells in second-use applications. J. Clean. Prod. 213, 776-791. [3] Lai, X., Huang, Y., Deng, C., Gu, H., Han, X., Zheng, Y., Ouyang, M., 2021. Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review. Renew. Sustain. Energy Rev. 146, 111162. [4] Lai, X., Huang, Y., Gu, H., Deng, C., Han, X., Feng, X., Zheng, Y., 2021. Turning waste into wealth: A systematic review on echelon utilization and material recycling of retired lithium-ion batteries. Energy Stor. Mater. 40, 96-123. [5] Heymans, C., Walker, S. B., Young, S. B., Fowler, M., 2014. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 71, 22-30. [6] Assunção, A., Moura, P. S., de Almeida, A. T., 2016. Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy. Appl. Energy 181, 120-131. [7] Zhang, H., Huang, J., Hu, R., Zhou, D., Ma, C., 2020a. Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies. Energy 206, 118178. [8] Debnath, U. K., Ahmad, I., Habibi, D, 2014. Quantifying economic benefits of second life batteries of gridable vehicles in the smart grid. Int. J. Electr. Power Energy Syst. 63, 577-587. [9] Tang, Y., Zhang, Q., Mclellan, B., Li, H., 2018. Study on the impacts of sharing business models on economic performance of distributed PV-Battery systems. Energy 161, 544-558. [10] Thakur, J., de Almeida, C. M. L., Baskar, A. G., 2022. Electric vehicle batteries for a circular economy: Second life batteries as residential stationary storage. J. Clean. Prod. 375, 134066. [11] Zhang, C., Jiang, Y., Jiang, J., Cheng, G., Diao, W., Zhang, W., 2017. Study on battery pack consistency evolutions and equilibrium diagnosis for serial-connected lithium-ion batteries. Appl. Energy 207, 510-519. [12] Wang, B., Ji, C., Wang, S., Sun, J., Pan, S., Wang, D., Liang, C., 2020. Study of non-uniform temperature and discharging distribution for lithium-ion battery modules in series and parallel connection. Appl. Therm. Eng. 168, 114831. [13] Zhang, Y., Zhou, Z., Yang, X., Gu, P., Zhang, C., Duan, B., 2020. A novel screening approach based on neural network for the second usage of retired lithium ion batteries. In 2020 Chinese Automation Congress. CAC, 1193-1197. [14] Nazari, M., Hussain, A., Musilek, P., 2023. Applications of clustering methods for different aspects of electric vehicles. Electronics 12(4), 790. [15] Lujun, W., Jinyang, K., Min, Z., Aina, T., Tiezhou, W., Xiaoxing, Z., Jiuchun, J., 2022. Efficient and fast active equalization method for retired battery pack using wide voltage range bidirectional converter and DBSCAN clustering algorithm. IEEE Trans. Power Electron. 37(11), 13824-13833. [16] Yu, W., Guo, Y., Xu, S., Yang, Y., Zhao, Y., Zhang, J., 2022. Comprehensive recycling of lithium-ion batteries: fundamentals, pretreatment, and perspectives. Energy Stor. Mater. 54, 172-220. [17] Zhou, Z., Duan, B., Kang, Y., Shang, Y., Cui, N., Chang, L., Zhang, C., 2020. An efficient screening method for retired lithium-ion batteries based on support vector machine. J. Clean. Prod. 267, 121882. [18] Gu, P., Duan, B., Zhang, Y., Shang, Y., Zhang, C, 2021. A rapid screening framework of retired lithium-ion batteries for echelon utilization based on extreme learning machine. In 2021 5th CAA International Conference on Vehicular Control and Intelligence. CVCI, 1-6. [19] Zhang, Y., Zhao, M., 2023. Cloud-based in-situ battery life prediction and classification using machine learning. Energy Stor. Mater. 57, 346-359. [20] Wu, K. L., Yang, M. S., 2007. Mean shift-based clustering. Pattern Recognit. 40(11), 3035-3052. [21] Li, C., Wang, N., Li, W., Li, Y., Zhang, J., 2022. Regrouping and echelon utilization of retired lithium-ion batteries based on a novel support vector clustering approach. IEEE Trans. Transp. Electrification 8(3), 3648-3658. [22] Lujun, W., Jinyang, K., Min, Z., Aina, T., Tiezhou, W., Xiaoxing, Z., Jiuchun, J., 2022. Efficient and fast active equalization method for retired battery pack using wide voltage range bidirectional converter and DBSCAN clustering algorithm. IEEE Trans. Power Electron. 37(11), 13824-13833. [23] Zhou, Z., Ran, A., Chen, S., Zhang, X., Wei, G., Li, B., ... & Sun, H., 2020. A fast screening framework for second-life batteries based on an improved bisecting K-means algorithm combined with fast pulse test. J. Energy Storage 31, 101739. [24] Mussabayev, R., Mladenovic, N., Jarboui, B., Mussabayev, R., 2023. How to Use K-means for Big Data Clustering? Pattern Recognit. 137, 109269. [25] Yin, H., Li, Y., Kang, Y., Zhang, C., 2023. A two-stage sorting method combining static and dynamic characteristics for retired lithium-ion battery echelon utilization. J. Energy Storage 64, 107178. [26] Ma, Y., Yao, M., Liu, H., Tang, Z., 2022. State of Health estimation and Remaining Useful Life prediction for lithium-ion batteries by Improved Particle Swarm Optimization-Back Propagation Neural Network. J. Energy Storage 52, 104750. [27] Cui, L., Tao, Y., Deng, J., Liu, X., Xu, D., Tang, G., 2021. BBO-BPNN and AMPSO-BPNN for multiple-criteria inventory classification. Expert Syst. Appl. 175, 114842. [28] Ali, J., Aldhaifallah, M., Nisar, K. S., Aljabr, A. A., Tanveer, M., 2022. Regularized least squares twin svm for multiclass classification. Big Data Research 27, 100295. [29] Chegni, A. M., Ghavami, B., Eftekhari, M., 2022. A GPU-based accelerated ELM and deep-ELM training algorithms for traditional and deep neural networks classifiers. Intelligent Systems with Applications 15, 200098. [30] Braco, E., San Martín, I., Sanchis, P., Ursúa, A, 2023. Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles. Appl. Energy 329, 120235. [31] Zhang, W., Li, T., Wu, W., Ouyang, N., Huang, G., 2023a. Data-driven state of health estimation in retired battery based on low and medium-frequency electrochemical impedance spectroscopy. Measurement 211, 112597. [32] Wei, Z., Han, X., Li, J., 2022. State of health assessment for echelon utilization batteries based on deep neural network learning with error correction. J. Energy Storage 51, 104428. [33] Liu, J., Duan, Q., Qi, K., Liu, Y., Sun, J., Wang, Z., Wang, Q., 2022. Capacity fading mechanisms and state of health prediction of commercial lithium-ion battery in total lifespan. J. Energy Storage 46, 103910. [34] Braco, E., San Martin, I., Sanchis, P., Ursúa, A., Stroe, D. I., 2022. Health indicator selection for state of health estimation of second-life lithium-ion batteries under extended ageing. J. Energy Storage 55, 105366. [35] Schaltz, E., Stroe, D. I., Nørregaard, K., Ingvardsen, L. S., Christensen, A., 2021. Incremental capacity analysis applied on electric vehicles for battery state-of-health estimation. IEEE Trans. Ind. Appl. 57(2), 1810-1817. [36] Zhang, Q., Wang, D., Schaltz, E., Stroe, D. I., Gismero, A., Yang, B., 2022. Degradation mechanism analysis and state-of-health estimation for lithium-ion batteries based on distribution of relaxation times. J. Energy Storage 55, 105386. [37] Chen, Z., Deng, Y., Li, H., Liu, W., 2022. An efficient regrouping method of retired lithium-ion iron phosphate batteries based on incremental capacity curve feature extraction for echelon utilization. J. Energy Storage 56, 105917. [38] Lai, X., Deng, C., Tang, X., Gao, F., Han, X., Zheng, Y., 2022. Soft clustering of retired lithium-ion batteries for the secondary utilization using Gaussian mixture model based on electrochemical impedance spectroscopy. J. Clean. Prod. 339, 130786. [39] Bileki, G. A., Barboza, F., Silva, L. H. C., Bonato, V., 2022. Order book mid-price movement inference by catboost classifier from convolutional feature maps. Appl. Soft Comput. 116, 108274. [40] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., Gulin, A., 2018. CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems 31, 6638-6648. [41] Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24-31. [42] Mitiche, I., Morison, G., Nesbitt, A., Hughes-Narborough, M., Stewart, B. G., Boreham, P., 2018. Classification of EMI discharge sources using time–frequency features and multi-class support vector machine. Electr. Power Syst. Res. 163, 261-269. [43] Hsu, C. W., Lin, C. J., 2002. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks. 13, 415-425. [44] Pawara, P., Okafor, E., Groefsema, M., He, S., Schomaker, L. R., Wiering, M. A., 2020. One-vs-One classification for deep neural networks. Pattern Recogn. 108, 107528. [45] Liu, Y., Bi, J. W., Fan, Z. P., 2017. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Information Sciences 394, 38-52. [46] Vidya, B., Sasikumar, P., 2021. Gait based Parkinson’s disease diagnosis and severity rating using multi-class support vector machine. Appl. Soft Comput. 113, 107939. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89464 | - |
| dc.description.abstract | 近年來隨著電動車的普及,汰役鋰離子電池的數量大幅增加,處理不當會對環境造成不可逆的傷害和能源的浪費,因此汰役電池的二次利用是目前很受關注的議題。由於汰役電池的容量最高只有初始容量的70 ~ 80%,所以會被應用在容量或功率需求較低的設備上。通常從汰役電池組中淘汰的電池其擁有較低的容量或阻抗一致性,因此找到能正確且快速反應出容量或阻抗一致性的特徵就顯得至關重要。目前利用數據驅動的方法對汰役電池進行分類的文獻都只基於容量進行,這雖然能使分類完的電池具有高容量一致性,但卻無法完全滿足設備對高功率一致性的需求。本研究除了基於容量進行分類之外,首次使用數據驅動的方式對阻抗進行分類,並提出一種容量與功率兼顧的新分類方式,使分類更具靈活性。本文從增量容量分析、電化學阻抗譜以及定電壓充電時的電流曲線中各別提取3個特徵,利用提取出的特徵分別對3種不同的分類方式進行分類,找出不同分類方式適合的特徵,用於未來不同的使用場景。此外我們使用了3種不同的算法包括: catboost、random forest以及one−against−one support vector machine進行分類工作。結果表明不同分類方式有其適合的特徵,使用合適的特徵進行分類,準確率都可以達到93%以上。 | zh_TW |
| dc.description.abstract | In recent years, with the popularity of electric vehicles, the number of retired lithium-ion batteries(LIBs) has significantly increased. Improper handling of these batteries can cause irreversible damage to the environment and lead to energy wastage. Therefore, the secondary use of retired LIBs has become a highly discussed issue. Due to the fact that retired LIBs typically retain only 70 to 80% of their initial capacity, they are often utilized in devices with lower capacity or power requirements. Usually, the batteries retired from battery packs have lower capacity or impedance consistency. Therefore, it is crucial to identify features that can accurately and quickly reflect capacity or impedance consistency. Currently, the literature on data-driven methods for classifying retired batteries is primarily based on their capacity. Although this approach ensures high capacity consistency among classified batteries, it does not fully meet the demand for high power consistency in devices. In this paper, in addition to classification based on capacity, a data-driven approach is being used for the first time to classify retired LIBs based on resistance. Furthermore, a novel classification method is proposed that considers both capacity and power simultaneously, aiming to achieve a more flexible and comprehensive battery classification. In this study, three features were extracted individually from incremental capacity analysis curve, electrochemical impedance spectroscopy curve, and current curves of constant voltage segments. These extracted features are utilized for three different classification methods, enabling us to identify the suitable features for each classification method and their potential use in different application scenarios. Additionally, we have employed three different algorithms, including CatBoost, Random Forest, and one-against-one support vector machine, for the classification task. The results indicate that different classification methods have their suitable features. By using appropriate curve features for classification, the accuracy can be achieved at 93% or higher. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:07:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T17:07:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 1 第一章 序章 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 3 2 第二章 文獻回顧 4 2.1 聚類演算法 4 2.2 分類演算法 5 2.3 State of health (SOH)的快速估計 5 2.4 電池的一致性指標 13 3 第三章 實驗設備與流程 19 3.1 電池資訊與實驗架設 19 3.2 實驗流程 19 3.2.1 活化測試 19 3.2.2 容量測試 20 3.2.3 EIS測試 20 3.2.4 循環老化 20 4 第四章 快速分類汰役電池的方法 22 4.1 特徵提取 23 4.1.1 ICA 曲線 23 4.1.2 CV充電段的電流曲線 24 4.1.3 EIS曲線 24 4.2 分類演算法 25 4.2.1 CatBoost分類器 25 4.2.2 隨機森林 (RF) 25 4.2.3 OVO−SVM 分類器 26 4.3 汰役電池的分類方法 26 5 第五章 汰役電池的分類結果與討論 28 5.1 特徵提取結果 28 5.2 使用ICA曲線特徵的分類結果 29 5.3 使用EIS曲線特徵的分類結果 30 5.4 使用CV段的電流曲線特徵的分類結果 32 6 第六章 結論與未來展望 34 6.1 結論 34 6.2 未來展望 35 參考文獻 36 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 定電壓充電 | zh_TW |
| dc.subject | 二次利用 | zh_TW |
| dc.subject | 電化學阻抗譜 | zh_TW |
| dc.subject | 增量容量分析 | zh_TW |
| dc.subject | 汰役鋰離子電池 | zh_TW |
| dc.subject | retired lithium-ion batteries | en |
| dc.subject | incremental capacity analysis | en |
| dc.subject | electrochemical impedance spectroscopy | en |
| dc.subject | constant voltage charge | en |
| dc.subject | second use | en |
| dc.title | 利用容量或阻抗的特徵對汰役鋰離子電池進行分類 | zh_TW |
| dc.title | Classification of retired lithium-ion batteries with features associated with capacity or resistance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林祺皓;周鼎贏;梁世豪 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Hao Lin;Dean Chou;Shih-Hao Liang | en |
| dc.subject.keyword | 汰役鋰離子電池,增量容量分析,電化學阻抗譜,定電壓充電,二次利用, | zh_TW |
| dc.subject.keyword | retired lithium-ion batteries,incremental capacity analysis,electrochemical impedance spectroscopy,constant voltage charge,second use, | en |
| dc.relation.page | 41 | - |
| dc.identifier.doi | 10.6342/NTU202302304 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2026-08-01 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2026-08-01 | 10.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
