Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89456Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 梁啟德 | zh_TW |
| dc.contributor.advisor | Chi-Te Liang | en |
| dc.contributor.author | 賴永晟 | zh_TW |
| dc.contributor.author | Yong-Cheng Lai | en |
| dc.date.accessioned | 2023-09-07T17:05:16Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-18 | - |
| dc.identifier.citation | Chapter 1
[1] Hantanasirisakul, K., and Gogotsi, Y., Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30 (2018) 1804779. [2] Amano, H., Kito, M., Hiramatsu, K., & Akasaki, I., P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)." Jpn. J. Appl. Phys. 28 (1989) L2112. [3] Toth, L. (Ed.)., Transition metal carbides and nitrides. Elsevier, 2014. [4] Tan, S., Tackett, B. M., He, Q., Lee, J. H., Chen, J. G., and Wong, S. S., Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3). Nano Research 13 (2020) 1434. [5] Hones, P., Martin, N., Regula, M., and Lévy, F., Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. J. Phys. D: Appl. Phys 36 (2003) 1023. [6] Wang, S., Yu, X., Lin, Z., Zhang, R., He, D., Qin, J., Zhu, J., Han, J., Wang, L., Mao, H. K., Zhang, J., and Zhao, Y., Synthesis, crystal structure, and elastic properties of novel tungsten nitrides. Chem. Mater. 24 (2012) 3023. [7] Yu, H., Yang, X., Xiao, X., Chen, M., Zhang, Q., Huang, L., Wu, J., Li, T., Chen, S. Song, L., Gu, L., Xia, B. Y., Feng, G., Li, J., and Zhou, J., Atmospheric‐pressure synthesis of 2D nitrogen‐rich tungsten nitride. Adv. Mater. 30 (2018) 1805655. [8] Shklovskii, B. I., and Efros, A. L., Electronic properties of doped semiconductors. Vol. 45. SSBM. (2013). [9] Raikh, M. E., and Wessels, G. F., Single-scattering-path approach to the negative magnetoresistance in the variable-range-hopping regime for two-dimensional electron systems. Phys. Rev. B 47 (1993) 15609. [10] Shlimak, I., Khondaker, S. I., Pepper, M., and Ritchie, D. A., Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity. Phys. Rev. B 61 (2000) 7253. Chapter 2 [1] Shlimak, I., Is hopping a science?: selected topics of hopping conductivity. World Sci. (2015). [2] Yao, Y., Bo, B., and Liu, C., The hopping variable range conduction in amorphous InAs thin films. Curr. Appl. Phys. 18 (2018) 1492. [3] Gu, H., Zhang, H., Lin, J., Shao, Q., Young, D. P., Sun, L., ..., and Guo, Z., Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer 143 (2018) 324. [4] Zhang, Y., Dai, O., Levy, M., and Sarachik, M. P., Probind the coulomb gap in insulating n-type CdSe. Phys. Rev. Lett. 64.22 (1990) 2687. [5] Zabrodskii, A. G., The Coulomb gap: the view of an experimenter. Philos. Mag. B 81 (2001) 1131-1151. [6] Shlimak, I., Khondaker, S. I., Pepper, M., and Ritchie, D. A., Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity. Phys. Rev. B 61 (2000) 7253. [7] Raikh, M. E., and Wessels, G. F., Single-scattering-path approach to the negative magnetoresistance in the variable-range-hopping regime for two-dimensional electron systems. Phys. Rev. B 47 (1993) 15609. [8] Chin, H. T., Wang, D.C., Gulo, D. P., Yao. Y. C., Yeh H. C., Muthu, J., Chen, D. R., Kao, T. C., Lin, P. H., Cheng, C. M., Hofmann, M., Liang, C. T., Liu, H. L., Chuang, F. C. and Hsieh Y. P., Tungsten nitride (W5N6): An ultrastrong 2D semimetal (unpublished) Chapter 3 [1] Yu, H., Yang, X., Xiao, X., Chen, M., Zhang, Q., Huang, L., ..., and Zhou, J., Atmospheric‐pressure synthesis of 2D nitrogen‐rich tungsten nitride. Adv. Mater. 30 (2018) 1805655. [2] Suzuki, H., Hashimoto, R., Misawa, M., Liu, Y., Kishibuchi, M., Ishimura, K., ..., and Hayashi, Y., Surface Diffusion-Limited Growth of Large and High-Quality Monolayer Transition Metal Dichalcogenides in Confined Space of Microreactor. ACS Nano 16 (2022) 11360-11373. [3] Balshaw, N., Practical cryogenics, and introduction to laboratory cryogenics. 1996. [4] Chin, H. T., Wang, D.C., Gulo, D. P., Yao. Y. C., Yeh H. C., Muthu, J., Chen, D. R., Kao, T. C., Lin, P. H., Cheng, C. M., Hofmann, M., Liang, C. T., Liu, H. L., Chuang, F. C. and Hsieh Y. P., Tungsten nitride (W5N6): An ultrastrong 2D semimetal (unpublished) Chapter 4 [1] Lo, S. T., Chuang, C., Puddy, R. K., Chen, T. M., Smith, C. G., and Liang, C. T., Non-ohmic behavior of carrier transport in highly disordered graphene. Nanotechnol. 24 (2013) 165201. [2] Haviland, D. B., Liu, Y., and Goldman, A. M., Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62 (1989) 2180. [3] Jaeger, H. M., Haviland, D. B., Orr, B. G., and Goldman, A. M., Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40 (1989) 182. [4] Empante, T. A., Zhou, Y., Klee, V., Nguyen, A. E., Lu, I. H., Valentin, M. D., Alvillar, S. A. N., Preciado, E. P., Berges, A. J., Merida, C. S., Gomez, M., Bobek, S., Isarraraz, M., Reed, E. J., and Bartels, L., Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: tunable properties of MoTe2 films. ACS Nano 11 (2017) 900. [5] Gurevich, A. Vl, and R. G. Mints., Self-heating in normal metals and superconductors. Rev. Mod. Phys. 59 (1987) 941. [6] Zhang, Y., Dai, O., Levy, M., and Sarachik, M. P., Probing the coulomb gap in insulating n-type CdSe. Phys. Rev. Lett. 64 22 (1990) 2687. [7] Zabrodskii, A. G., "The Coulomb gap: the view of an experimenter. Philos. Mag. B 81 (2001) 1131. [8] Nguen, V. L., Spivak, B. Z., and Shkovskii, B. I., Tunnel hopping in disordered systems. Zh. Eksp. Teor. Fiz 89 (1985) 1770. [9] Shklovskii, B. I., and Efros, A. L., Electronic properties of doped semiconductors. Vol. 45. Springer Science & Business Media (2013). [10] Raikh, M. E., and Wessels, G. F., Single-scattering-path approach to the negative magnetoresistance in the variable-range-hopping regime for two-dimensional electron systems. Phys. Rev. B 47 (1993) 15609. [11] Jiang, H. W., Johnson, C. E., and Wang, K. L., Giant negative magnetoresistance of a degenerate two-dimensional electron gas in the variable-range-hopping regime. Phys. Rev. B 46 (1992) 12830. [12] Shlimak, I., Khondaker, S. I., Pepper, M., and Ritchie, D. A., Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity. Phys. Rev. B 61 (2000) 7253. [13] Miao, M. S., Lukashev, P., Herwadkar, A., and Lambrecht, W. R., Crystal structure, electronic structure and magnetism of transition metal nitrides. Phys. Status Solidi C 2 (2005) 2516-2519. [14] Lambrecht, W. R., Miao, M. S., and Lukashev, P., Magnetic properties of transition-metal nitrides. J. Appl. Phys. 97 (2005) 10D306. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89456 | - |
| dc.description.abstract | 本文主要研究過度金屬氮化物五鎢化六氮(W5N6)奈米薄膜在低溫下的電性與磁性傳輸。系統在溫度小/等於30 K以下,主要以變程躍遷導電為主,並顯示出明顯的絕緣性質。而在磁場的影響下,隨著磁場由小到大會呈現由負到正的磁阻變化關係,而且變化隨著溫度上升而被減弱。另外系統在外加垂直與平行磁場下,磁阻顯示出相對較弱的各向異性。在低溫下,我們還在材料中發現明顯的磁滯,不過磁滯只有在特定的溫度區間存在,相對高溫與相對低溫都會減弱其效應。 | zh_TW |
| dc.description.abstract | We study the transport properties of the transition metal nitride W5N6 thin film at low temperatures. This material behaves as an insulator when the temperature is below 30 K, and the transport is dominated by variable range hopping (VRH) conduction.
Under the influence of a magnetic field, the resistance transitions from negative to positive magnetoresistance with increasing magnetic field. This effect diminishes as the temperature rises. We also noticed that the magnetoresistance anisotropy of the material is relatively weak when subjected to both perpendicular and parallel magnetic fields. Moreover, we observed significant magnetic hysteresis in the material at low temperatures. The hysteresis effect is only present within specific temperature ranges and is weakened at relatively high and low temperatures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:05:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T17:05:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii Chapter 1 Introduction 1 Bibliography 2 Chapter 2 Theoretical Background 4 2.1 First-principles calculation of 2D W5N6 thin film 4 2.2 Hopping Conduction 5 2.2.1 Hopping Conductivity 5 2.2.2 Nearest Neighbor Hopping (NNH) 8 2.2.3 Variable Range Hopping – Mott VRH 10 2.2.4 Variable Range Hopping – ES VRH 12 2.2.5 Resistance curve derivative analysis (RCDA) Method 14 2.3 PMR in hopping regime 16 2.4 NMR in hopping regime 16 Bibliography 18 Chapter 3 Fabrication and Measurement Techniques 19 3.1 Device Fabrication 19 3.1.1 Synthesis of the 2D W5N6 19 3.1.2 Patterning Hall bar process 20 3.1.3 TEM measurements 21 3.1.4 The 2D W5N6 Devices 22 3.2 Measurement Techniques 24 3.2.1 Four-probes DC measurement 24 3.2.2 The cryogenic system - He3/ He4 dilution fridge 25 Bibliography 28 Chapter 4 Experimental Results and Discussion 29 4.1 Fundamental transport properties 29 4.2 Hopping conduction 32 4.2.1 ES VRH & Mott VRH 32 4.2.2 The RCDA Method 33 4.2.3 VRH & RCDA in an external magnetic field 35 4.3 Magnetoresistance in the external magnetic field 37 4.3.1 Positive magnetoresistance (PMR) 39 4.3.2 Negative magnetoresistance (NMR) 41 4.4 Magnetic hysteresis 43 Bibliography 45 Chapter 5 Conclusion 47 Chapter 6 Appendix 48 6.1 PMR/NMR under Vertical/Parallel Magnetic Field 48 6.2 Magnetic hysteresis under Vertical Magnetic Field 50 6.3 Magnetic hysteresis under Parallel Magnetic Field 52 | - |
| dc.language.iso | en | - |
| dc.subject | 磁滯 | zh_TW |
| dc.subject | 磁傳輸 | zh_TW |
| dc.subject | 變程躍遷導電 | zh_TW |
| dc.subject | 過度金屬氮化物 | zh_TW |
| dc.subject | 五鎢化六氮 | zh_TW |
| dc.subject | 正負磁阻 | zh_TW |
| dc.subject | Magnetotransport | en |
| dc.subject | Transition metal nitrides (TMNs) | en |
| dc.subject | Magnetic hysteresis | en |
| dc.subject | Positive & Negative magnetoresistance | en |
| dc.subject | Variable-range-hopping (VRH) conduction | en |
| dc.subject | W5N6 | en |
| dc.title | 五鎢化六氮之磁傳輸 | zh_TW |
| dc.title | Magnetotransport in W5N6 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡宗惠;謝雅萍 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Hui Tsai;Ya-Ping Hsieh | en |
| dc.subject.keyword | 過度金屬氮化物,五鎢化六氮,磁傳輸,變程躍遷導電,正負磁阻,磁滯, | zh_TW |
| dc.subject.keyword | Transition metal nitrides (TMNs),W5N6,Magnetotransport,Variable-range-hopping (VRH) conduction,Positive & Negative magnetoresistance,Magnetic hysteresis, | en |
| dc.relation.page | 53 | - |
| dc.identifier.doi | 10.6342/NTU202301666 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-19 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 應用物理研究所 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| Appears in Collections: | 應用物理研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Access limited in NTU ip range | 2.66 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
