Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8940
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑珍(Shu-Jen Wang)
dc.contributor.authorHou-Ting Hsiaoen
dc.contributor.author蕭后廷zh_TW
dc.date.accessioned2021-05-20T20:04:39Z-
dc.date.available2010-08-19
dc.date.available2021-05-20T20:04:39Z-
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-17
dc.identifier.citationBaunsgaard L, Lütken H, Mikkelsen R, Glaring MA, Pham TT, Blennow A (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. The Plant Journal 41: 595-605
Blum A, Sinmena B, Mayer J, Golan G, Shpiler L (1994) Stem reserve mobilisation supports wheat-grain filling under heat stress. Functional Plant Biology 21: 771-781
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254
Chaitanya KV, Sundar D, Reddy AR (2001) Mulberry leaf metabolism under high temperature stress. Biologia Plantarum 44: 379-384
Chen HJ, Wang SJ (2008) Molecular regulation of sinksource transition in rice leaf sheaths during the heading period. Acta Physiologiae Plantarum 30: 639-649
Cock JH, Yoshida S (1972) Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Japanese Journal of Crop Science 41: 226-234
Critchley JH, Zeeman SC, Takaha T, Smith AM, Smith SM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. The Plant Journal 26: 89-100
Ghosh HP, Preiss J (1966) Adenosine Diphosphate Glucose Pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. Journal of Biological Chemistry 241: 4491-4504
Guan HP, Preiss J (1993) Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiology 102: 1269-1273
Guy CL, Huber JLA, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant and Cell Physiology 100: 502-508
Hawker J, Jenner C (1993) High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Functional Plant Biology 20: 197-209
He Y, Liu X, Huang B (2005) Changes in protein content, protease activity, and amino acid content associated with heat injury in creeping bentgrass. Journal of the American Society for Horticultural Science 130: 842-847
Hirose T, Endler A, Ohsugi R (1999) Gene expression of enzymes for starch and sucrose metabolism and transport in leaf sheaths of rice (Oryza sativa L.) during the heading period in relation to the sink to source transition. Plant Production Science 2: 178-183
Ishikawa T, Akita S, Li Q (1993) Relationship between content of nonstructural carbohydrates before panicle initiation stage and grain yield in rice (Oryza sativa L.). Japanese Journal of Crop Science 62: 130-131
Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G (2005) Identification of a novel enzyme required for starch metabolism in arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiology 137: 242-252
Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiology 135: 1674-1684
Keeling P, Banisadr R, Barone L, Wasserman B, Singletary G (1994) Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Functional Plant Biology 21: 807-827
Keeling PL, Bacon PJ, Holt DC (1993) Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191: 342-348
Keppler D, Decker K (1974) Glycogen: Dertermination with amyloglucosidase. In H. U. Bergmeyer, ed, Methods of enzymatic anakysis, Vol 3. Academic Press, New York, pp 1127-1131
Lao NT, Schoneveld Onard, Mould RM, Hibberd JM, Gray JC, Kavanagh TA (1999) An Arabidopsis gene encoding a chloroplast-targeted β-amylase. The Plant Journal 20: 519-527
Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends in Plant Science 10: 130-137
Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming Environmental Research Letters 2: 014002
Marcelis L (1996) Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany 47: 1281-1291
Maruyama S, Yatomi M, Nakamura Y (1990) Response of rice leaves to low temperature I. Changes in basic biochemical parameters. Plant and Cell Physiology 31: 303-309
McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Analytical Chemistry 22: 1156-1158
Mikkelsen R, Baunsgaard L, Blennow A (2004) Functional characterization of α-glucan,water dikinase, the starch phosphorylating enzyme. Biochemical Journal 377: 525-532
Morita S, Yonemaru JI, Takanashi JI (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Annals of Botany 95: 695-701
Nagai T, Makino A (2009) Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant and Cell Physiology 50: 744-755
Nakamura Y, Yuki K, Park SY, Ohya T (1989) Carbohydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology 30: 833-839
Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303: 87-89
Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology 127: 459-472
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101: 9971-9975
Perez CM, Palmiano EP, Baun LC, Juliano BO (1971) Starch metabolism in the leaf sheaths and culm of rice. Plant Physiology 47: 404-408
Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J, Steup M (2002) The starch-related R1 protein is an α-glucan, water dikinase. Proceedings of the National Academy of Sciences of the United States of America 99: 7166-7171
Sikka VK, Choi SB, Kavakli IH, Sakulsingharoj C, Gupta S, Ito H, Okita TW (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm ADP-glucose pyrophosphorylase. Plant Science 161: 461-468
Smith AM, Zeeman SC, Thorneycroft D, Smith SM (2003) Starch mobilization in leaves. Journal of Experimental Botany 54: 577-583
Tashiro T, Wardlaw I (1991) The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Functional Plant Biology 18: 259-265
Virgona J, Barlow E (1991) Drought stress induces changes in the non-structural carbohydrate composition of wheat stems. Functional Plant Biology 18: 239-247
Watanabe Y, Nakamura Y, Ishii R (1997) Relationship between starch accumulation and activities of the related enzymes in the leaf sheath as a temporary sink organ in rice (Oryza sativa). Functional Plant Biology 24: 563-569
Weise S, Weber AM, Sharkey T (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218: 474-482
Weng J, Chen C (1987) Differences between Indica and Japonica rice varieties in CO2 exchange rates in response to leaf nitrogen and temperature. Photosynthesis Research 14: 171-178
Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytologist 169: 223-236
Yang J, Zhang J, Huang Z, Zhu Q, Wang L (2000) Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Science 40: 1645-1655
Yang J, Zhang J, Wang Z, Zhu Q (2001) Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of Experimental Botany 52: 2169-2179
Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2004) Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220: 331-343
Zhao H, Dai T, Jiang D, Cao W (2008) Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. Journal of Agronomy and Crop Science 194: 47-54
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8940-
dc.description.abstract水稻在抽穗期前於葉鞘中累積的暫存性碳水化合物,於抽穗後會成為提供給穀粒充實的碳源之一。此外,葉鞘中的暫存性碳水化合物亦是於輕微的缺水逆境下使穀粒充實速度提高的碳供應源。水稻穀粒充實速度隨著溫度的提高而增加,為瞭解此時穀粒充實速度是否與葉鞘作為碳源供應有關,因此我們分析溫度對抽穗時期水稻葉鞘中澱粉代謝之影響。本論文將水稻分別於抽穗前與抽穗後兩個時期,並置於高溫(35/30℃)、低溫(15/13℃)與對照組(25/20℃)之溫室中,分別探討溫度對抽穗前葉鞘中澱粉累積之影響與抽穗後溫度對葉鞘提供碳水化合物能力的影響。在對照組(25/20℃)下,大多數的非結構性碳水化合物以澱粉的形式累積於葉鞘中。而低溫處理(15/13℃)下,葉鞘中的澱粉含量只有對照組的81.1%,但可溶性醣類含量則為對照組的171.8%。此外,高溫處理下(35/30℃),葉鞘中的澱粉與可溶性醣類含量相較於對照組減少了許多,推測高溫下大量的同化物質被消耗。澱粉生合成酵素活性分析中SSS與GBSS在各溫度處理間的差異並不顯著,因此推測葉鞘中澱粉累積在高溫下較低,可能並非是因澱粉合成酶活性下降所造成。抽穗後高溫下葉鞘中的澱粉降解速度比25/20℃慢,而分析葉鞘中澱粉水解酵素α-amylase與β-amylase之活性,發現其酵素活性於高溫下沒有比對照組來得高,顯示葉鞘中澱粉降解速率並不會隨著溫度的提高,增加提供碳源至穀粒的速度。zh_TW
dc.description.abstractThe temporal carbohydrate accumulated in leaf sheaths is an important carbon source during grain filling. Besides that, the temporal carbohydrate in leaf sheath also acculturate the grain filling rate when the rice subject moderate water stress. High temperature also acculturate the grain filling rate. In order to understanding the correlation between the grain filling rate and the carbohydrate supplying rate from leaf sheath . We analysis the temperature effects on starch metabolism in leaf sheath during heading period. My research was focused on the temperature effect on starch accumulation in leaf sheaths before heading and starch degradation in leaf sheaths at post-heading stage. The temperature that we treated on rice plants were 35/30℃, 25/20℃, and 15/13℃, respectively. Under the control condition, starch was rapidly accumulated in leaf sheaths during pre-heading period. Under lower temperature (15/13℃),the starch content in leaf sheaths was only 81.1% that in 25/20℃-treated rice plants (control plants), however the soluble sugar content was 171.8% that in control plants. On the other hand, high temperature treatment reduced both starch and soluble sugars content in leaf sheaths compared with control plants. We suggest that the plant lost a lot of assimilates under high temperature during treatment period. Since the GBSS and SSS activities were similar in leaf sheaths under different temperature treatment, the reduce of starch contents in high temperature-treated plants was not caused by starch synthase activities repressing. During post-heading period, the starch degradation rate is slower than that in 25/20℃, and the result showed that the amylase activities also didn’t higher than in 25/20℃. Therefore, the starch degradation rate in leaf sheath will not be accelerated by high temperature, and accelerate the carbon source supply to grain filling.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:04:39Z (GMT). No. of bitstreams: 1
ntu-98-R94621104-1.pdf: 874493 bytes, checksum: 3664e518791b38d709c8f9812b985a37 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄 I
圖表目錄 IV
中文摘要 V
英文摘要 VI
前言 1
1. 暫存於水稻營養組織中碳水化合物之移轉 1
2. 澱粉生合成與代謝酵素之簡介 1
3. 水稻暫存性澱粉之代謝於抽穗期間的調控機制 2
4. 環境因子對於暫存性碳水化合物代謝之影響 3
4.1. 缺水環境對暫存性碳水化合物代謝之影響 4
4.2. 溫度變化對於穀類作物生產之影響 4
4.2.1. 高溫下對穀粒發育之影響 5
4.2.2. 高溫下穀類作物葉片光合作用之影響 5
4.2.3. 高溫下穀類作物營養組織中暫存性碳水化合物對產量影響 5
4.2.4. 探討植物在不同溫度下各澱粉主要代謝酵素反應之研究 6
5. 本論文之研究主題 7
材料與方法 8
1. 植物材料 8
2. 水稻種子發芽與栽培 8
3. 溫度處理 8
4. 取樣 9
5. 蛋白質萃取與定量 10
6. Soluble starch synthase 活性分析 11
7. Granule-bound starch synthase 活性分析 12
8. 澱粉含量分析 13
9. 可溶性醣類含量分析 14
10. α-Amylase之活性分析 14
11. β-Amylase之活性分析 16
結果 18
1. 抽穗前葉鞘中非結構性碳水化合物之代謝 18
1.1. 溫度影響葉鞘中澱粉之累積 18
1.2. 溫度影響葉鞘中可溶性醣類之含量 18
1.3. 溫度處理下之蛋白質含量與各澱粉生合成酵素之活性 19
2. 抽穗後溫度對穀粒充實與葉鞘中澱粉代謝之影響 19
2.1. 各種溫度處理下水稻穀粒充實之差異 19
2.2. 各溫度處理下抽穗後葉鞘澱粉降解過程的改變 20
2.3. 溫度處理下葉鞘中澱粉水解酵素活性之變化 20
討論 22
1. 水稻抽穗期的劃分與實驗設計 22
2. 各溫度處理下葉鞘中非結構性碳水化合物累積之差異 22
3. 溫度對於葉鞘澱粉生合成酶之酵素活性的影響 23
4. 抽穗後葉鞘中澱粉的降解過程受溫度之影響 24
5. 結論與未來展望 24
參考文獻 26
附錄一 39
附錄二 40
附錄三 41
附錄四 42
dc.language.isozh-TW
dc.title溫度對於水稻抽穗期間葉鞘中澱粉代謝的影響zh_TW
dc.titleTemperature Effects on Starch Metabolism in Rice Leaf Sheaths during Heading Perioden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文理(Wen-Li Huang),王恆隆(Heng-Long Wang),張孟基(Men-Chi Chang),洪傳揚(Chwan-Yang Hong)
dc.subject.keyword水稻,積儲-供源轉換,高溫,葉鞘,澱粉,zh_TW
dc.subject.keywordrice,sink-source transition,high temperature,leaf sheath,starch,en
dc.relation.page42
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf854 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved