Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89377
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡政安zh_TW
dc.contributor.advisorChen-An Tsaien
dc.contributor.author陳思萍zh_TW
dc.contributor.authorSzu-Ping Chenen
dc.date.accessioned2023-09-07T16:45:21Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationAkdemir, D., & Isidro-Sánchez, J. (2019). Design of training populations for selective phenotyping in genomic prediction. Scientific reports, 9(1), 1446.

Akdemir, D., Sanchez, J. I., & Jannink, J. L. (2015). Optimization of genomic selection training populations with a genetic algorithm. Genetics, selection, evolution : GSE, 47(1), 38.

Blondel, M., Onogi, A., Iwata, H., & Ueda, N. (2015). A Ranking Approach to Genomic Selection. PloS one, 10(6), e0128570.

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics (Oxford, England), 23(19), 2633–2635.

Chia, J. M., Song, C., Bradbury, P. J., Costich, D., de Leon, N., Doebley, J., Elshire, R. J., Gaut, B., Geller, L., Glaubitz, J. C., Gore, M., Guill, K. E., Holland, J., Hufford, M. B., Lai, J., Li, M., Liu, X., Lu, Y., McCombie, R., Nelson, R., … Ware, D. (2012). Maize HapMap2 identifies extant variation from a genome in flux. Nature genetics, 44(7), 803–807.

Covarrubias-Pazaran G. (2016). Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PloS one, 11(6), e0156744.

Cui, Y., Li, R., Li, G., Zhang, F., Zhu, T., Zhang, Q., Ali, J., Li, Z., & Xu, S. (2020). Hybrid breeding of rice via genomic selection. Plant biotechnology journal, 18(1), 57–67.

Guo, T., Yu, X., Li, X., Zhang, H., Zhu, C., Flint-Garcia, S., McMullen, M. D., Holland, J. B., Szalma, S. J., Wisser, R. J., & Yu, J. (2019). Optimal Designs for Genomic Selection in Hybrid Crops. Molecular plant, 12(3), 390–401.

Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829.
Ou, J. H., & Liao, C. T. (2019). Training set determination for genomic selection. Theoretical and Applied Genetics, 132(10), 2781–2792.

Pérez, P., & de los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2), 483–495.

R Core Team, (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PloS one, 8(6), e66428.

Rincent, R., Laloë, D., Nicolas, S., Altmann, T., Brunel, D., Revilla, P., Rodríguez, V. M., Moreno-Gonzalez, J., Melchinger, A., Bauer, E., Schoen, C. C., Meyer, N., Giauffret, C., Bauland, C., Jamin, P., Laborde, J., Monod, H., Flament, P., Charcosset, A., & Moreau, L. (2012). Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics, 192(2), 715–728.

Stuber, C. W. (1999). Biochemistry, molecular biology, and physiology of heterosis. Genetics and exploitation of heterosis in crops, 173-183.

Xu, Y., Wang, X., Ding, X., Zheng, X., Yang, Z., Xu, C., & Hu, Z. (2018). Genomic selection of agronomic traits in hybrid rice using an NCII population. Rice (New York, N.Y.), 11(1), 32.

Zhang, X., Pérez-Rodríguez, P., Semagn, K., Beyene, Y., Babu, R., López-Cruz, M. A., San Vicente, F., Olsen, M., Buckler, E., Jannink, J. L., Prasanna, B. M., & Crossa, J. (2015). Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity, 114(3), 291–299.

Zhao, Y., Li, Z., Liu, G., Jiang, Y., Maurer, H. P., Würschum, T., Mock, H. P., Matros, A., Ebmeyer, E., Schachschneider, R., Kazman, E., Schacht, J., Gowda, M., Longin, C. F., & Reif, J. C. (2015). Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15624–15629.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89377-
dc.description.abstract隨著世界人口的增加,糧食安全成為大家關注的焦點。其中農業作物的生產在糧食安全中扮演重要的角色。而在作物育種上,最常使用增加產量的育種方法為雜交育種,透過利用雜種優勢來增進產量。然而雜交育種隨著評估的親本數增加,所產生潛在的優良雜交種數目就會大幅增加,也使得過程十分耗費人力與時間。基因體選拔的出現能夠使得雜交育種所需的成本大幅降低,利用個體的基因資訊建立基因組預測模型來評估雜交後代表現或親本的評估。而其中如何選擇建立基因組預測模型的訓練集就十分重要,但針對雜交育種的加性加顯性效應模型下最佳化訓練集的方法較少,因此本研究希望能夠透過將現有的方法拓展到加性加顯性效應模型,並能有效的增進預測效率。研究透過分析玉米、小麥與水稻資料集來評估,結果顯示三個基於全基因體迴歸模型的方法 (PEV、r-score 與 MSPE-score) 能夠在雜交育種作為一個有效的訓練集最佳化方法。zh_TW
dc.description.abstractFood security has become a major concern as the world's population increases. The production of crops plays an important role in food security. In crop breeding, the most commonly used breeding strategy to increase yield is hybrid breeding, which takes advantage of heterosis to increase yield. However, as the number of parents evaluated increases, the number of potentially superior hybrids increases dramatically, making the process very labor-intensive and time-consuming. The advent of genomic selection has made it possible to significantly reduce the cost of hybrid breeding by using individual genetic information to build genomic prediction models to evaluate the performance of crosses or parental lines. However, there are few methods to optimize the training set for the additive plus dominant effects model of hybrid breeding. Therefore, this study aims to extend the existing methods to the additive plus dominant effects model. The study was evaluated by analyzing maize, wheat, and rice datasets, and the results showed that three methods (PEV, r-score, and MSPE-score) based on the whole genome regression model could be an effective training set optimization method in hybrid breeding.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:45:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T16:45:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 3
2.1 Genetic dataset materials 3
2.1.1 Maize dataset 3
2.1.2 Wheat dataset 4
2.1.3 Rice dataset 5
2.2 Methods 5
2.2.1 An additive-plus-dominance effects model 5
2.2.2 Training set optimization methods 6
2.2.3 Indices used to measure the ability of identifying the best genotypes 8
2.2.4 A simulation study for comparing the optimization methods 9
2.2.5 Real data analysis 11
Chapter 3 Results 12
3.1 The Simulation study 12
3.2 Real data analysis 23
Chapter 4 Discussion 30
APPENDIX 35
REFERENCES 40
-
dc.language.isoen-
dc.subject訓練集最佳化方法zh_TW
dc.subject雜交育種zh_TW
dc.subject基因組選拔zh_TW
dc.subjecthybrid breedingen
dc.subjectgenomic selectionen
dc.subjecttraining set optimization methodsen
dc.title訓練集最佳化用於建立加性加顯性效應預測模型zh_TW
dc.titleTraining Set Optimization for Additive plus Dominance Effects Model in Genomic Predictionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor廖振鐸zh_TW
dc.contributor.coadvisorChen-Tuo Liaoen
dc.contributor.oralexamcommittee蔡欣甫;高振宏zh_TW
dc.contributor.oralexamcommitteeShin-Fu Tsai;Chen-Hung Kaoen
dc.subject.keyword基因組選拔,訓練集最佳化方法,雜交育種,zh_TW
dc.subject.keywordgenomic selection,training set optimization methods,hybrid breeding,en
dc.relation.page41-
dc.identifier.doi10.6342/NTU202303328-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college共同教育中心-
dc.contributor.author-dept統計碩士學位學程-
dc.date.embargo-lift2024-08-01-
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved