Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晉玄zh_TW
dc.contributor.advisorChing-Hsuan Linen
dc.contributor.author張思誠zh_TW
dc.contributor.authorSzu-Cheng Changen
dc.date.accessioned2023-09-07T16:36:47Z-
dc.date.available2025-07-29-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-08-03-
dc.identifier.citation1. Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Sci Transl Med, 4(165), 165rv113. https://doi.org/10.1126/scitranslmed.3004404
2. Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J Fungi (Basel), 3(4). https://doi.org/10.3390/jof3040057
3. Jermy, A. (2017). Stop neglecting fungi. Nat. Microbiol, 2, 17120.
4. Barns, S., Lane, D., Sogin, M., Bibeau, C., & Weisburg, W. (1991). Evolutionary relationships among pathogenic Candida species and relatives. Journal of Bacteriology, 173(7), 2250-2255.
5. Singh, D. K., Tóth, R., & Gácser, A. (2020). Mechanisms of pathogenic Candida species to evade the host complement attack. Frontiers in cellular and infection microbiology, 10, 94.
6. Kirkpatrick, C. H. (1994). Chronic mucocutaneous candidiasis. Journal of the American Academy of Dermatology, 31(3), S14-S17.
7. Scully, C., Ei-Kabir, M., & Samaranayake, L. P. (1994). Candida and oral candidosis: a review. Critical Reviews in Oral Biology & Medicine, 5(2), 125-157.
8. Hube, B. (2004). From commensal to pathogen: stage-and tissue-specific gene expression of Candida albicans. Current opinion in microbiology, 7(4), 336-341.
9. Shao, T.-Y., Ang, W. G., Jiang, T. T., Huang, F. S., Andersen, H., Kinder, J. M., Pham, G., Burg, A. R., Ruff, B., & Gonzalez, T. (2019). Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell host & microbe, 25(3), 404-417. e406.
10. Romo, J. A., & Kumamoto, C. A. (2020). On commensalism of Candida. Journal of Fungi, 6(1), 16.
11. Odds, F. C. (1994). Pathogenesis of Candida infections. Journal of the American Academy of Dermatology, 31(3), S2-S5.
12. Cannon, R., Holmes, A., Mason, A., & Monk, B. (1995). Oral Candida: clearance, colonization, or candidiasis? Journal of dental research, 74(5), 1152-1161.
13. Gonçalves, B., Ferreira, C., Alves, C. T., Henriques, M., Azeredo, J., & Silva, S. (2016). Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Critical reviews in microbiology, 42(6), 905-927.
14. Liu, F., Fan, X., Auclair, S., Ferguson, M., Sun, J., Soong, L., Hou, W., Redfield, R. R., Birx, D. L., Ratto-Kim, S., Robb, M. L., Kim, J. H., Michael, N. L., & Hu, H. (2016). Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection. PLoS Pathog, 12(6), e1005663. https://doi.org/10.1371/journal.ppat.1005663
15. Kullberg, B. J., & Arendrup, M. C. (2015). Invasive candidiasis. New England Journal of Medicine, 373(15), 1445-1456.
16. Clancy, C. J., & Nguyen, M. H. (2018). Diagnosing invasive candidiasis. Journal of clinical microbiology, 56(5), e01909-01917.
17. Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4(1), 1-20.
18. Ruan, S. Y., & Hsueh, P. R. (2009). Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc, 108(6), 443-451. https://doi.org/10.1016/S0929-6646(09)60091-7
19. Ruan, S.-Y., & Hsueh, P.-R. (2009). Invasive candidiasis: an overview from Taiwan. Journal of the Formosan Medical Association, 108(6), 443-451.
20. Fonzi, W. A., & Irwin, M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics, 134(3), 717-728. https://doi.org/10.1093/genetics/134.3.717
21. Binkley, J., Arnaud, M. B., Inglis, D. O., Skrzypek, M. S., Shah, P., Wymore, F., Binkley, G., Miyasato, S. R., Simison, M., & Sherlock, G. (2014). The Candida Genome Database: the new homology information page highlights protein similarity and phylogeny. Nucleic Acids Res, 42(Database issue), D711-716. https://doi.org/10.1093/nar/gkt1046
22. Waltimo, T., Sirén, E., Orstavik, D., & Haapasalo, M. (1999). Susceptibility of oral Candida species to calcium hydroxide in vitro. International endodontic journal, 32(2), 94-98.
23. Sobel, J., Zervos, M., Reed, B., Hooton, T., Soper, D., Nyirjesy, P., Heine, M., Willems, J., & Panzer, H. (2003). Fluconazole susceptibility of vaginal isolates obtained from women with complicated Candida vaginitis: clinical implications. Antimicrobial Agents and Chemotherapy, 47(1), 34-38.
24. De Bernardis, F., Mondello, F., San Millàn, R., Pontòn, J., & Cassone, A. (1999). Biotyping and virulence properties of skin isolates of Candida parapsilosis. Journal of clinical microbiology, 37(11), 3481-3486.
25. Pannanusorn, S., Fernandez, V., & Römling, U. (2013). Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses, 56(3), 264-272.
26. Morio, F., Loge, C., Besse, B., Hennequin, C., & Le Pape, P. (2010). Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagnostic microbiology and infectious disease, 66(4), 373-384.
27. Jiang, C., Li, Z., Zhang, L., Tian, Y., Dong, D., & Peng, Y. (2016). Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells. Microbiological research, 192, 65-72.
28. Sánchez-Vargas, L. O., Estrada-Barraza, D., Pozos-Guillen, A. J., & Rivas-Caceres, R. (2013). Biofilm formation by oral clinical isolates of Candida species. Archives of Oral Biology, 58(10), 1318-1326.
29. Ells, R., Kilian, W., Hugo, A., Albertyn, J., Kock, J. L., & Pohl, C. H. (2014). Virulence of South African Candida albicans strains isolated from different clinical samples. Medical mycology, 52(3), 246-253.
30. Ann Chai, L. Y., Denning, D. W., & Warn, P. (2010). Candida tropicalis in human disease. Critical reviews in microbiology, 36(4), 282-298.
31. Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D. W., & Azeredo, J. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS microbiology reviews, 36(2), 288-305.
32. Liu, W.-L., Huang, Y.-T., Hsieh, M.-H., Hii, M., Lee, Y.-L., Ho, M.-W., Liu, C.-E., Chen, Y.-H., & Wang, F.-D. (2019). Clinical characteristics of Candida tropicalis fungaemia with reduced triazole susceptibility in Taiwan: a multicentre study. International journal of antimicrobial agents, 53(2), 185-189.
33. Kadosh, D., & Mundodi, V. (2020). A re-evaluation of the relationship between morphology and pathogenicity in Candida species. Journal of Fungi, 6(1), 13.
34. Ciurea, C. N., Kosovski, I.-B., Mare, A. D., Toma, F., Pintea-Simon, I. A., & Man, A. (2020). Candida and candidiasis—opportunism versus pathogenicity: a review of the virulence traits. Microorganisms, 8(6), 857.
35. Al-Fattani, M. A., & Douglas, L. J. (2006). Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. Journal of medical microbiology, 55(8), 999-1008.
36. Pichová, I., Pavlíčková, L., Dostál, J., Dolejší, E., Hrušková‐Heidingsfeldová, O., Weber, J., Ruml, T., & Souček, M. (2001). Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae: inhibition with peptidomimetic inhibitors. European Journal of Biochemistry, 268(9), 2669-2677.
37. Zuza-Alves, D. L., De Medeiros, S. S., De Souza, L. B., Silva-Rocha, W. P., Francisco, E. C., De Araujo, M. C., Lima-Neto, R. G., Neves, R. P., Melo, A. S. D. A., & Chaves, G. M. (2016). Evaluation of virulence factors in vitro, resistance to osmotic stress and antifungal susceptibility of Candida tropicalis isolated from the coastal environment of Northeast Brazil. Frontiers in microbiology, 7, 1783.
38. Garcia, M. J., Rios, G., Ali, R., Bellés, J. M., & Serrano, R. (1997). Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology, 143(4), 1125-1131.
39. Jin, L., Cao, Z., Wang, Q., Wang, Y., Wang, X., Chen, H., & Wang, H. (2018). MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. BMC Infectious Diseases, 18, 1-6.
40. Fan, X., Xiao, M., Zhang, D., Huang, J.-J., Wang, H., Hou, X., Zhang, L., Kong, F., Chen, S.-A., & Tong, Z.-H. (2019). Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clinical Microbiology and Infection, 25(7), 885-891.
41. Lewis, R. E. (2011). Current concepts in antifungal pharmacology. Mayo Clinic Proceedings,
42. Maertens, J. A. (2004). History of the development of azole derivatives. Clinical Microbiology and Infection, 10, 1-10.
43. Denning, D. W. (2002). Echinocandins: a new class of antifungal. Journal of Antimicrobial Chemotherapy, 49(6), 889-891.
44. Vermes, A., Guchelaar, H.-J., & Dankert, J. (2000). Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy, 46(2), 171-179.
45. Rocha, M. F. G., Bandeira, S. P., de Alencar, L. P., Melo, L. M., Sales, J. A., Paiva, M. d. A. N., Teixeira, C. E. C., Castelo‐Branco, D. d. S. C. M., Pereira‐Neto, W. d. A., & Cordeiro, R. d. A. (2017). Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression. Mycoses, 60(7), 462-468.
46. White, T. C. (1997). Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrobial Agents and Chemotherapy, 41(7), 1482-1487.
47. Forastiero, A., Mesa-Arango, A., Alastruey-Izquierdo, A., Alcazar-Fuoli, L., Bernal-Martinez, L., Pelaez, T., Lopez, J., Grimalt, J., Gomez-Lopez, A., & Cuesta, I. (2013). Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrobial Agents and Chemotherapy, 57(10), 4769-4781.
48. Perlin, D. S. (2007). Resistance to echinocandin-class antifungal drugs. Drug resistance updates, 10(3), 121-130.
49. Mesa-Arango, A. C., Rueda, C., Román, E., Quintin, J., Terrón, M. C., Luque, D., Netea, M. G., Pla, J., & Zaragoza, O. (2016). Cell wall changes in amphotericin B-resistant strains from Candida tropicalis and relationship with the immune responses elicited by the host. Antimicrobial Agents and Chemotherapy, 60(4), 2326-2335.
50. Eliopoulos, G. M., Perea, S., & Patterson, T. F. (2002). Antifungal resistance in pathogenic fungi. Clinical infectious diseases, 35(9), 1073-1080.
51. Gow, N. A., Brown, A. J., & Odds, F. C. (2002). Fungal morphogenesis and host invasion. Current opinion in microbiology, 5(4), 366-371.
52. Fradin, C., De Groot, P., MacCallum, D., Schaller, M., Klis, F., Odds, F. C., & Hube, B. (2005). Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Molecular microbiology, 56(2), 397-415.
53. Davies, J. M., Stacey, A. J., & Gilligan, C. A. (1999). Candida albicans hyphal invasion: thigmotropism or chemotropism? FEMS microbiology letters, 171(2), 245-249.
54. Anderson, J. M., & Soll, D. R. (1987). Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. Journal of Bacteriology, 169(12), 5579-5588.
55. Yu, S., Li, W., Liu, X., Che, J., Wu, Y., & Lu, J. (2016). Distinct expression levels of ALS, LIP, and SAP genes in Candida tropicalis with diverse virulent activities. Frontiers in microbiology, 7, 1175.
56. Hernandez-Chavez, M. J., Perez-Garcia, L. A., Nino-Vega, G. A., & Mora-Montes, H. M. (2017). Fungal Strategies to Evade the Host Immune Recognition. J Fungi (Basel), 3(4). https://doi.org/10.3390/jof3040051
57. Kumamoto, C. A., & Vinces, M. D. (2005). Contributions of hyphae and hypha‐co‐regulated genes to Candida albicans virulence. Cellular microbiology, 7(11), 1546-1554.
58. Shareck, J., & Belhumeur, P. (2011). Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryotic cell, 10(8), 1004-1012.
59. Li, L., Zhang, C., & Konopka, J. B. (2012). A Candida albicans temperature-sensitive cdc12-6 mutant identifies roles for septins in selection of sites of germ tube formation and hyphal morphogenesis. Eukaryotic cell, 11(10), 1210-1218.
60. Vylkova, S., Carman, A. J., Danhof, H. A., Collette, J. R., Zhou, H., & Lorenz, M. C. (2011). The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio, 2(3), e00055-00011.
61. Bendel, C. M., & Hostetter, M. (1993). Distinct mechanisms of epithelial adhesion for Candida albicans and Candida tropicalis. Identification of the participating ligands and development of inhibitory peptides. The Journal of clinical investigation, 92(4), 1840-1849.
62. Whibley, N., & Gaffen, S. L. (2015). Beyond Candida albicans: mechanisms of immunity to non-albicans Candida species. Cytokine, 76(1), 42-52.
63. Hogan, D. A., & Sundstrom, P. (2009). The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future microbiology, 4(10), 1263-1270.
64. Alvarez, F. J., & Konopka, J. B. (2007). Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Molecular biology of the cell, 18(3), 965-975.
65. Lee, K., Buckley, H. R., & Campbell, C. C. (1975). An amino acid liquid synthetic medium for the development of mycellal and yeast forms of Candida albicans. Sabouraudia: Journal of Medical and Veterinary Mycology, 13(2), 148-153.
66. Taschdjian, C. L., BURCHALL, J. J., & Kozinn, P. J. (1960). Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA journal of diseases of children, 99(2), 212-215.
67. Sims, W. (1986). Effect of carbon dioxide on the growth and form of Candida albicans. Journal of medical microbiology, 22(3), 203-208.
68. Hogan, D. A., & Muhlschlegel, F. A. (2011). Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Current opinion in microbiology, 14(6), 682-686.
69. Bockmühl, D. P., Krishnamurthy, S., Gerads, M., Sonneborn, A., & Ernst, J. F. (2001). Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Molecular microbiology, 42(5), 1243-1257.
70. Bockmühl, D. P., & Ernst, J. F. (2001). A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics, 157(4), 1523-1530.
71. Zheng, X., Wang, Y., & Wang, Y. (2004). Hgc1, a novel hypha‐specific G1 cyclin‐related protein regulates Candida albicans hyphal morphogenesis. The EMBO journal, 23(8), 1845-1856.
72. Martin, R., Moran, G. P., Jacobsen, I. D., Heyken, A., Domey, J., Sullivan, D. J., Kurzai, O., & Hube, B. (2011). The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PloS one, 6(4), e18394.
73. Banerjee, M., Thompson, D. S., Lazzell, A., Carlisle, P. L., Pierce, C., Monteagudo, C., Lopez-Ribot, J. L., & Kadosh, D. (2008). UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Molecular biology of the cell, 19(4), 1354-1365.
74. Braun, B. R., Head, W. S., Wang, M. X., & Johnson, A. D. (2000). Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics, 156(1), 31-44.
75. Murad, A. M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., MacCallum, D., Schnell, N., Talibi, D., Marechal, D., Tekaia, F., d'Enfert, C., Gaillardin, C., Odds, F. C., & Brown, A. J. (2001). NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J, 20(17), 4742-4752. https://doi.org/10.1093/emboj/20.17.4742
76. O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Reviews in Microbiology, 54(1), 49-79.
77. Douglas, L. J. (2003). Candida biofilms and their role in infection. Trends in microbiology, 11(1), 30-36.
78. Cuéllar-Cruz, M., López-Romero, E., Villagómez-Castro, J. C., & Ruiz-Baca, E. (2012). Candida species: new insights into biofilm formation. Future microbiology, 7(6), 755-771.
79. Lohse, M. B., Gulati, M., Johnson, A. D., & Nobile, C. J. (2018). Development and regulation of single-and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 16(1), 19-31.
80. Pereira, R., dos Santos Fontenelle, R., De Brito, E., & De Morais, S. (2021). Biofilm of Candida albicans: formation, regulation and resistance. Journal of Applied Microbiology, 131(1), 11-22.
81. Nobile, C. J., Nett, J. E., Hernday, A. D., Homann, O. R., Deneault, J.-S., Nantel, A., Andes, D. R., Johnson, A. D., & Mitchell, A. P. (2009). Biofilm matrix regulation by Candida albicans Zap1. PLoS biology, 7(6), e1000133.
82. Gulati, M., & Nobile, C. J. (2016). Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes and infection, 18(5), 310-321.
83. Li, F., Svarovsky, M. J., Karlsson, A. J., Wagner, J. P., Marchillo, K., Oshel, P., Andes, D., & Palecek, S. P. (2007). Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryotic cell, 6(6), 931-939.
84. Nailis, H., Vandenbroucke, R., Tilleman, K., Deforce, D., Nelis, H., & Coenye, T. (2009). Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions. Mycopathologia, 167, 9-17.
85. Nobile, C. J., Nett, J. E., Andes, D. R., & Mitchell, A. P. (2006). Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryotic cell, 5(10), 1604-1610.
86. Nobile, C. J., Fox, E. P., Nett, J. E., Sorrells, T. R., Mitrovich, Q. M., Hernday, A. D., Tuch, B. B., Andes, D. R., & Johnson, A. D. (2012). A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell, 148(1-2), 126-138.
87. Ten Cate, J., Klis, F., Pereira-Cenci, T., Crielaard, W., & De Groot, P. (2009). Molecular and cellular mechanisms that lead to Candida biofilm formation. Journal of dental research, 88(2), 105-115.
88. Taff, H. T., Nett, J. E., Zarnowski, R., Ross, K. M., Sanchez, H., Cain, M. T., Hamaker, J., Mitchell, A. P., & Andes, D. R. (2012). A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance.
89. Pierce, C. G., Vila, T., Romo, J. A., Montelongo-Jauregui, D., Wall, G., Ramasubramanian, A., & Lopez-Ribot, J. L. (2017). The Candida albicans biofilm matrix: composition, structure and function. Journal of Fungi, 3(1), 14.
90. Uppuluri, P., Pierce, C. G., Thomas, D. P., Bubeck, S. S., Saville, S. P., & Lopez-Ribot, J. L. (2010). The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryotic cell, 9(10), 1531-1537.
91. Granger, B. L., Flenniken, M. L., Davis, D. A., Mitchell, A. P., & Cutler, J. E. (2005). Yeast wall protein 1 of Candida albicans. Microbiology, 151(5), 1631-1644.
92. Robbins, N., Uppuluri, P., Nett, J., Rajendran, R., Ramage, G., Lopez-Ribot, J. L., Andes, D., & Cowen, L. E. (2011). Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS pathogens, 7(9), e1002257.
93. Lebeaux, D., Ghigo, J.-M., & Beloin, C. (2014). Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510-543.
94. Uppuluri, P., Acosta Zaldívar, M., Anderson, M. Z., Dunn, M. J., Berman, J., Lopez Ribot, J. L., & Köhler, J. R. (2018). Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells. MBio, 9(4), e01338-01318.
95. Dominguez, E., Zarnowski, R., Sanchez, H., Covelli, A. S., Westler, W. M., Azadi, P., Nett, J., Mitchell, A. P., & Andes, D. R. (2018). Conservation and divergence in the Candida species biofilm matrix mannan-glucan complex structure, function, and genetic control. MBio, 9(2), e00451-00418.
96. Mukherjee, P. K., & Chandra, J. (2004). Candida biofilm resistance. Drug resistance updates, 7(4-5), 301-309.
97. Taff, H. T., Mitchell, K. F., Edward, J. A., & Andes, D. R. (2013). Mechanisms of Candida biofilm drug resistance. Future microbiology, 8(10), 1325-1337.
98. Baillie, G. S., & Douglas, L. J. (2000). Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. Journal of Antimicrobial Chemotherapy, 46(3), 397-403.
99. Vilmos, P., & Kurucz, E. (1998). Insect immunity: evolutionary roots of the mammalian innate immune system. Immunology letters, 62(2), 59-66.
100. Lange, A., Beier, S., Huson, D. H., Parusel, R., Iglauer, F., & Frick, J.-S. (2018). Genome sequence of Galleria mellonella (greater wax moth). Genome announcements, 6(2), e01220-01217.
101. Pereira, T. C., De Barros, P. P., Fugisaki, L. R. d. O., Rossoni, R. D., Ribeiro, F. d. C., De Menezes, R. T., Junqueira, J. C., & Scorzoni, L. (2018). Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. Journal of Fungi, 4(4), 128.
102. FQ Smith, D., & Casadevall, A. (2021). Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathogens and Disease, 79(3), ftab013.
103. Wu, S., Zhang, X., Chen, X., Cao, P., Beerntsen, B. T., & Ling, E. (2010). BmToll9, an Arthropod conservative Toll, is likely involved in the local gut immune response in the silkworm, Bombyx mori. Developmental & Comparative Immunology, 34(2), 93-96.
104. Lapointe, J. (2010). The involvement of G (alpha) s proteins and integrins in the cellular immune responses of a lepidopteran insect,«Galleria mellonella».
105. Chain, B. M., & Anderson, R. S. (1983). Observations on the cytochemistry of the hemocytes of an insect, Galleria mellonella. Journal of Histochemistry & Cytochemistry, 31(5), 601-607.
106. Sarvari, M., Mikani, A., & Mehrabadi, M. (2020). The innate immune gene Relish and Caudal jointly contribute to the gut immune homeostasis by regulating antimicrobial peptides in Galleria mellonella. Developmental & Comparative Immunology, 110, 103732.
107. Clark, K. D., Pech, L. L., & Strand, M. R. (1997). Isolation and Identification of a Plasmatocyte-spreading Peptide from the Hemolymph of the Lepidopteran InsectPseudoplusia includens. Journal of Biological Chemistry, 272(37), 23440-23447.
108. Smith, D. F. Q., Dragotakes, Q., Kulkarni, M., Hardwick, J. M., & Casadevall, A. (2022). Galleria mellonella immune melanization is fungicidal during infection. Commun Biol, 5(1), 1364. https://doi.org/10.1038/s42003-022-04340-6
109. González‐Santoyo, I., & Córdoba‐Aguilar, A. (2012). Phenoloxidase: a key component of the insect immune system. Entomologia Experimentalis et Applicata, 142(1), 1-16.
110. Tsai, C. J.-Y., Loh, J. M. S., & Proft, T. (2016). Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 7(3), 214-229.
111. Zupan, J., & Raspor, P. (2008). Quantitative agar-invasion assay. Journal of microbiological methods, 73(2), 100-104.
112. Tseng, Y.-K., Chen, Y.-C., Hou, C.-J., Deng, F.-S., Liang, S.-H., Hoo, S. Y., Hsu, C.-C., Ke, C.-L., & Lin, C.-H. (2020). Evaluation of biofilm formation in Candida tropicalis using a silicone-based platform with synthetic urine medium. Microorganisms, 8(5), 660.
113. Mylonakis, E., Moreno, R., El Khoury, J. B., Idnurm, A., Heitman, J., Calderwood, S. B., Ausubel, F. M., & Diener, A. (2005). Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infection and immunity, 73(7), 3842-3850.
114. Rossoni, R. D., Barbosa, J. O., Vilela, S. F. G., dos Santos, J. D., de Barros, P. P., Prata, M. C. d. A., Anbinder, A. L., Fuchs, B. B., Jorge, A. O. C., & Mylonakis, E. (2015). Competitive interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental candidiasis. PloS one, 10(7), e0131700.
115. Song, Y.-D., Hsu, C.-C., Lew, S. Q., & Lin, C.-H. (2021). Candida tropicalis RON1 is required for hyphal formation, biofilm development, and virulence but is dispensable for N-acetylglucosamine catabolism. Medical mycology, 59(4), 379-391.
116. Ke, C.-L., Lew, S. Q., Hsieh, Y., Chang, S.-C., & Lin, C.-H. (2023). Convergent and divergent roles of the glucose-responsive kinase SNF4 in Candida tropicalis. Virulence, 14(1), 2175914.
117. Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128. https://doi.org/10.4161/viru.22913
118. Heilmann, C. J., Sorgo, A. G., Siliakus, A. R., Dekker, H. L., Brul, S., de Koster, C. G., de Koning, L. J., & Klis, F. M. (2011). Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology (Reading), 157(Pt 8), 2297-2307. https://doi.org/10.1099/mic.0.049395-0
119. Barnes, J. L., Osgood, R. W., Lee, J. C., King, R. D., & Stein, J. H. (1983). Host-parasite interactions in the pathogenesis of experimental renal candidiasis. Lab Invest, 49(4), 460-467. https://www.ncbi.nlm.nih.gov/pubmed/6353061
120. Staniszewska, M., Bondaryk, M., Swoboda-Kopec, E., Siennicka, K., Sygitowicz, G., & Kurzatkowski, W. (2013). Candida albicans morphologies revealed by scanning electron microscopy analysis. Braz J Microbiol, 44(3), 813-821. https://doi.org/10.1590/S1517-83822013005000056
121. Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V., & Greiner, D. L. (2012). Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol, 12(11), 786-798. https://doi.org/10.1038/nri3311
122. Banerjee, M., Thompson, D. S., Lazzell, A., Carlisle, P. L., Pierce, C., Monteagudo, C., Lopez-Ribot, J. L., & Kadosh, D. (2008). UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell, 19(4), 1354-1365. https://doi.org/10.1091/mbc.e07-11-1110
123. Cao, F., Lane, S., Raniga, P. P., Lu, Y., Zhou, Z., Ramon, K., Chen, J., & Liu, H. (2006). The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Molecular biology of the cell, 17(1), 295-307.
124. Cleary, I. A., Lazzell, A. L., Monteagudo, C., Thomas, D. P., & Saville, S. P. (2012). BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Molecular microbiology, 85(3), 557-573.
125. Jiang, C., Li, Z., Zhang, L., Tian, Y., Dong, D., & Peng, Y. (2016). Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells. Microbiol Res, 192, 65-72. https://doi.org/10.1016/j.micres.2016.06.003
126. Lin, C. J., & Chen, Y. L. (2018). Conserved and Divergent Functions of the cAMP/PKA Signaling Pathway in Candida albicans and Candida tropicalis. J Fungi (Basel), 4(2). https://doi.org/10.3390/jof4020068
127. Chan, C. S., & Botstein, D. (1993). Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics, 135(3), 677-691. https://doi.org/10.1093/genetics/135.3.677
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89343-
dc.description.abstract熱帶念珠菌是一種臺灣常見的致病真菌,感染案例僅次於同為念珠菌屬的白色念珠菌,不過它卻具有更高的藥物抗性而且致病機制尚未釐清。熱帶念珠菌具有多型性的特徵,其中菌絲型(hyphal form)與致病能力有非常大的關係,歸因於菌絲能夠提升菌體的細胞入侵能力等等,因此希望能透過這次實驗探討熱帶念珠菌的型態與致病力以及基因表現的關聯性,藉此找到治療方法的突破點。在本研究中,266株臨床菌株在不同培養基培養並篩選出具有偏好特定型態的特異性菌株,YPD與Spider作為一般培養基;小牛血清、RPMI作為菌絲誘導培養基,其中兩株分離株(No. 77以及No. 205)在四種培養液中皆比標準菌株(MYA3404)生長更多菌絲,為菌絲型特異性菌株;另外發現三株分離株(No. 107、No. 220-2以及No. 236)則幾乎不生長菌絲,為酵母菌型特異性菌株。上述五株菌株挑選出來進行其他實驗來分析傳播能力,結果發現菌絲生成能夠有效的附著在瓊脂表面,增加菌體的附著能力;另外生物膜不會只因為較多的菌絲而有較高的生成量。接著透過動物實驗來分析致病力,在大蠟蛾致病實驗中菌絲型特異性菌株具有更高的致死率;但在小鼠致病實驗中,任何型態特異性菌株的致死率卻都比較低。在體內菌數檢測中,菌絲型特異性菌株在器官的菌數較少,這表示菌絲形態的菌體遷移能力較差,而菌體較小的酵母菌型更有機會透過循環系統散播,這些結果表明菌體在動物體內需要適當的型態轉換方能造成較嚴重的感染。最後進行基因表現分析來探討表徵與基因的關聯,不過結果與預期的略有不同,基因表現並未因為型態的特異性而出現特定趨勢。綜合實驗結果,菌絲與致病能力有很大的相關性,不過在生成生物膜與感染宿主的過程中,酵母菌型與菌絲型菌體之間的轉換與協力是最為重要的,型態轉換的抑制也許能成為治療念珠菌症的方法。zh_TW
dc.description.abstractCandida tropicalis, a common pathogenic fungus in Taiwan, has an infection capability second only to Candida albicans within the Candida genus. However, it exhibits higher drug resistance, and its pathogenic mechanism has not been clarified. C. tropicalis displays polymorphic characteristics, and the hyphal form is closely associated with its virulence due to the enhanced cellular invasion capability. Therefore, this study aims to explore the correlation between the morphology, virulence, and gene expression of C. tropicalis, hoping to identify breakthroughs in treatment strategies. In this research, 266 clinical isolates were cultured on different media, including YPD, Spider, bovine serum, and RPMI-1640. Among these isolates, two isolates (No. 77 and No. 205) exhibited significantly more hyphal growth than the reference standard strain (MYA3404) across all four culture conditions, indicating their specific tendency towards the hyphal form. Furthermore, three isolates (No. 107, No. 220-2, and No. 236) showed minimal hyphal growth, suggesting their specific tendency towards the yeast form. The selected five strains were further subjected to additional experiments to analyze their dissemination capabilities. The results revealed that hyphal form Candida exhibited enhanced attachment to agar surfaces, thereby increasing their attachment ability. However, it was observed that higher hyphal growth did not necessarily correlate with higher biofilm production. Subsequently, animal experiments were conducted to assess the virulence in vivo. In Galleria mellonella, hyphal form isolates demonstrated higher mortality rates. However, in mice, all isolates with specific morphological tendencies exhibited lower mortality rates. In assessing fungal quantities within the host, hyphal form isolates showed lower fungal burden in the hemolymph and the organs, indicating their diminished ability to migrate within the host. Conversely, the yeast form isolates, with smaller fungal bodies, had a greater opportunity for dissemination through the circulatory system. These findings indicated that an appropriate morphological transition of the fungal cells is necessary for causing more severe infections within the host. Finally, gene expression analysis was conducted to explore the association between phenotypes and gene expression. However, the results differed from the expected patterns, as specific trends in gene expression did not correspond to the morphological tendencies. Based on the findings of this study, there is a significant correlation between hyphal form and virulence. Nevertheless, during biofilm formation and host infection processes, the transition and collaboration between yeast and hyphal forms of the fungal cells are crucial. Inhibiting the morphological transition may serve as a therapeutic approach for treating candidiasis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:36:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T16:36:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
Table Contents vii
Figure Contents viii
Introduction 1
1.Candida species and its threat 1
2.Clinical isolates research 2
3.Candida tropicalis 2
4.Antifungal drugs and resistance of C. tropicalis 3
5.Polymorphism 5
6.Hyphae and hyphal growth regulation 6
7.Biofilms 8
8.Galleria mellonella as infection models 9
Motive and Purpose 11
Materials and Methods 12
Results 19
Discussion and Conclusion 25
Future research 31
Tables and Figures 33
Reference 52
Supplements 63
-
dc.language.isoen-
dc.subject大蠟蛾zh_TW
dc.subject熱帶念珠菌zh_TW
dc.subject臨床菌株zh_TW
dc.subject致病力zh_TW
dc.subject菌絲zh_TW
dc.subject生物膜zh_TW
dc.subjectbiofilmen
dc.subjectCandida tropicalisen
dc.subjectRT-qPCRen
dc.subjectfungal burdenen
dc.subjectvirulenceen
dc.subjecthyphaeen
dc.title探討臨床熱帶念珠菌的菌絲生長與致病力zh_TW
dc.titleEvaluation of filamentation and virulence of Candida tropicalis clinical isolatesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅秀容;藍忠昱;薛雁冰;蔡雨寰zh_TW
dc.contributor.oralexamcommitteeHsiu-Jung Lo;Chung-Yu Lan;Yen-Ping Hsueh;Yu-Huan Tsaien
dc.subject.keyword熱帶念珠菌,臨床菌株,致病力,菌絲,生物膜,大蠟蛾,zh_TW
dc.subject.keywordCandida tropicalis,virulence,hyphae,biofilm,fungal burden,RT-qPCR,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202302358-
dc.rights.note未授權-
dc.date.accepted2023-08-07-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved