請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89336完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施博仁 | zh_TW |
| dc.contributor.advisor | Po-Jen Shih | en |
| dc.contributor.author | 廖英圻 | zh_TW |
| dc.contributor.author | Ying-Chi Liao | en |
| dc.date.accessioned | 2023-09-07T16:35:02Z | - |
| dc.date.available | 2024-08-04 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] 賴歆儒, "眼角膜振動之模態分析(Modal Analysis of Corneal Vibration)," 碩士(Master), 工學院機械工程學系(Department of Mechanical Engineering College of Engineering), 國立臺灣大學(National Taiwan University), June 2018.
[2] A. Wegener and H. Laser‐Junga, "Photography of the anterior eye segment according to Scheimpflug's principle: options and limitations–a review," Clinical & experimental ophthalmology, vol. 37, no. 1, pp. 144-154, 2009. [3] O. Kramer, Dimensionality reduction with unsupervised nearest neighbors. Springer, 2013. [4] O. 光學有限公司. "Corvis® ST." https://www.oculus-onlineshop.de/tonometer/oculus-corvis-st.html (accessed. [5] V. Jakkula, "Tutorial on support vector machine (svm)," School of EECS, Washington State University, vol. 37, no. 2.5, p. 3, 2006. [6] S. Visa, B. Ramsay, A. L. Ralescu, and E. Van Der Knaap, "Confusion matrix-based feature selection," Maics, vol. 710, no. 1, pp. 120-127, 2011. [7] R. L. Stamper, "A history of intraocular pressure and its measurement," Optometry and Vision Science, vol. 88, no. 1, pp. E16-E28, 2011. [8] D. Boswell, "Introduction to support vector machines," Departement of Computer Science and Engineering University of California San Diego, vol. 11, 2002. [9] F. Cavas-Martínez, E. De la Cruz Sánchez, J. Nieto Martínez, F. Fernández Cañavate, and D. Fernández-Pacheco, "Corneal topography in keratoconus: state of the art," Eye and vision, vol. 3, pp. 1-12, 2016. [10] K. Lee, Y. Cha, and J. Park, "Short-term load forecasting using an artificial neural network," IEEE transactions on power systems, vol. 7, no. 1, pp. 124-132, 1992. [11] L. Van der Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of machine learning research, vol. 9, no. 11, 2008. [12] S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, "Comparing different supervised machine learning algorithms for disease prediction," BMC medical informatics and decision making, vol. 19, no. 1, pp. 1-16, 2019. [13] D. G. Kleinbaum, M. Klein, D. G. Kleinbaum, and M. Klein, "Introduction to logistic regression," Logistic regression: a self-learning text, pp. 1-39, 2010. [14] R. Ambekar, K. C. Toussaint Jr, and A. W. Johnson, "The effect of keratoconus on the structural, mechanical, and optical properties of the cornea," Journal of the mechanical behavior of biomedical materials, vol. 4, no. 3, pp. 223-236, 2011. [15] E. K. (原著), Advanced Engineering Mathematics,10th Edition. 全華圖書股份有限公司. [16] V. M. Tur, C. MacGregor, R. Jayaswal, D. O'Brart, and N. Maycock, "A review of keratoconus: diagnosis, pathophysiology, and genetics," Survey of ophthalmology, vol. 62, no. 6, pp. 770-783, 2017. [17] G. Anitha and S. Kuldeep, "Neural Network Approach for Processing Substation Alarms," International Journal of Power Electronics Controllers and Converters, vol. 1, no. 1, pp. 21-28, 2015. [18] 劉. C.-H. Liu). "機器學習_學習筆記系列(14):多元分類(Multiclass Classification) OAA & OAO." https://tomohiroliu22.medium.com/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E5%AD%B8%E7%BF%92%E7%AD%86%E8%A8%98%E7%B3%BB%E5%88%97-14-%E5%A4%9A%E5%85%83%E5%88%86%E9%A1%9E-multiclass-classification-oaa-oao-f19b026e92fd (accessed. [19] R. Ambrósio Jr, B. F. Valbon, F. Faria-Correia, I. Ramos, and A. Luz, "Scheimpflug imaging for laser refractive surgery," Current opinion in ophthalmology, vol. 24, no. 4, pp. 310-320, 2013. [20] J. Hong et al., "A new tonometer—the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers," Investigative ophthalmology & visual science, vol. 54, no. 1, pp. 659-665, 2013. [21] H. Laser, W. Berndt, M. Leyendecker, M. Kojima, O. Hockwin, and A. Cheyne, "Comparison between Topcon SL-45 and SL-45B with different correction methods for factors influencing Scheimpflug examination," Ophthalmic Res, vol. 22, no. suppl 1, pp. 9-17, 1990. [22] N. S. Gokhale, "Epidemiology of keratoconus," Indian journal of ophthalmology, vol. 61, no. 8, p. 382, 2013. [23] K. Omer, "Epidemiology of keratoconus worldwide," The Open Ophthalmology Journal, vol. 12, no. 1, 2018. [24] J. A. Gomes, P. F. Rodrigues, and L. L. Lamazales, "Keratoconus epidemiology: A review," Saudi Journal of Ophthalmology, vol. 36, no. 1, p. 3, 2022. [25] A. O. Eghrari, S. A. Riazuddin, and J. D. Gottsch, "Overview of the cornea: structure, function, and development," Progress in molecular biology and translational science, vol. 134, pp. 7-23, 2015. [26] N. Morlet, D. Minassian, and J. Dart, "Astigmatism and the analysis of its surgical correction," British journal of ophthalmology, vol. 85, no. 9, pp. 1127-1138, 2001. [27] Y.-F. Shih, C. K. Hsiao, Y.-L. Tung, L. L.-K. LIN, C.-J. Chen, and T. Hung, "The prevalence of astigmatism in Taiwan schoolchildren," Optometry and vision science, vol. 81, no. 2, pp. 94-98, 2004. [28] C.-W. Pan et al., "Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study," Investigative ophthalmology & visual science, vol. 54, no. 4, pp. 2590-2598, 2013. [29] C. Wolfram et al., "Prevalence of refractive errors in the European adult population: the Gutenberg Health Study (GHS)," British Journal of Ophthalmology, vol. 98, no. 7, pp. 857-861, 2014. [30] T. Raviv and R. J. Epstein, "Astigmatism management," International ophthalmology clinics, vol. 40, no. 3, pp. 183-198, 2000. [31] S. A. Read, S. J. Vincent, and M. J. Collins, "The visual and functional impacts of astigmatism and its clinical management," Ophthalmic and Physiological Optics, vol. 34, no. 3, pp. 267-294, 2014. [32] M. Q. Salomao et al., "Ectatic diseases," Experimental Eye Research, vol. 202, p. 108347, 2021. [33] C. Schweitzer, C. J. Roberts, A. M. Mahmoud, J. Colin, S. Maurice-Tison, and J. Kerautret, "Screening of forme fruste keratoconus with the ocular response analyzer," Investigative ophthalmology & visual science, vol. 51, no. 5, pp. 2403-2410, 2010. [34] M. Romero-Jiménez, J. Santodomingo-Rubido, and J. S. Wolffsohn, "Keratoconus: a review," Contact Lens and Anterior Eye, vol. 33, no. 4, pp. 157-166, 2010. [35] A. Martínez-Abad and D. P. Pinero, "New perspectives on the detection and progression of keratoconus," Journal of Cataract & Refractive Surgery, vol. 43, no. 9, pp. 1213-1227, 2017. [36] H. Hashemi, A. Beiranvand, A. Yekta, A. Maleki, N. Yazdani, and M. Khabazkhoob, "Pentacam top indices for diagnosing subclinical and definite keratoconus," Journal of current ophthalmology, vol. 28, no. 1, pp. 21-26, 2016. [37] M. C. Arbelaez, F. Versaci, G. Vestri, P. Barboni, and G. Savini, "Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data," Ophthalmology, vol. 119, no. 11, pp. 2231-2238, 2012. [38] R. Vinciguerra, R. Ambrósio Jr, C. J. Roberts, C. Azzolini, and P. Vinciguerra, "Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities," Journal of Refractive Surgery, vol. 33, no. 6, pp. 399-407, 2017. [39] Y. S. Rabinowitz, "Keratoconus," Survey of ophthalmology, vol. 42, no. 4, pp. 297-319, 1998. [40] V. Jhanji, N. Sharma, and R. B. Vajpayee, "Management of keratoconus: current scenario," British Journal of Ophthalmology, vol. 95, no. 8, pp. 1044-1050, 2011. [41] A. W. Cohen, K. M. Goins, J. E. Sutphin, G. R. Wandling, and M. D. Wagoner, "Penetrating keratoplasty versus deep anterior lamellar keratoplasty for the treatment of keratoconus," International ophthalmology, vol. 30, pp. 675-681, 2010. [42] H. Murgatroyd and J. Bembridge, "Intraocular pressure," Continuing Education in Anaesthesia, Critical Care & Pain, vol. 8, no. 3, pp. 100-103, 2008. [43] 曹慧君, "結合眼球的動態模型與 Scheimpflug技術於角膜測試之應用," 工學院機械工程學系(Department of Mechanical Engineering College of Engineering), 國立臺灣大學(National Taiwan University), 2015. [44] Y.-Y. Song and L. Ying, "Decision tree methods: applications for classification and prediction," Shanghai archives of psychiatry, vol. 27, no. 2, p. 130, 2015. [45] N. Patel and S. Upadhyay, "Study of various decision tree pruning methods with their empirical comparison in WEKA," International journal of computer applications, vol. 60, no. 12, 2012. [46] A. Patle and D. S. Chouhan, "SVM kernel functions for classification," in 2013 International Conference on Advances in Technology and Engineering (ICATE), 2013: IEEE, pp. 1-9. [47] G. Castro-Luna, D. Jiménez-Rodríguez, A. B. Castaño-Fernández, and A. Pérez-Rueda, "Diagnosis of subclinical keratoconus based on machine learning techniques," Journal of Clinical Medicine, vol. 10, no. 18, p. 4281, 2021. [48] D. Smadja et al., "Detection of subclinical keratoconus using an automated decision tree classification," American journal of ophthalmology, vol. 156, no. 2, pp. 237-246. e1, 2013. [49] A. Lavric, V. Popa, H. Takahashi, and S. Yousefi, "Detecting keratoconus from corneal imaging data using machine learning," IEEE Access, vol. 8, pp. 149113-149121, 2020. [50] C. Shi et al., "Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities," Eye and Vision, vol. 7, no. 1, pp. 1-12, 2020. [51] S. Patro and K. K. Sahu, "Normalization: A preprocessing stage," arXiv preprint arXiv:1503.06462, 2015. [52] E. W. Grafarend, Linear and nonlinear models: fixed effects, random effects, and mixed models. de Gruyter, 2006. [53] Ceoft. "Video Corvis ST." https://www.youtube.com/watch?v=FyuuifVR6qQ (accessed. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89336 | - |
| dc.description.abstract | 圓錐角膜是最常見的原發性角膜擴張症,特徵是局部角膜變薄,進而導致角膜產生突出,造成不規則散光而影響視覺。疾病的進展表現無法使用眼鏡來補償,故會導致患者持續替換眼鏡。傳統檢測中,除非進行角膜地形圖和角膜剖面檢查,否則難以被發現。傳統檢測儀器大多屬於靜態角膜特徵的觀察,若要進行動態特徵觀察,則可使用眼壓計。它的原理是利用吹氣使角膜產生變形,本研究藉此方法來發現區分圓錐角膜。透過蒐集Corvis®ST 眼壓計吹氣檢測數據,包含散光、頓挫型圓錐角膜、圓錐角膜患者的角膜數據以及正常人的角膜數據,配合角膜數學理論進行數據的模態展開,並利用動力學理論萃取出疾病的特徵參數,使用疾病辨識法則制定分類規則,並進行t-SNE數據視覺化與疾病分類。針對長時間在臨床上有追蹤的患者進行追蹤,將挑選出的患者數據進行正規化,再經由時間定義來尋找出疾病進展趨勢。進行完t-SNE視覺化處理後,可經由人眼辨識正常人與疾病之間的分類以及散光與圓錐角膜分類、頓挫型圓錐角膜與圓錐角膜分類,藉此增加機器學習在分類後的可信度。疾病分類使用決策樹、k-近鄰、支持向量機、邏輯斯回歸與人工神經網路,進行正常人與疾病之間分類比較以及疾病倆倆之間分類比較。結果發現以人工神經網路與決策樹在正常人與疾病、散光與圓錐角膜、頓挫型圓錐角膜與圓錐角膜中分類具有良好的準確度,其中人工神經網路在區別正常人與疾病患者時,平均準確度最高可達97.72%,而將正常人與三種疾病同時分類時,左眼可達74.37%,右眼可達78.63%。利用決策樹還可以找出疾病分類中特別優秀的3個特徵。最後針對疾病追蹤,可統計出三種不同的趨勢,分別為延展、來回以及突出,其中,來回為圓錐角膜中最常見的趨勢。本研究使用了自行建立的特徵配合機器學習的方法執行疾病分類,並提出合適追蹤的特徵適合用於未來病況之追蹤。 | zh_TW |
| dc.description.abstract | Keratoconus is the most common form of primary corneal ectasia, characterized by localized thinning of the cornea. It leads to protrusion and irregular astigmatism, affecting vision. Traditional diagnostic instruments rely on static observations of corneal features, while dynamic observation with an air-puff tonometer is currently the advanced biomechanical method. Air-puff deforms the cornea by blowing air, and it could be the method to detect keratoconus at an early stage. In our study, we collected data from Corvis®ST air-puff tonometry, including corneal data from patients with astigmatism, keratoconus, and normal individuals. Through mathematical theory, Legendre decomposition, and other machine learning techniques, we extracted features of the keratoconus. By applying disease recognition algorithms, mode decomposition, t-SNE data visualization, and disease classification, we aimed to identify disease patterns. Then we performed normalization for long-term patient tracking, seeking disease progression trends based on time definitions. The results showed that artificial neural networks and decision trees achieved high accuracy in distinguishing between normal individuals and disease, astigmatism and keratoconus, and forme fruste keratoconus and keratoconus. The artificial neural network achieved an average accuracy of up to 97.72% in distinguishing between normal individuals and patients, and 74.37% for left eyes and 78.63% for right eyes in classifying the four disease types. Additionally, the decision tree identified three particularly excellent features for disease classification. Finally, for disease tracking, we identified three different trends: progressive, oscillatory, and protruding. Among them, the oscillatory trend was the most common in keratoconus. To conclude, this study utilized self-established features combined with machine learning methods for disease classification and proposed appropriate features for future disease tracking. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:35:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T16:35:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii ABSTRACT iii CONTENTS iv 圖目錄 vii 表目錄 xv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 角膜結構與功能 2 1.4 角膜疾病 3 1.4.1 散光(Astigmatism) 3 1.4.2 頓挫型圓錐角膜(Forme Fruste Keratoconus) 4 1.4.3 圓錐角膜(Keratoconus) 5 1.5 角膜檢測儀器 7 1.5.1 接觸式眼壓計 7 1.5.2 非接觸式眼壓計 7 1.5.3 角膜地形圖 9 1.5.4 眼壓計判讀 10 1.5.5 地形圖判讀 12 1.6 角膜數學理論 13 1.6.1 球膜波動 13 1.6.2 眼球理論 13 1.6.3 球諧函數 15 1.6.4 勒壤得(Legendre)多項式 16 1.7 機器學習法 19 1.7.1 決策樹(Decision Tree) 20 1.7.2 支持向量機(Support Vector Machine) 21 1.7.3 K-近鄰(K-nearest Neighbor) 24 1.7.4 邏輯斯回歸(Logistic Regression) 26 1.7.5 人工神經網路(Artificial Neural Network) 28 1.7.6 t-隨機鄰近嵌入法(t-distributed Stochastic Neighbor Embedding) 30 1.8 早期圓錐角膜辨識 33 第二章 資料與方法 36 2.1 研究架構 36 2.2 資料收集 37 2.3 疾病辨識法則 38 2.4 資料前處理 39 2.4.1 像素修補與資料維護 39 2.4.2 二元化處理與角膜輪廓定位 40 2.4.3 曲線擬合 41 2.5 模態數據處理與應用 42 2.5.1 勒壤得(Legendre)模態展開圖 42 2.5.2 特徵定義 45 2.6 分類器應用 47 2.6.1 多元分類(Multi-class Classification) 47 2.6.2 混淆矩陣 48 2.6.3 準確度 48 2.7 疾病追蹤法 49 2.7.1 資料正規化(Normalization) 49 2.7.2 時間定義 49 2.7.3 資料分組 50 2.8 模態選取 50 第三章 結果 55 3.1 勒壤得(Legendre)模態展開 55 3.2 t-隨機鄰近嵌入法 59 3.3 疾病分類 66 3.3.1 左右眼疾病分類 67 3.3.2 68-95-99.7法則修正分類 76 3.3.3 MATLAB決策樹與PYTHON決策樹驗證 80 3.4 疾病追蹤 83 第四章 討論 87 第五章 結論與未來展望 91 5.1 結論 91 5.2 未來展望 93 參考文獻 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 疾病追蹤 | zh_TW |
| dc.subject | 疾病分類 | zh_TW |
| dc.subject | 頓挫型圓錐角膜 | zh_TW |
| dc.subject | Corvis®ST | zh_TW |
| dc.subject | 散光 | zh_TW |
| dc.subject | 圓錐角膜 | zh_TW |
| dc.subject | Astigmatism | en |
| dc.subject | Keratoconus | en |
| dc.subject | Disease Classification | en |
| dc.subject | Forme Fruste Keratoconus | en |
| dc.subject | 𝐂𝐨𝐫𝐯𝐢𝐬®𝐒𝐓 | en |
| dc.subject | Disease Tracking | en |
| dc.title | 角膜噴氣試驗分析與圓錐角膜歷程追蹤 | zh_TW |
| dc.title | Analysis of Corneal Air-Puff Test and Tracking of Keratoconus Development | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 程子翔;王一中 | zh_TW |
| dc.contributor.oralexamcommittee | Kevin T. Chen;I-Jong Wang | en |
| dc.subject.keyword | Corvis®ST,散光,頓挫型圓錐角膜,圓錐角膜,疾病分類,疾病追蹤, | zh_TW |
| dc.subject.keyword | 𝐂𝐨𝐫𝐯𝐢𝐬®𝐒𝐓,Astigmatism,Forme Fruste Keratoconus,Keratoconus,Disease Classification,Disease Tracking, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202303021 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
