Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89335
標題: 開發天車與無人地面載具表型平台於溫室葉菜作物株高及葉面積估測
Development of Crane and Unmanned Ground Vehicle Phenotyping Platform for Estimation of Plant Height and Leaf Area of Leafy Vegetable Crops in Greenhouse
作者: 孫意珺
Yi-Jun Sun
指導教授: 顏炳郎
Ping-Lang Yen
關鍵字: 表型平台,深度校正,機器視覺,株高估測,葉面積估測,
Phenotyping Platform,Depth Calibration,Machine Vision,Plant Height Estimation,Leaf Area Estimation,
出版年 : 2023
學位: 碩士
摘要: 目前現有的表型平台大多應用於糧食及蔬果作物為主,然而在蔬菜類作物中,較少應用於葉菜類作物,葉菜類作物生長通常相對容易且生長週期短,提供快速的農作物供應。若能夠建立針對葉菜類作物之表型平台,針對作物生長和表現的全面監測與評估,便能提高葉菜類作物的生產效率和品質。本研究開發天車與無人地面載具作物表型平台用於量測葉菜類作物之株高及葉面積,其架構主要分為三個部分,天車與無人地面載具表型平台、深度校正與株高及葉面積估測演算法。天車與無人地面載具表型平台使用RGB-D相機收集RGB及深度影像,然而所收集之深度影像,會因為環境亮度等原因導致誤差,因此本研究預先建立深度校正查找表,對相機量測到之深度進行校正。株高及葉面積估測演算法,以AR marker作為參考基準,首先,透過影像處理技術將AR marker及植株進行分割,再透過演算法將株高及葉面積估算出來。本研究分別使用天車及無人地面載具對小白菜及青江菜之株高及葉面積進行調查,天車之株高RMSE為0.99 cm,葉面積RMSE為5.532cm^2 ; 無人地面載具之株高RMSE為1.365 cm,葉面積RMSE分別為6.969cm^2。結果顯示,本研究天車及無人地面載具表型平台可以針對株高及葉面積進行估測。
The current existing phenotyping platforms are mostly applied on food, vegetable and fruit crops, however, in vegetable crops, it is less used in leafy vegetable crops. Leafy vegetable crops are usually relatively easy to grow and have a short growth cycle, which provide rapid crop supply. If phenotyping platform for leafy vegetable crops can be developed to monitor and evaluate crop growth and performance, the production efficiency and quality of crops can be improved. This study develops crop phenotype platform for crane and unmanned ground vehicle (UGV) to measure plant height and leaf area of leafy vegetable crops. The architecture is divided into three parts: the crane and UGV phenotype platform; the depth calibration; plant height and leaf area estimation algorithm. Crane and UGV phenotyping platforms are used to move and capture RGB and depth images. The depth images will have errors due to environmental brightness and some other elements, therefore, this study intend to reduce the errors by utilizing depth calibration lookup table. The plant height and leaf area estimation algorithm use the AR marker as reference. The AR marker and the plant are segmented with image processing approach, while the plant height and leaf area are estimated through the algorithm. In this study, the crane and UGV were used to investigate the plant height and leaf area of Bokchoy and Spoon Cabbage. The measurement of plant height RMSE of crane is 0.99 cm, and the leaf area RMSE is 5.532cm^2, meanwhile, RMSE of UGV is 1.365 cm, and the leaf area RMSE is 6.969cm^2. The results show that the phenotype platform of the crane and UGV in this study can estimate the plant height and leaf area.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89335
DOI: 10.6342/NTU202302733
全文授權: 未授權
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.14 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved