Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89229
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊爵因zh_TW
dc.contributor.advisorJiue-In Yangen
dc.contributor.authorEmilia Pinizh_TW
dc.contributor.authorEmilia Pinien
dc.date.accessioned2023-09-07T16:07:07Z-
dc.date.available2024-12-31-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-07-24-
dc.identifier.citationAbbott, W. S. (1925). A method of computing the effectiveness of an insecticide. J. econ. Entomol, 18(2), 265-267.
Aggarwal, C., Paul, S., Tripathi, V., Paul, B., & Khan, Md. A. (2015). Chitinolytic activity in Serratia marcescens (strain SEN) and potency against different larval instars of Spodoptera litura with effect of sublethal doses on insect development. BioControl, 60(5), 631–640. https://doi.org/10.1007/s10526-015-9674-3
Ahmad, M., Iqbal Arif, M., & Ahmad, M. (2007). Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection, 26(6), 809–817. https://doi.org/10.1016/j.cropro.2006.07.006
Akduman, N., Rödelsperger, C., & Sommer, R. J. (2018). Culture-based analysis of Pristionchus-associated microbiota from beetles and figs for studying nematodebacterial interactions. PLOS ONE, 13(6), e0198018. https://doi.org/10.1371/journal.pone.0198018
Akhurst, R. J. (1982). Antibiotic Activity of Xenorhabdus spp., Bacteria Symbiotically Associated with Insect Pathogenic Nematodes of the Families Heterorhabditidae and Steinernematidae. Microbiology, 128(12), 3061–3065. https://doi.org/10.1099/00221287-128-12-3061
Alavanja, M. C. R., Hoppin, J. A., & Kamel, F. (2004). Health Effects of Chronic Pesticide Exposure: Cancer and Neurotoxicity. Annual Review of Public Health, 25(1), 155–197. https://doi.org/10.1146/annurev.publhealth.25.101802.123020
Andaló, V., Santos, V., Moreira, G. F., Moreira, C. C., & Moino Junior, A. (2010). Evaluation of entomopathogenic nematodes under laboratory and greenhouses conditions for the control of Spodoptera frugiperda. Ciência Rural, 40(9), 1860–1866. https://doi.org/10.1590/S0103-84782010005000151
Armes, N. J., Wightman, J. A., Jadhav, D. R., & Ranga Rao, G. V. (1997). Status of Insecticide Resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Science, 50(3), 240–248. https://doi.org/10.1002/(SICI)1096-9063(199707)50:3<240::AID-PS579>3.0.CO;2-9
Boemare, N. E., and R. J. Akhurst. 1988. “Biochemical and Physiological Characterization of Colony Form Variants in Xenorhabdus Spp. (Enterobacteriaceae).” Microbiology 134 (3): 751–61. https://doi.org/10.1099/00221287-134-3-751.
Boemare, N., Thaler, J. O., & Lanois, A. 1997. Simple bacteriological tests for phenotypic characterization of Xenorhabdus and Photorhabdus phase variants. Symbiosis.
Burnell, A., & Stock, S. P. (2000). Heterorhabditis, Steinernema and their bacterial symbionts—Lethal pathogens of insects. Nematology, 2(1), 31–42. https://doi.org/10.1163/156854100508872
Calumpang, S. M. F. (2013). BEHAVIORAL RESPONSE OF Spodoptera litura (F) (Lepidoptera: Noctuidae). 19(2).
Danso, Y., Issa, U., Adama, I., Osei, K., Agyei Obeng, E., Opoku, M., Amoabeng, W., Abugri, B., & Adomako, J. (2021). Application of Entomopathogenic Nematodes in Management of Fall Armyworm Infesting Maize in Ghana: A Greenhouse Study. Egyptian Journal of Agronematology, 20(2), 159–166. https://doi.org/10.21608/ejaj.2021.192214
Darsouei, R., Karimi, J., & Shokoohi, E. (n.d.). Oscheius rugaoensis and Pristionchus maupasi, two new records of entomophilic nematodes from Iran. 15.
Demir, İsmail, Zihni Demirbağ, and Zeynep Erbaş. 2017. “Isolation and Characterization of a Parasitic Nematode, Oscheius myriophila (Nematoda: Rhabditida), Associated with European Mole Cricket, Gryllotalpa gryllotalpa (Orthoptera: Gryllotalpidae).” Hacettepe Journal of Biology and Chemistry 2 (45): 197–203. https://doi.org/10.15671/HJBC.2017.152.
Di, N., Zhang, K., Xu, Q., Zhang, F., Harwood, J. D., Wang, S., & Desneux, N. (2021). Predatory Ability of Harmonia axyridis (Coleoptera: Coccinellidae) and Orius sauteri (Hemiptera: Anthocoridae) for Suppression of Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 12(12), 1063. https://doi.org/10.3390/insects12121063
Dumas, P., Legeai, F., Lemaitre, C., Scaon, E., Orsucci, M., Labadie, K., Gimenez, S., Clamens, A.-L., Henri, H., Vavre, F., Aury, J.-M., Fournier, P., Kergoat, G. J., & d’Alençon, E. (2015). Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica, 143(3), 305–316. https://doi.org/10.1007/s10709-015-9829-2
Efficacy of Cry1F Insecticidal Protein in Maize and Cotton for Control of Fall Armyworm (Lepidoptera: Noctuidae). (2008). Florida Entomologist. https://doi.org/10.1653/0015-4040-91.4.555
EFSA Panel on Plant Health (EFSA PLH Panel), Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen‐Schmutz, K., Gilioli, G., Grégoire, J., Jaques Miret, J. A., Navarro, M. N., Niere, B., Parnell, S., Potting, R., Rafoss, T., Rossi, V., Urek, G., Van Bruggen, A., Van der Werf, W., … MacLeod, A. (2018). Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA Journal, 16(8). https://doi.org/10.2903/j.efsa.2018.5351
EFSA Panel on Plant Health (PLH), Bragard, C., Dehnen‐Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M., Jaques Miret, J. A., Justesen, A. F., Magnusson, C. S., Milonas, P., Navas‐Cortes, J. A., Parnell, S., Potting, R., Reignault, P. L., Thulke, H., Van der Werf, W., Vicent Civera, A., Yuen, J., Zappalà, L., … MacLeod, A. (2019). Pest categorisation of Spodoptera litura. EFSA Journal, 17(7). https://doi.org/10.2903/j.efsa.2019.5765
Ehlers, R. U., Stoessel, S., & Wyss, U. (n.d.). The influence of phase variants of Xenorhabdus spp. And Escherichia coli (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis. 9.
Escribano, A., Williams, T., Goulson, D., Cave, R. D., Chapman, J. W., & Caballero, P. (1999). Selection of a Nucleopolyhedrovirus for Control of Spodoptera frugiperda (Lepidoptera: Noctuidae): Structural, Genetic, and Biological Comparison of Four Isolates from the Americas. Journal of Economic Entomology, 92(5), 1079–1085. https://doi.org/10.1093/jee/92.5.1079
Fan, L. S., Muhamad, R., Omar, D., & Rahmani, M. (2011). Insecticidal Properties of Piper nigrum Fruit Extracts and Essential Oils against Spodoptera litura. Int. J. Agric. Biol., 13(4).
Garcia, L. C., Raetano, C. G., & Leite, L. G. (2008). Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn. Neotropical Entomology, 37(3), 305–311. https://doi.org/10.1590/S1519-566X2008000300010
Gaugler, R. (Ed.). (2002). Entomopathogenic nematology. CABI Pub.
Ge, S., He, L., He, W., Yan, R., Wyckhuys, K. A. G., & Wu, K. (2021). Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. Journal of Integrative Agriculture, 20(3), 707–714. https://doi.org/10.1016/S2095-3119(20)63166-5
Ghavamabad, Reihaneh Gholami, Ali Asghar Talebi, Mohammad Mehrabadi, Mohammad Ebrahim Farashiani, and Majid Pedram. 2021. “First Record of Oscheius myriophilus (Poinar, 1986) (Rhabditida: Rhabditidae) from Iran; and Its Efficacy against Two Economic Forest Trees Pests, Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) and Hyphantria cunea (Drury, 1773) (Lepidoptera: Erebidae) in Laboratory Condition.” Journal of Nematology 53 (1): 1–16. https://doi.org/10.21307/jofnem-2021-035.
Givaudan, A., Baghdiguian, S., Lanois, A., & Boemare, N. (1995). Swarming and Swimming Changes Concomitant with Phase Variation in Xenorhabdus nematophilus. APPL. ENVIRON. MICROBIOL., 61, 6.
Gutiérrez-Moreno, R., Mota-Sanchez, D., Blanco, C. A., Whalon, M. E., TeránSantofimio, H., Rodriguez-Maciel, J. C., & DiFonzo, C. (2019). Field-Evolved Resistance of the Fall Armyworm (Lepidoptera: Noctuidae) to Synthetic Insecticides in Puerto Rico and Mexico. Journal of Economic Entomology, 112(2), 792–802. https://doi.org/10.1093/jee/toy372
Hailu, G., Niassy, S., Zeyaur, K. R., Ochatum, N., & Subramanian, S. (2018). Maize– Legume Intercropping and Push–Pull for Management of Fall Armyworm, Stemborers, and Striga in Uganda. Agronomy Journal, 110(6), 2513–2522. https://doi.org/10.2134/agronj2018.02.0110
Harrison, R. D., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U., & van den Berg, J. (2019). Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management, 243, 318–330. https://doi.org/10.1016/j.jenvman.2019.05.011
Hassani-Kakhki, M., Karimi, J., & Shokoohi, E. (2013). Molecular and morphological characterization of Pristionchus pacificus (Nematoda: Rhabditida: Neodiplogastridae), a new record of an entomophilic nematode from Iran. Biologia, 68(5), 910–917. https://doi.org/10.2478/s11756-013-0232-0
Herbert, E. E., & Goodrich-Blair, H. (2007). Friend and foe: The two faces of Xenorhabdus nematophila. Nature Reviews Microbiology, 5(8), 634–646. https://doi.org/10.1038/nrmicro1706
Huang, F. (2021). Resistance of the fall armyworm, Spodoptera frugiperda , to transgenic Bacillus thuringiensis Cry1F corn in the Americas: Lessons and implications for Bt corn IRM in China. Insect Science, 28(3), 574–589. https://doi.org/10.1111/1744-7917.12826
Islam, Y., Shah, F. M., Shah, M. A., Musa Khan, M., Rasheed, M. A., Ur Rehman, S., Ali, S., & Zhou, X. (2020). Temperature-Dependent Functional Response of Harmonia axyridis (Coleoptera: Coccinellidae) on the Eggs of Spodoptera litura (Lepidoptera: Noctuidae) in Laboratory. Insects, 11(9), 583. https://doi.org/10.3390/insects11090583
Joshi, B. G., Sitaramaiah, S., & Ramaprasad, G. (n.d.). Field observations on impact of egg parasite Telenomus remus (Hym: Scelionidae) on Tobacco caterpillar Spodoptera litura (Lep: Noctuidae) in tobacco nurseries in Andhra Pradesh.
Kaur, M., Chadha, P., Kaur, S., Kaur, A., & Kaur, R. (2020). Schizophyllum commune induced oxidative stress and immunosuppressive activity in Spodoptera litura. BMC Microbiology, 20(1), 139. https://doi.org/10.1186/s12866-020-01831-6
Kaur, P. K., Thakur, A., Saini, H. S., & Kaur, S. (2017). Evaluation of Bacillus vallismortis (Bacillales: Bacillaceae) R2 as insecticidal agent against polyphagous pest Spodoptera litura (Lepidoptera: Noctuidae). 3 Biotech, 7(5), 346. https://doi.org/10.1007/s13205-017-0987-z
Kumari, V., & Singh, N. P. (n.d.). Spodoptera litura nuclear polyhedrosis virus (NPV-S) as a component in Integrated Pest Management (IPM) of Spodoptera litura (Fab.) on cabbage.
Ku C-I (2016) Pathogenicity of an indigenous nematode, Steinernema sp. (isolate 39), against Helicoverpa armigera (Lepidoptera: Noctuidae) and its potential application. National Chung Hsing University
Lalitha, Kandhasamy, Srinivasan Venkatesan, Balasubramanian Balamuralikrishnan, and Muthugoundar Subramanian Shivakumar. 2022. “Isolation and Biocontrol Efficacy of Entomopathogenic Nematodes Steinernema carpocapsae, Steinernema monticolum and Rhabditis blumi on Lepidopteran Pest Spodoptera litura.” Biocatalysis and Agricultural Biotechnology 39 (January): 102291. https://doi.org/10.1016/j.bcab.2022.102291.
Li, X., Wu, M., Ma, J., Gao, B., Wu, Q., Chen, A., Liu, J., Jiang, Y., Zhai, B., Early, R., Chapman, J. W., & Hu, G. (2020). Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach. Pest Management Science, 76(2), 454–463. https://doi.org/10.1002/ps.5530
Mitchell, E. R. (1979). Monitoring Adult Populations of the Fall Armyworm. The Florida Entomologist, 62(2), 91. https://doi.org/10.2307/3494085
Montezano, D. G., Specht, A., Sosa-Gómez, D. R., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., Peterson, J. A., & Hunt, T. E. (2018). Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), 286–300. https://doi.org/10.4001/003.026.0286
Moreno, A. V., & Gastón, J. (n.d.). Cinco nuevas especies para la fauna de España y otras interesantes informaciones lepidopterológicas para España y Sudán (Insecta: Lepidoptera).
Mostafalou, S. (2012). Concerns of Environmental Persistence of Pesticides and Human Chronic Diseases. Clinical and Experimental Pharmacology, 01(S5). https://doi.org/10.4172/2161-1459.S5-e002
Muratoğlu, H., Demi̇Rbağ, Z., & Sezen, K. (2011). An entomopathogenic bacterium, Pseudomonas putida, from Leptinotarsa decemlineata. Turkish Journal of Biology. https://doi.org/10.3906/biy-0902-19
Nguyen, K. B., & Hunt, D. D. J. (2007). Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts. Brill. https://books.google.com.tw/books?id=pXyd5rE7QWcC
Nyasani, J. O., Kimenju, J. W., Olubayo, F. M., & Wilson, M. J. (2008). Laboratory and field investigations using indigenous entomopathogenic nematodes for biological control of Plutella xylostella in Kenya. International Journal of Pest Management, 54(4), 355–361. https://doi.org/10.1080/09670870802419636
Park, S. H., Yu, Y. S., Park, J. S., Choo, H. Y., Bae, S. D., & Nam, M. H. (2001). Biological control of tobacco cutworm, Spodoptera litura Fabricius with entomopathogenic nematodes. Biotechnology and Bioprocess Engineering, 6(2), 139–143. https://doi.org/10.1007/BF02931960
Patil, J., Linga, V., Vijayakumar, R., Subaharan, K., Navik, O., Bakthavatsalam, N., Mhatre, P. H., & Sekhar, J. (2022). Biocontrol potential of entomopathogenic nematodes for the sustainable management of Spodoptera frugiperda (Lepidoptera: Noctuidae ) in maize. Pest Management Science, 78(7), 2883–2895. https://doi.org/10.1002/ps.6912
Ph, P., Db, S., Bl, R., Nb, P., Vr, G., & Km, C. (n.d.). Bio-efficacy of entomopathogenic fungi and bacteria against invasive pest Spodoptera frugiperda (J.E. Smith) under laboratory condition. Journal of Entomology and Zoology Studies.
Pitre, H. N. (1986). Chemical Control of the Fall Armyworm (Lepidoptera: Noctuidae): An Update. The Florida Entomologist, 69(3), 570. https://doi.org/10.2307/3495392
Poinar, G. O., & Thomas, G. M. (1966). Significance of Achromobacter nematophilus
Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD-136 ( Neoaplectana sp. Steinernematidae). Parasitology, 56(2), 385–390. https://doi.org/10.1017/S0031182000070980
Pomari, A. F., Bueno, A. de F., Bueno, R. C. O. de F., Menezes Junior, A. de O., &
Fonseca, A. C. P. F. (2013). Releasing number of Telenomus remus (Nixon) (Hymenoptera: Platygastridae) against Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in corn, cotton and soybean. Ciência Rural, 43(3), 377–382. https://doi.org/10.1590/S0103-84782013005000013
Rae, R., Riebesell, M., Dinkelacker, I., Wang, Q., Herrmann, M., Weller, A. M., Dieterich, C., & Sommer, R. J. (2008). Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. Journal of Experimental Biology, 211(12), 1927–1936. https://doi.org/10.1242/jeb.014944
Ramaiah, M., & Maheswari, T. U. (n.d.). Biology studies of tobacco caterpillar, Spodoptera litura Fabricius. Journal of Entomology and Zoology Studies, 7.
Ruiu, L., Virdis, B., Mura, M. E., Floris, I., Satta, A., & Tarasco, E. (2017). Oral insecticidal activity of new bacterial isolates against insects in two orders. Biocontrol Science and Technology, 27(7), 886–902. https://doi.org/10.1080/09583157.2017.1355964
Secil, E. S., Sevim, A., Demirbag, Z., & Demir, I. (2012). Isolation, characterization and virulence of bacteria from Ostrinia nubilalis (Lepidoptera: Pyralidae). Biologia, 67(4), 767–776. https://doi.org/10.2478/s11756-012-0070-5
Sicard, M., Tabart, J., Boemare, N. E., Thaler, O., & Moulia, C. (2005). Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Parasitology, 131(5), 687–694. https://doi.org/10.1017/S0031182005008255
Sisay, B., Tefera, T., Wakgari, M., Ayalew, G., & Mendesil, E. (2019). The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, Spodoptera frugiperda, in Maize. Insects, 10(2), 45. https://doi.org/10.3390/insects10020045
Sun, B., Zhang, X., Song, L., Zheng, L., Wei, X., Gu, X., Cui, Y., Hu, B., Yoshiga, T., Abd-Elgawad, M. M., & Ruan, W. (2021). Evaluation of indigenous entomopathogenic nematodes in Southwest China as potential biocontrol agents against Spodoptera litura (Lepidoptera: Noctuidae). Journal of Nematology, 53(1), 1–17. https://doi.org/10.21307/jofnem-2021-083
Tambong, J. T. (2013). Phylogeny of Bacteria Isolated from Rhabditis sp. (Nematoda) and Identification of Novel Entomopathogenic Serratia marcescens Strains. Current Microbiology, 66(2), 138–144. https://doi.org/10.1007/s00284-012-0250-0
Tang, C.-K., Tsai, C.-H., Wu, C.-P., Lin, Y.-H., Wei, S.-C., Lu, Y.-H., Li, C.-H., & Wu, Y.-L. (2021). MicroRNAs from Snellenius manilae bracovirus regulate innate and cellular immune responses of its host Spodoptera litura. Communications Biology, 4(1), 52. https://doi.org/10.1038/s42003-020-01563-3
The Global Action for Fall Armyworm Control: Action framework 2020–2022. (2020). FAO. https://doi.org/10.4060/ca9252en
Torres-Barragan, A., Suazo, A., Buhler, W. G., & Cardoza, Y. J. (2011). Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biological Control, 59(2), 123–129. https://doi.org/10.1016/j.biocontrol.2011.05.020
Torrini, G., Mazza, G., Carletti, B., Benvenuti, C., Roversi, P. F., Fanelli, E., Luca, F. D., Troccoli, A., & Tarasco, E. (2015). Oscheius onirici sp. n. (Nematoda: Rhabditidae): a new entomopathogenic nematode from an Italian cave. Zootaxa, 3937(3), 533. https://doi.org/10.11646/zootaxa.3937.3.6
Tozlu, E., Tozlu, G., & Kotan, R. (2022). Biocontrol of Cymbalophora rivularis (Menetries) (Lepidoptera: Erebidae) larvae by entomopathogenic bacteria and fungi. Egyptian Journal of Biological Pest Control, 32(1), 66. https://doi.org/10.1186/s41938-022-00565-z
Tsai, C.-L., Chu, I.-H., Chou, M.-H., Chareonviriyaphap, T., Chiang, M.-Y., Lin, P.-A., Lu, K.-H., & Yeh, W.-B. (2020). Rapid identification of the invasive fall armyworm Spodoptera frugiperda (Lepidoptera, Noctuidae) using species specific primers in multiplex PCR. Scientific Reports, 10(1), 16508. https://doi.org/10.1038/s41598-020-73786-7
Tu, Y.-G., Wu, K.-M., Xue, F.-S., & Lu, Y.-H. (2010). Laboratory evaluation of flight activity of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Insect Science, 17(1), 53–59. https://doi.org/10.1111/j.1744-7917.2009.01281.x
Tuan, S.-J., Lee, C.-C., & Chi, H. (2014). Population and damage projection of Spodoptera litura (F.) on peanuts ( Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table: Population and damage projection of S. litura using two-sex life table. Pest Management Science, 70(5), 805–813. https://doi.org/10.1002/ps.3618
Volgyi, A., Fodor, A., Szentirmai, A., & Forst, S. (1998). Phase Variation in Xenorhabdus nematophilus. Applied and Environmental Microbiology, 64(4), 1188–1193. https://doi.org/10.1128/AEM.64.4.1188-1193.1998
Wan, J., Huang, C., Li, C., Zhou, H., Ren, Y., Li, Z., Xing, L., Zhang, B., Qiao, X., Liu, B., Liu, C., Xi, Y., Liu, W., Wang, W., Qian, W., Mckirdy, S., & Wan, F. (2021). Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Integrative Agriculture, 20(3), 646–663. https://doi.org/10.1016/S2095-3119(20)63367-6
Wan, P., Wu, K., Huang, M., Yu, D., & Wu, J. (2008). Population Dynamics of Spodoptera litura (Lepidoptera: Noctuidae) on Bt Cotton in the Yangtze River Valley of China. ENVIRONMENTAL ENTOMOLOGY, 37(4).
Wang, A., Fang, M., Sun, J., Wei, X., & Ruan, W. (2022). Investigation of Indigenous Entomopathogenic Nematodes in Guangxi and Its Biological Control of Spodoptera frugiperda. Agronomy, 12(10), 2536. https://doi.org/10.3390/agronomy12102536
Wang, X., Lou, L., & Su, J. (2019). Prevalence and stability of insecticide resistances in field population of Spodoptera litura (Lepidoptera: Noctuidae) from Huizhou, Guangdong Province, China. Journal of Asia-Pacific Entomology, 22(3), 728–732. https://doi.org/10.1016/j.aspen.2019.05.009
Yadav, I. C., & Devi, N. L. (n.d.). Pesticides Classification and Its Impact on Human and Environment. Environ. Sci., 6.
Yang, S., Yang, S., Sun, W., Lv, J., & Kuang, R. (n.d.). Use of Sex Pheromone for Control of Spodoptera litura (Lepidoptera: Noctuidae).
Yu, S. J. (1991). Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology, 39(1), 84–91. https://doi.org/10.1016/0048-3575(91)90216-9
Yu, S. J., Nguyen, S. N., & Abo-Elghar, G. E. (2003). Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology, 77(1), 1–11. https://doi.org/10.1016/S0048-3575(03)00079-8
Zhou, G., Yang, H., Wang, F., Bao, H., Wang, G., Hou, X., Lin, J., Yedid, G., & Zhang, K. (2017). Oscheius microvilli n. sp. (Nematoda: Rhabditidae): A Facultatively Pathogenic Nematode from Chongming Island, China. Journal of Nematology, 49(1), 33–41. https://doi.org/10.21307/jofnem-2017-044
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89229-
dc.description.abstractnonezh_TW
dc.description.abstractEntomopathogenic nematodes (EPNs) are known to be great biological control agents in IPM strategies. EPNs parasitize and kill their insect host with the help of their symbiotic bacteria capable of phase switching. Because nematodes are very sensitive to the environment, the application efficacy of EPN products often relies on the biology of the nematodes and the bacteria. In 2019, the insect pest fall armyworm Spodoptera frugiperda (FAW) invaded Taiwan and caused severe damage to rice, maize, and sorghum. With the urgent need for an environmental-friendly management strategy for organic or sustainable growers, this study aimed to obtain local EPN populations, identify and characterize the EPNs and their symbiotic bacteria, and further evaluate their parasitism efficacy and pathogenicity against FAW. Between 2019 and 2020, four EPN strains were isolated in Taiwan. The nematodes were identified as Pristionchus pacificus (strain 6) and Oscheius myriophilus (strains 16, G1A1, and G1B1), and 17 bacteria strains were isolated. Under laboratory conditions, three concentrations (2000, 3000, and 4000 IJs/ml) of EPN suspension were examined for application efficacy. As a result of the laboratory assay, the mortality rate of FAW was between 18-23 %, 16-18%, 11-15%, and 17-21% for applying strains 6, 16, G1A1, and G1B1, respectively. The FAW damage on leaves was 54-60%, 56-59%, 53-56%, and 53-56% for each EPN strain, respectively. No significant difference was found between the three concentrations applied. For the OLW laboratory assay, the mortality rates caused by the four EPNs were between 26-41%, 46-55%, 43-46%, and 49-75% for each strain respectively. Those results were highly superior compared to the FAW results. Such mortality rates have contributed to reducing significantly the damages on tomato leaves compared to the control. Further, a greenhouse assay was conducted to investigate the EPN management efficacy of a hand sprayer application method. For the greenhouse experiment, 2000 IJs/ml was used. The lowest mortality rates of FAW in greenhouse conditions were obtained for strains 6 and G1A1 at 5 and 8%, respectively. Strains 16 and G1B1 caused higher rates with 15 and 21%. For the assay on OLW, the death caused by EPNs was lower compared to FAW results. EPN-6 caused 2.5%, EPN-16 6.25%, EPN-G1A1 7.5%, and EPN-G1B1 caused 8.75% of OLW mortality rate. None of the EPNs applied have allowed to reduce the impact of insect pests on plants. Finally, the symbiont bacteria strains' phase variation and specific activity were examined in vitro. Symbiotic bacteria of the EPN-6 were all able to produce a second variant except for strain 6d. However, in all the symbiotic bacteria of EPN-16, only strain 16e appeared to have a phase variation. As for EPN-G1A1, the bacteria strain G1A1-4 was the only bacterium of this EPN without phase variation. Finally, both bacteria strains symbiotic to EPN-G1B1 were able to vary. None of the strains or variants were able to produce an antibiosis activity. For the lecithinase test, only strains 16a, 16b have shown a clear positive result. Other strains seem always positive for the second phase, but results needed further confirmation. All second phases have demonstrated both proteolysis and lipase capacities and the behaviors of swimming and swarming. Finally, bacteria strains without phase variation were all able to proteolysis, lipase, and perform swimming behavior. Strains 16a, 16b, 16c, and 16d, bacteria cannot swarm. This study has demonstrated encouraging results to apply EPNs as biocontrol, but the application method still needs to be improved to obtain a higher reduction of the insect pest population. This is also the first phase variation report for many EPN-symbiotic bacteria. Finally, their characterization has shown that most of those bacteria have the necessary capacities to support the pathogenicity of EPNs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:07:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T16:07:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate of Thesis/Dissertation Approval from the Oral Defense Committee i
Acknowledgments ii
Abstract & Keywords iii
Table of Contents v
List of Tables viii
List of Figures ix
List of Supplementary Figures x
Abbreviations xi
1. Introduction 1
1.1. Fall armyworm 1
1.2. Oriental leafworm (OLW) 2
1.3. Management of FAW and OLW 3
1.3.1. Integrated Pest Management (IPM) 3
1.3.2. The use of chemicals and their consequences 5
1.3.3. Biological control for FAW and OLW 6
1.4. Entomopathogenic nematodes (EPN) 7
1.5. Research motives 10
1.6. Objective and rationale 11
2. Materials & Methods 13
2.1. Nematodes rearing 13
2.1.1. Culture on FAW pupae 13
2.1.2. Culture on Nematode Growth Media (NGM) with E. coli OP50 13
2.2. Insect rearing 14
2.2.1. Fall armyworm (Spodoptera frugiperda) 14
2.2.2. Oriental leafworm (Spodoptera litura) 15
2.3. Plant cultivation 15
2.3.1. Maize 15
2.3.2. Tomato 16
2.4. Bacteria culture 16
2.5. Evaluation of the pathogenicity of EPN against FAW 17
2.5.1. Laboratory Assays 17
2.5.1.1. Preparation of EPN suspension 17
2.5.1.2. Preparation of WA with corn leaf 17
2.5.1.3. Inoculation of maize plates with FAW larvae and EPN suspension..17
2.5.1.4. Assessment of mortality 18
2.5.1.5. Assessment for insect damage on leaf 18
2.5.1.6. Data analysis 18
2.5.2. Greenhouse assays 19
2.5.2.1. Preparation of EPN suspension. 19
2.5.2.2. Inoculation of plants with FAW larvae and EPN suspension 19
2.5.2.3. Assessment of mortality 20
2.5.2.4. Assessment for insect damage on leaf 20
2.5.2.5. Data analysis 20
2.6. Evaluation of the pathogenicity of EPN against OLW 21
2.6.1. Laboratory Assays 21
2.6.1.1. Preparation of EPN suspension 21
2.6.1.2. Preparation of plates with tomato leaf 21
2.6.1.3. Inoculation of tomato plates with OLW and EPN suspension 21
2.6.1.4. Assessment of mortality 22
2.6.1.5. Assessment for insect damage on leaf 22
2.6.1.6. Data analysis 22
2.6.2. Greenhouse assays 23
2.6.2.1. Preparation of EPN suspension 23
2.6.2.2. Inoculation of plants with OLW larvae and EPN suspension 23
2.6.2.3. Assessment of mortality. 24
2.6.2.4. Assessment for insect damage on leaf 24
2.6.2.5. Data Analysis 24
2.7. Phenotypic and biochemical analyses of symbiotic bacteria variants 25
2.7.1. Determination of the presence of two variants 25
2.7.2. Dye absorption and pigmentation tests 25
2.7.3. Antibiosis test 6
2.7.4. Phospholipase test 26
2.7.5. Proteolysis test (Frazier’s method, 1926) 27
2.7.6. Lipolysis test on “calcium” agar (Sierra’s method) 27
2.7.7. Hemolysis 28
2.7.8. Swimming and swarming behavior tests 28
3. Result 29
3.1. Evaluation of the pathogenicity of EPN against FAW 29
3.1.1. Lab Assay 29
3.1.1.1. Assessment of mortality 29
3.1.1.2. Assessment for insect damage on leaf 29
3.1.2. Greenhouse assays 30
3.1.2.1. Assessment of mortality 30
3.1.2.2. Assessment for insect damages on leaf 30
3.2. Evaluation of the pathogenicity of EPN against OLW 31
3.2.1. Lab Assay 31
3.2.1.1. Assessment of mortality 31
3.2.1.2. Assessment for insect damage on leaf 32
3.2.2. Greenhouse assays 33
3.2.2.1. Assessment of mortality 33
3.2.2.2. Assessment for insect damage on leaf 33
3.3. Phenotypic and biochemical analyses of symbiotic bacteria variants 34
3.3.1. Determination of phase variation with dye absorption and pigmentation tests 34
3.3.2. Biochemical analyses of bacteria 35
4. Discussion 37
References 45
Tables 53
Figures 57
Supplementary figures 64
-
dc.language.isoen-
dc.subject生物防治zh_TW
dc.subject蟲生線蟲zh_TW
dc.subject細菌zh_TW
dc.subject秋行軍蟲zh_TW
dc.subject相位變異zh_TW
dc.subjectbiocontrolen
dc.subjectentomopathogenic nematodesen
dc.subjectphase variationen
dc.subjectFall armywormen
dc.subjectbacteriaen
dc.title探討台灣分離之蟲生線蟲於有害昆蟲之致病力與其相關細菌之特徵zh_TW
dc.titleEvaluation of the pathogenicity of entomopathogenic nematodes isolated in Taiwan against insect pests and characterization of their associated bacteriaen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊汶博;沈湯龍;Valerie Schurdi-Levraud;Gérard Barrosozh_TW
dc.contributor.oralexamcommitteeWen-Po Chuang;Tang-Long Shen;Valerie Schurdi-Levraud;Gérard Barrosoen
dc.subject.keyword蟲生線蟲,細菌,秋行軍蟲,生物防治,相位變異,zh_TW
dc.subject.keywordentomopathogenic nematodes,bacteria,Fall armyworm,biocontrol,phase variation,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202301871-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-25-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2024-12-31-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf1.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved