請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89223完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭靜穎 | zh_TW |
| dc.contributor.advisor | CHING-YING KUO | en |
| dc.contributor.author | 雷善婷 | zh_TW |
| dc.contributor.author | Shan-Ting Lei | en |
| dc.date.accessioned | 2023-09-05T16:10:59Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | 1. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021. 71(3): p. 209-249.
2. 衛生福利部-110年死因統計結果分析 3. Makki, J., Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clinical medicine insights. Pathology, 2015. 8: p. 23-31. 4. Yu, N.Y., et al., Assessment of Long-term Distant Recurrence-Free Survival Associated With Tamoxifen Therapy in Postmenopausal Patients With Luminal A or Luminal B Breast Cancer. JAMA Oncol, 2019. 5(9): p. 1304-1309. 5. Kwapisz, D., Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunology, Immunotherapy, 2021. 70(3): p. 607-617. 6. Bardia, A., et al., Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N Engl J Med, 2021. 384(16): p. 1529-1541. 7. Tung, N. and J.E. Garber, PARP inhibition in breast cancer: progress made and future hopes. npj Breast Cancer, 2022. 8(1): p. 47. 8. Tabouret, E., et al., Recent trends in epidemiology of brain metastases: an overview. Anticancer Res, 2012. 32(11): p. 4655-62. 9. Quigley, M.R., et al., The shifting landscape of metastatic breast cancer to the CNS. Neurosurg Rev, 2013. 36(3): p. 377-82. 10. Insua-Rodríguez, J. and T. Oskarsson, The extracellular matrix in breast cancer. Adv Drug Deliv Rev, 2016. 97: p. 41-55. 11. Gupta, P., et al., HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Lett, 2019. 442: p. 68-81. 12. Mantovani, A., et al., Cancer-related inflammation. Nature, 2008. 454(7203): p. 436-444. 13. Thiery, J.P., et al., Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 2009. 139(5): p. 871-890. 14. Vetter, G., et al., miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene, 2010. 29(31): p. 4436-4448. 15. Prat, A. and C.M. Perou, Deconstructing the molecular portraits of breast cancer. Mol Oncol, 2011. 5(1): p. 5-23. 16. Jagannathan, L., S. Cuddapah, and M. Costa, Oxidative Stress Under Ambient and Physiological Oxygen Tension in Tissue Culture. Current Pharmacology Reports, 2016. 2(2): p. 64-72. 17. McKeown, S.R., Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. The British Journal of Radiology, 2014. 87(1035): p. 20130676. 18. Bruick, R.K. and S.L. McKnight, A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001. 294(5545): p. 1337-40. 19. Iyer, N.V., et al., Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev, 1998. 12(2): p. 149-62. 20. Siemeister, G., et al., Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res, 1996. 56(10): p. 2299-301. 21. Guo, K., et al., Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ, 2001. 8(4): p. 367-76. 22. An, W.G., et al., Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature, 1998. 392(6674): p. 405-8. 23. Semenza, G.L., Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol, 2000. 35(2): p. 71-103. 24. Hensley, C.T., A.T. Wasti, and R.J. DeBerardinis, Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest, 2013. 123(9): p. 3678-84. 25. Mayers, J.R., et al., Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med, 2014. 20(10): p. 1193-1198. 26. Dever, T.E., et al., Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell, 1992. 68(3): p. 585-596. 27. Harding, H.P., et al., An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress. Molecular Cell, 2003. 11(3): p. 619-633. 28. Harding, H.P., Y. Zhang, and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999. 397(6716): p. 271-274. 29. Novoa, I., et al., Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol, 2001. 153(5): p. 1011-22. 30. Ahmad, I.M., et al., Mitochondrial O2*- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem, 2005. 280(6): p. 4254-63. 31. Birsoy, K., et al., Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 2014. 508(7494): p. 108-12. 32. Moley, K.H. and M.M. Mueckler, Glucose transport and apoptosis. Apoptosis, 2000. 5(2): p. 99-105. 33. Palorini, R., et al., Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death & Disease, 2013. 4(7): p. e732-e732. 34. Donnelly, N., et al., The eIF2α kinases: their structures and functions. Cell Mol Life Sci, 2013. 70(19): p. 3493-511. 35. Malhi, H. and R.J. Kaufman, Endoplasmic reticulum stress in liver disease. J Hepatol, 2011. 54(4): p. 795-809. 36. Ye, J., et al., ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell, 2000. 6(6): p. 1355-64. 37. Salas-Lloret, D. and R. González-Prieto, Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci, 2022. 23(6). 38. Bayer, P., et al., Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol, 1998. 280(2): p. 275-86. 39. Galanty, Y., et al., Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature, 2009. 462(7275): p. 935-9. 40. Morris, J.R., et al., The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature, 2009. 462(7275): p. 886-90. 41. Hendriks, I.A. and A.C.O. Vertegaal, A comprehensive compilation of SUMO proteomics. Nature Reviews Molecular Cell Biology, 2016. 17(9): p. 581-595. 42. Bohren, K.M., et al., A M55V Polymorphism in a Novel SUMO Gene (SUMO-4) Differentially Activates Heat Shock Transcription Factors and Is Associated with Susceptibility to Type I Diabetes Mellitus*. Journal of Biological Chemistry, 2004. 279(26): p. 27233-27238. 43. Liang, Y.-C., et al., SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Scientific Reports, 2016. 6(1): p. 26509. 44. Rodriguez, M.S., C. Dargemont, and R.T. Hay, SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting*. Journal of Biological Chemistry, 2001. 276(16): p. 12654-12659. 45. Hendriks, I.A., et al., Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nature Structural & Molecular Biology, 2017. 24(3): p. 325-336. 46. Hendriks, I.A., et al., Uncovering global SUMOylation signaling networks in a site-specific manner. Nature Structural & Molecular Biology, 2014. 21(10): p. 927-936. 47. Hendriks, I.A., et al., Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun, 2018. 9(1): p. 2456. 48. Matic, I., et al., In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics, 2008. 7(1): p. 132-44. 49. Manning, G., et al., Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci, 2002. 27(10): p. 514-20. 50. Manning, G., et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912-34. 51. Vlastaridis, P., et al., Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience, 2017. 6(2): p. 1-11. 52. Ubersax, J.A. and J.E. Ferrell Jr, Mechanisms of specificity in protein phosphorylation. Nature Reviews Molecular Cell Biology, 2007. 8(7): p. 530-541. 53. Barford, D., Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci, 1996. 21(11): p. 407-12. 54. Shacter, E., P.B. Chock, and E.R. Stadtman, Regulation through phosphorylation/dephosphorylation cascade systems. J Biol Chem, 1984. 259(19): p. 12252-9. 55. Ardito, F., et al., The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med, 2017. 40(2): p. 271-280. 56. Nishi, H., K. Hashimoto, and A.R. Panchenko, Phosphorylation in protein-protein binding: effect on stability and function. Structure, 2011. 19(12): p. 1807-15. 57. Christy, B. and D. Nathans, DNA binding site of the growth factor-inducible protein Zif268. Proceedings of the National Academy of Sciences, 1989. 86(22): p. 8737-8741. 58. Swirnoff, A.H. and J. Milbrandt, DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol, 1995. 15(4): p. 2275-87. 59. Liu, C., et al., Suppression of growth and transformation and induction of apoptosis by EGR-1. Cancer Gene Ther, 1998. 5(1): p. 3-28. 60. Lee, S.L., et al., Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science, 1996. 273(5279): p. 1219-21. 61. Schneider-Maunoury, S., et al., Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell, 1993. 75(6): p. 1199-214. 62. Tourtellotte, W.G. and J. Milbrandt, Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3. Nat Genet, 1998. 20(1): p. 87-91. 63. Tourtellotte, W.G., et al., Infertility associated with incomplete spermatogenic arrest and oligozoospermia in Egr4-deficient mice. Development, 1999. 126(22): p. 5061-71. 64. Sukhatme, V.P., et al., A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell, 1988. 53(1): p. 37-43. 65. Granet, C. and P. Miossec, Combination of the pro-inflammatory cytokines IL-1, TNF-α and IL-17 leads to enhanced expression and additional recruitment of AP-1 family members, Egr-1 and NF-κB in osteoblast-like cells. Cytokine, 2004. 26(4): p. 169-177. 66. Dalton, S. and R. Treisman, Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell, 1992. 68(3): p. 597-612. 67. Mullin, M., et al., The RhoA transcriptional program in pre-T cells. FEBS Letters, 2007. 581(22): p. 4309-4317. 68. Davis, S., et al., The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. Journal of Neuroscience, 2000. 20(12): p. 4563-4572. 69. Rolli-Derkinderen, M., et al., ERK and p38 inhibit the expression of 4E-BP1 repressor of translation through induction of Egr-1. Journal of Biological Chemistry, 2003. 278(21): p. 18859-18867. 70. Shan, J., E. Dudenhausen, and M.S. Kilberg, Induction of early growth response gene 1 (EGR1) by endoplasmic reticulum stress is mediated by the extracellular regulated kinase (ERK) arm of the MAPK pathways. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2019. 1866(3): p. 371-381. 71. Li, L., et al., EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene, 2019. 38(35): p. 6241-6255. 72. Myung, E., et al., Expression of early growth response-1 in human gastric cancer and its relationship with tumor cell behaviors and prognosis. Pathol Res Pract, 2013. 209(11): p. 692-9. 73. Calogero, A., et al., The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. Clin Cancer Res, 2001. 7(9): p. 2788-96. 74. Schmidt, K., et al., The lncRNA SLNCR Recruits the Androgen Receptor to EGR1-Bound Genes in Melanoma and Inhibits Expression of Tumor Suppressor p21. Cell Rep, 2019. 27(8): p. 2493-2507.e4. 75. Mohamad, T., et al., EGR1 interacts with TBX2 and functions as a tumor suppressor in rhabdomyosarcoma. Oncotarget, 2018. 9(26): p. 18084-18098. 76. Saha, S.K., et al., Prognostic role of EGR1 in breast cancer: a systematic review. BMB Rep, 2021. 54(10): p. 497-504. 77. Yang, M., et al., Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1. Breast Cancer Res Treat, 2016. 158(2): p. 277-86. 78. Wong, K.M., J. Song, and Y.H. Wong, CTCF and EGR1 suppress breast cancer cell migration through transcriptional control of Nm23-H1. Sci Rep, 2021. 11(1): p. 491. 79. Li, D., et al., Crucial role for early growth response-1 in the transcriptional regulation of miR-20b in breast cancer. Oncotarget, 2013. 4(9): p. 1373-87. 80. Redmond, K.L., et al., T-box 2 represses NDRG1 through an EGR1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene, 2010. 29(22): p. 3252-3262. 81. Yu, J., et al., PTEN regulation by Akt-EGR1-ARF-PTEN axis. Embo j, 2009. 28(1): p. 21-33. 82. Jain, N., et al., Casein Kinase II Associates with Egr-1 and Acts as a Negative Modulator of Its DNA Binding and Transcription Activities in NIH 3T3 Cells*. Journal of Biological Chemistry, 1996. 271(23): p. 13530-13536. 83. Manente, A.G., et al., Coordinated sumoylation and ubiquitination modulate EGF induced EGR1 expression and stability. PLoS One, 2011. 6(10): p. e25676. 84. Pagel, J.I. and E. Deindl, Disease progression mediated by egr-1 associated signaling in response to oxidative stress. Int J Mol Sci, 2012. 13(10): p. 13104-17. 85. Zheng, J., Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett, 2012. 4(6): p. 1151-1157. 86. Gaude, E. and C. Frezza, Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nature Communications, 2016. 7(1): p. 13041. 87. Wang, Y. and M. Dasso, SUMOylation and deSUMOylation at a glance. J Cell Sci, 2009. 122(Pt 23): p. 4249-52. 88. Tatham, M.H., et al., Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem, 2001. 276(38): p. 35368-74. 89. Saitoh, H. and J. Hinchey, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem, 2000. 275(9): p. 6252-8. 90. Lindquist, S., The heat-shock response. Annu Rev Biochem, 1986. 55: p. 1151-91. 91. Pearl, L.H., C. Prodromou, and P. Workman, The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J, 2008. 410(3): p. 439-53. 92. Dorion, S. and J. Landry, Activation of the mitogen-activated protein kinase pathways by heat shock. Cell Stress Chaperones, 2002. 7(2): p. 200-6. 93. Huang, R.-P., et al., Egr-1 inhibits apoptosis during the UV response: correlation of cell survival with Egr-1 phosphorylation. Cell Death & Differentiation, 1998. 5(1): p. 96-106. 94. Gong, X., et al., Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron, 2003. 38(1): p. 33-46. 95. Kang, J., C.B. Gocke, and H. Yu, Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem, 2006. 7: p. 5. 96. Lyons, G.E., et al., Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J Neurosci, 1995. 15(8): p. 5727-38. 97. Mohideen, F., et al., A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nature Structural & Molecular Biology, 2009. 16(9): p. 945-952. 98. Baron, V., et al., Inhibition of Egr-1 expression reverses transformation of prostate cancer cells in vitro and in vivo. Oncogene, 2003. 22(27): p. 4194-204. 99. Baron, V., et al., Antisense to the early growth response-1 gene (Egr-1) inhibits prostate tumor development in TRAMP mice. Ann N Y Acad Sci, 2003. 1002: p. 197-216. 100. Virolle, T., et al., Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J Biol Chem, 2003. 278(14): p. 11802-10. 101. Virolle, T., et al., The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol, 2001. 3(12): p. 1124-8. 102. Yu, J., et al., Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses. Mol Cell, 2004. 15(1): p. 83-94. 103. Cheng, C.T., et al., Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Res, 2016. 76(17): p. 5006-18. 104. Lim, C.P., N. Jain, and X. Cao, Stress-induced immediate-early gene, egr-1, involves activation of p38/JNK1. Oncogene, 1998. 16(22): p. 2915-26. 105. Ye, J., et al., The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. Embo j, 2010. 29(12): p. 2082-96. 106. Anda, S., R. Zach, and B. Grallert, Activation of Gcn2 in response to different stresses. PLoS One, 2017. 12(8): p. e0182143. 107. Yuan, W., et al., General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in Saccharomyces cerevisiae. J Biol Chem, 2017. 292(7): p. 2660-2669. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89223 | - |
| dc.description.abstract | 癌細胞不受控制的增殖和血管化不足導致腫瘤內長期缺乏氧氣及養分而形成代謝壓力,代謝壓力的產生會使癌細胞生長停滯,甚至可能導致腫瘤中心壞死。然而,在這種壓力環境下,癌細胞也可能進行代謝性重整得以存活甚至轉移。實驗室先前研究發現,在包含MDA-MB-231細胞在內的多種乳癌細胞株中,Early Growth Response 1 (EGR1)的基因轉錄在營養剝奪條件下會被誘導上調,但對於EGR1如何調節癌細胞對代謝壓力適應性的機制仍不暸解。
EGR1作為轉錄因子,可以被多種刺激物壓力信號誘導。其會啟動下游基因轉錄以調節癌細胞增殖、轉移、侵襲和腫瘤血管生成。本研究發現在營養剝奪條件下,EGR1促進了乳癌細胞的生存和遷移能力。此外,我們的原位異種移植腫瘤模型顯示敲低EGR1顯著抑制腫瘤生長,表明EGR1也可以促進腫瘤進展。綜合以上,EGR1在乳癌細胞遭受代謝壓力時具有促進癌細胞生長及侵襲的功能,我們推測在代謝壓力下誘導之EGR1會增強細胞對代謝壓力的抵抗能力。 在葡萄糖剝奪下,我們從西方墨點法觀察到EGR1出現一條分子量約100 kDa的條帶,推測是轉譯後修飾的結果,我們首先鎖定已知的EGR1轉譯後修飾:SUMOylation。我們透過免疫沉澱分析確認了EGR1的SUMOylation,並建立EGR1位點突變的乳癌細胞株。我們發現K272R突變使100 kDa的EGR1條帶消失,而K425R突變則會顯著降低EGR1轉錄活性。然而,EGR1的SUMOylation並非代謝壓力所誘導,於是我們轉向研究另一個已知的EGR1轉譯後修飾:磷酸化。透過去磷酸酶試驗結果顯示代謝壓力下誘導的100 kDa EGR1為磷酸化修飾的產物。 目前我們對於代謝壓力下誘導的EGR1在乳癌中致癌作用的分子機制的暸解仍不足夠,後續我們將繼續研究代謝壓力下轉譯後修飾對於EGR1功能的影響。這將有助於我們暸解乳癌細胞如何適應代謝壓力,並對其產生抗性的原因。 | zh_TW |
| dc.description.abstract | Uncontrolled proliferation and insufficient vascularization of cancer cells result in intratumoral metabolic stress. Therefore, cancer cells must enhance adaptive responses to support cell viability. In our previous study, we observed the induction of Early Growth Response 1 (EGR1) under nutrient-deprived conditions in various breast cancer cell lines, including MDA-MB-231 cells However, the specific role of EGR1 under metabolic stress still remains unclear.
EGR1 is a transcription factor which is often decreased or undetectable in human breast cancer. It plays a critical role in regulating cancer cell proliferation, metastasis, invasion, and tumor angiogenesis. EGR1 can be rapidly induced by various stimuli, such as growth factor, cytokines, mitogens, or several stress signals, including hypoxia, radiation and oxidative stress. In this study, we demonstrated that EGR1 promoted cell viability and migratory ability of MDA-MB-231 cells under nutrient-deprived condition. Moreover, our xenograft model showed that suppressing EGR1 significantly inhibited tumor growth. These results revealed that EGR1 promotes tumor progression in breast cancer, and the induction of EGR1 under metabolic stress may contribute to cellular resistance to metabolic stress. In western blot analysis of EGR1 protein, an additional band at 100 kDa was observed when cells were subjected to glucose depletion, suggesting post-translational modifications (PTMs). Among various PTMs, we first focused on SUMOylation. The results of immunoprecipitation confirmed that EGR1 was modified by SUMO1. To identify the potential SUMOylation sites on EGR1, predictive algorithms were used. We then established EGR1 SUMOylation site-mutated cell lines. We found that the additional EGR1 protein at 100 kDa was absent in K272R mutant, while the K425R mutant exhibited significantly reduced transactivation activity of ERE-Luc. However, the SUMOylation of EGR1 was not induced by metabolic stress. Therefore, our attention shifted to phosphorylation. In vitro dephosphorylation assay revealed that EGR1 undergoes phosphorylation under glucose, arginine or glutamine deprivation. The molecular mechanisms underlying the tumor-promoting effect of EGR1 in breast cancer under metabolic stress remains unknown. Further investigations are necessary to clarify the role of EGR1 and the various types of PTMs it undergoes. We are eager to understand how these PTMs affect EGR1 transcriptional activation and subsequently regulate EGR1 functions in response to metabolic stress. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:10:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-05T16:10:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 縮寫表 v 圖目錄 x 附圖目錄 xi 第一章、前言 1 1. 1 乳癌 1 1. 2 腫瘤內代謝壓力 4 1. 3 轉譯後修飾 6 1.3.1 小泛素修飾 7 1.3.2 磷酸化 9 1. 4 早期生長反應家族(Early Growth Response Family) 10 1. 5 Early Growth Response 1 10 1.5.1 EGR1的介紹 10 1.5.2 EGR1的誘導機制 11 1.5.3 EGR1與癌症 12 1.5.4 EGR1與乳癌 12 1.5.5 EGR1的轉譯後修飾 13 第二章、研究目的 14 第三章、研究方法 15 3. 1 細胞培養 15 3. 2 細胞轉染 16 3. 3 RNA基因干擾 16 3.3.1 siRNA轉染試驗 16 3.3.2 shRNA轉染試驗 16 3. 4 慢病毒轉導與篩選 16 3. 5 蛋白質萃取及定量 17 3. 6 西方墨點法 18 3. 7 細胞核細胞質分離 19 3. 8 酸性磷酸酶試驗(Acid phosphatase test) 19 3. 9 Transwell細胞遷移試驗 19 3. 10 海馬生物能量分析XF Cell Mito Stress Test 20 3. 11 質體建構及製備 20 3.11.1 pCMV-Tag2A-EGR1突變株 20 3.11.2 N174-MCS-flag-EGR1突變株 22 3. 12 免疫螢光染色 23 3. 13 免疫沈澱法 23 3. 14 體外去磷酸化試驗 (In vitro dephosphorylation assay) 24 3. 15 螢光素酶報導基因分析 24 3. 16 異種移植試驗 25 3. 17 腫瘤組織蛋白質萃取 25 3. 18 統計分析 25 第四章、結果 26 4. 1 EGR1在代謝壓力下被誘導並分佈於細胞核中 26 4. 2 EGR1在代謝壓力下促進乳癌細胞存活 26 4. 3 EGR1促進乳癌細胞遷移能力 26 4. 4 EGR1抑制乳癌細胞進行粒線體氧化磷酸化 26 4. 5 EGR1促進乳癌細胞腫瘤發展 27 4. 6 EGR1在代謝壓力下會被SUMO修飾 27 4. 7 EGR1 SUMO1修飾不影響蛋白質降解 28 4. 8 利用生物資訊分析平台預測EGR1 SUMOylation之位點 28 4. 9 建立EGR1 SUMOylation位點突變之細胞株 29 4. 10 K272是SUMO1修飾EGR1的位點 29 4. 11 EGR1 SUMO修飾位點突變不影響其分子量大小及其定位 30 4. 12 EGR1 K272位點突變不影響其轉錄活性 30 4. 13 EGR1在代謝壓力下進行磷酸化 31 4. 14 ROS與p38調控EGR1表現量 31 4. 15 GCN2調控EGR1磷酸化 31 第五章、結論與討論 33 圖 39 參考文獻 56 附錄圖 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 小泛素化 | zh_TW |
| dc.subject | 轉譯後修飾 | zh_TW |
| dc.subject | EGR1 | zh_TW |
| dc.subject | 代謝壓力 | zh_TW |
| dc.subject | breast cancer | en |
| dc.subject | metabolic stress | en |
| dc.subject | EGR1 | en |
| dc.subject | post-transcriptional modification | en |
| dc.subject | SUMOylation | en |
| dc.subject | phosphorylation | en |
| dc.title | 探討在乳癌代謝壓力反應中EGR1的轉譯後修飾對其功能之影響 | zh_TW |
| dc.title | Functional Characterization of Post-Translational Modifications on Early Growth Response 1 (EGR1) in Breast Cancer Cells under Metabolic Stress | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林亮音;蘇剛毅;楊雅倩;卓爾婕 | zh_TW |
| dc.contributor.oralexamcommittee | LIANG-IN LIN;KANG-YI SU;YA-CHIEN YANG;ER-CHIEH CHO | en |
| dc.subject.keyword | 乳癌,代謝壓力,EGR1,轉譯後修飾,小泛素化,磷酸化, | zh_TW |
| dc.subject.keyword | breast cancer,metabolic stress,EGR1,post-transcriptional modification,SUMOylation,phosphorylation, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202302228 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-02 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| dc.date.embargo-lift | 2028-08-01 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 10.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
