請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89222完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭靜穎 | zh_TW |
| dc.contributor.advisor | Ching-Ying Kuo | en |
| dc.contributor.author | 薛涵禧 | zh_TW |
| dc.contributor.author | Han-Xi Xue | en |
| dc.date.accessioned | 2023-09-05T16:10:42Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | 1. Globocan 2020. Graph production: Global Cancer. Observatory(http:// gco.iarc.fr)
2. 衛生福利部統計處網站:110 年國人死因統計結果分析 3. Harbeck, N., et al., Breast cancer. Nature Reviews Disease Primers, 2019. 5(1): p. 66. 4. Hanker, A.B., D.R. Sudhan, and C.L. Arteaga, Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell, 2020. 37(4): p. 496-513. 5. Harbeck, N., et al., Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: updated efficacy and Ki-67 analysis from the monarchE study. Annals of Oncology, 2021. 32(12): p. 1571-1581. 6. Hamilton, E., et al., Targeting HER2 heterogeneity in breast cancer. Cancer Treatment Reviews, 2021. 100: p. 102286. 7. Bou Zerdan, M., et al., Triple Negative Breast Cancer: Updates on Classification and Treatment in 2021. Cancers, 2022. 14(5): p. 1253. 8. Lehmann, B.D., et al., Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLOS ONE, 2016. 11(6): p. e0157368. 9. Mandapati, A. and K.E. Lukong, Triple negative breast cancer: approved treatment options and their mechanisms of action. Journal of Cancer Research and Clinical Oncology, 2022. 10. Peto, R., et al., Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet, 2012. 379(9814): p. 432-44. 11. Bianchini, G., et al., Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nature Reviews Clinical Oncology, 2022. 19(2): p. 91-113. 12. Beckers, R.K., et al., Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology, 2016. 69(1): p. 25-34. 13. Mittendorf, E.A., et al., PD-L1 Expression in Triple-Negative Breast Cancer. Cancer Immunology Research, 2014. 2(4): p. 361-370. 14. Kwapisz, D., Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunology, Immunotherapy, 2021. 70(3): p. 607-617. 15. Hahnen, E., et al., Germline Mutations in Triple-Negative Breast Cancer. Breast Care (Basel), 2017. 12(1): p. 15-19. 16. Cortesi, L., H.S. Rugo, and C. Jackisch, An Overview of PARP Inhibitors for the Treatment of Breast Cancer. Targeted Oncology, 2021. 16(3): p. 255-282. 17. Robson, M., et al., Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. New England Journal of Medicine, 2017. 377(6): p. 523-533. 18. Drago, J.Z., S. Modi, and S. Chandarlapaty, Unlocking the potential of antibody–drug conjugates for cancer therapy. Nature Reviews Clinical Oncology, 2021. 18(6): p. 327-344. 19. Bardia, A., et al., Efficacy and Safety of Anti-Trop-2 Antibody Drug Conjugate Sacituzumab Govitecan (IMMU-132) in Heavily Pretreated Patients With Metastatic Triple-Negative Breast Cancer. Journal of Clinical Oncology, 2017. 35(19): p. 2141-2148. 20. Telarovic, I., R.H. Wenger, and M. Pruschy, Interfering with Tumor Hypoxia for Radiotherapy Optimization. Journal of Experimental & Clinical Cancer Research, 2021. 40(1): p. 197. 21. Wang, H., et al., Cancer Radiosensitizers. Trends in Pharmacological Sciences, 2018. 39(1): p. 24-48. 22. Shah, C., Z. Al-Hilli, and F. Vicini, Advances in Breast Cancer Radiotherapy: Implications for Current and Future Practice. JCO Oncology Practice, 2021. 17(12): p. 697-706. 23. Gradishar, W.J., et al., NCCN Guidelines Insights: Breast Cancer, Version 1.2017. Journal of the National Comprehensive Cancer Network J Natl Compr Canc Netw, 2017. 15(4): p. 433-451. 24. Salerno, K.E., NCCN Guidelines Update: Evolving Radiation Therapy Recommendations for Breast Cancer. Journal of the National Comprehensive Cancer Network J Natl Compr Canc Netw, 2017. 15(5S): p. 682-684. 25. Kim, K.S., et al., Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery. Radiat Oncol J, 2016. 34(2): p. 81-87. 26. CancerConnect_Breast_The Role of Radiation Treatment in Breast Cancer. 27. Wang, J., et al., Biological subtype predicts locoregional recurrence after postmastectomy radiotherapy in Chinese breast cancer patients. Cancer Medicine, 2020. 9(7): p. 2427-2434. 28. Walcher, L., et al., Cancer Stem Cells—Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Frontiers in Immunology, 2020. 11. 29. Lagadec, C., et al., Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Research, 2010. 12(1): p. R13. 30. Arnold, C.R., et al., The Role of Cancer Stem Cells in Radiation Resistance. Frontiers in Oncology, 2020. 10. 31. Matthews, H.K., C. Bertoli, and R.A.M. de Bruin, Cell cycle control in cancer. Nature Reviews Molecular Cell Biology, 2022. 23(1): p. 74-88. 32. Lonati, L., et al., Radiation-induced cell cycle perturbations: a computational tool validated with flow-cytometry data. Scientific Reports, 2021. 11(1): p. 925. 33. Huang, R.-X. and P.-K. Zhou, DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 60. 34. Noubissi, F.K., et al., Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay. Scientific Reports, 2021. 11(1): p. 8945. 35. D’Arcy, M.S., Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 2019. 43(6): p. 582-592. 36. Jan, R. and G.E. Chaudhry, Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull, 2019. 9(2): p. 205-218. 37. Akpolat, M., et al., X irradiation induced colonic mucosal injury and the detection of apoptosis through PARP-1/p53 regulatory pathway. Biomedicine & Pharmacotherapy, 2020. 127: p. 110134. 38. Pavlova, N.N., J. Zhu, and C.B. Thompson, The hallmarks of cancer metabolism: Still emerging. Cell Metab, 2022. 34(3): p. 355-377. 39. Yu, Y., et al., Novel insight into metabolic reprogrammming in cancer radioresistance: A promising therapeutic target in radiotherapy. Int J Biol Sci, 2023. 19(3): p. 811-828. 40. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33. 41. Bhatt, A.N., et al., Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells. BMC Cancer, 2015. 15(1): p. 335. 42. Lusis, A.J., A.D. Attie, and K. Reue, Metabolic syndrome: from epidemiology to systems biology. Nature Reviews Genetics, 2008. 9(11): p. 819-830. 43. Buono, G., et al., Metabolic syndrome and early stage breast cancer outcome: results from a prospective observational study. Breast Cancer Research and Treatment, 2020. 182(2): p. 401-409. 44. Benn, M., et al., High body mass index and cancer risk—a Mendelian randomisation study. European Journal of Epidemiology, 2016. 31(9): p. 879-892. 45. Avgerinos, K.I., et al., Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism, 2019. 92: p. 121-135. 46. Protani, M., M. Coory, and J.H. Martin, Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Research and Treatment, 2010. 123(3): p. 627-635. 47. Pearson-Stuttard, J., et al., Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol, 2018. 6(2): p. 95-104. 48. Gunter, M.J., et al., Insulin, Insulin-Like Growth Factor-I, and Risk of Breast Cancer in Postmenopausal Women. JNCI: Journal of the National Cancer Institute, 2009. 101(1): p. 48-60. 49. Lawlor, D.A., G.D. Smith, and S. Ebrahim, Hyperinsulinaemia and Increased Risk of Breast Cancer: Findings From the British Women's Heart and Health Study. Cancer Causes & Control, 2004. 15(3): p. 267-275. 50. Shanik, M.H., et al., Insulin Resistance and Hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Care, 2008. 31(Supplement_2): p. S262-S268. 51. Gallagher, E.J. and D. LeRoith, Hyperinsulinaemia in cancer. Nature Reviews Cancer, 2020. 20(11): p. 629-644. 52. Perseghin, G., et al., Insulin resistance/hyperinsulinemia and cancer mortality: the Cremona study at the 15th year of follow-up. Acta Diabetologica, 2012. 49(6): p. 421-428. 53. Gunter, M.J., et al., Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res, 2015. 75(2): p. 270-4. 54. Tsujimoto, T., H. Kajio, and T. Sugiyama, Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: A population-based observational study. International Journal of Cancer, 2017. 141(1): p. 102-111. 55. Balaban, S., et al., Obesity and cancer progression: is there a role of fatty acid metabolism? Biomed Res Int, 2015. 2015: p. 274585. 56. Jin, Z., Y.D. Chai, and S. Hu, Fatty Acid Metabolism and Cancer, in Cancer Metabolomics: Methods and Applications, S. Hu, Editor. 2021, Springer International Publishing: Cham. p. 231-241. 57. Nagarajan, S.R., L.M. Butler, and A.J. Hoy, The diversity and breadth of cancer cell fatty acid metabolism. Cancer & Metabolism, 2021. 9(1): p. 2. 58. Koundouros, N. and G. Poulogiannis, Reprogramming of fatty acid metabolism in cancer. British Journal of Cancer, 2020. 122(1): p. 4-22. 59. Xiong, J., Fatty Acid Oxidation in Cell Fate Determination. Trends in Biochemical Sciences, 2018. 43(11): p. 854-857. 60. Du, Q., et al., PGC1α/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation. Cancer Sci, 2019. 110(6): p. 2050-2062. 61. Han, S., et al., CPT1A/2-Mediated FAO Enhancement—A Metabolic Target in Radioresistant Breast Cancer. Frontiers in Oncology, 2019. 9. 62. Tan, Z., et al., Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics, 2018. 8(9): p. 2329-2347. 63. Zhan, N., et al., Inhibition of FASN expression enhances radiosensitivity in human non-small cell lung cancer. Oncol Lett, 2018. 15(4): p. 4578-4584. 64. Chuang, H.-Y., et al., Fatty Acid Inhibition Sensitizes Androgen-Dependent and -Independent Prostate Cancer to Radiotherapy via FASN/NF-κB Pathway. Scientific Reports, 2019. 9(1): p. 13284. 65. Su, Y.-H., et al., Obesity promotes radioresistance through SERPINE1-mediated aggressiveness and DNA repair of triple-negative breast cancer. Cell Death & Disease, 2023. 14(1): p. 53. 66. Ramos, C.A., et al., A Non-canonical Function of BMAL1 Metabolically Limits Obesity-Promoted Triple-Negative Breast Cancer. iScience, 2020. 23(2): p. 100839. 67. Gunn, A. and J.M. Stark, I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol, 2012. 920: p. 379-91. 68. Subramanian, A., et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005. 102(43): p. 15545-15550. 69. Tirichen, H., et al., Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Frontiers in Physiology, 2021. 12. 70. Khandekar, M.J., P. Cohen, and B.M. Spiegelman, Molecular mechanisms of cancer development in obesity. Nature Reviews Cancer, 2011. 11(12): p. 886-895. 71. Renehan, A.G., M. Zwahlen, and M. Egger, Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer, 2015. 15(8): p. 484-98. 72. Berger, E.R. and N.M. Iyengar, Obesity and Energy Balance Considerations in Triple-Negative Breast Cancer. The Cancer Journal, 2021. 27(1): p. 17-24. 73. Newman, G. and R.R. Gonzalez-Perez, Leptin–cytokine crosstalk in breast cancer. Molecular and Cellular Endocrinology, 2014. 382(1): p. 570-582. 74. Senapati, P., et al., Hyperinsulinemia promotes aberrant histone acetylation in triple-negative breast cancer. Epigenetics & Chromatin, 2019. 12(1): p. 44. 75. Renehan, A.G., M. Zwahlen, and M. Egger, Adiposity and cancer risk: new mechanistic insights from epidemiology. Nature Reviews Cancer, 2015. 15(8): p. 484-498. 76. Kolb, H., et al., Insulin: too much of a good thing is bad. BMC Medicine, 2020. 18(1): p. 224. 77. Bertacca, A., et al., Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts. Metabolism, 2005. 54(12): p. 1687-93. 78. Catalano, K.J., et al., Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain. PLoS One, 2014. 9(9): p. e108693. 79. Chiefari, E., et al., Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci, 2021. 22(20). 80. Poloz, Y. and V. Stambolic, Obesity and cancer, a case for insulin signaling. Cell death & disease, 2015. 6: p. e2037. 81. Ferguson, R.D., et al., Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Research, 2012. 14(1): p. R8. 82. Pollak, M., The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature Reviews Cancer, 2012. 12(3): p. 159-169. 83. McCann, E., J. O'Sullivan, and S. Marcone, Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl Oncol, 2021. 14(1): p. 100905. 84. Ghaffari, P., A. Mardinoglu, and J. Nielsen, Cancer Metabolism: A Modeling Perspective. Frontiers in Physiology, 2015. 6. 85. Tang, L., et al., Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res, 2018. 37(1): p. 87. 86. Shah, M.A. and H.A. Rogoff, Implications of reactive oxygen species on cancer formation and its treatment. Semin Oncol, 2021. 48(3): p. 238-245. 87. Wallace, D.C., Mitochondria and cancer. Nature Reviews Cancer, 2012. 12(10): p. 685-698. 88. Fan, W., et al., mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination. Genes Dev, 2012. 26(4): p. 384-94. 89. Lynam-Lennon, N., et al., Altered Mitochondrial Function and Energy Metabolism Is Associated with a Radioresistant Phenotype in Oesophageal Adenocarcinoma. PLOS ONE, 2014. 9(6): p. e100738. 90. Linher-Melville, K., et al., Establishing a relationship between prolactin and altered fatty acid β-Oxidation via carnitine palmitoyl transferase 1 in breast cancer cells. BMC Cancer, 2011. 11(1): p. 56. 91. Pucci, S., et al., Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer. Oncotarget, 2016. 7(15). 92. Pike, L.S., et al., Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2011. 1807(6): p. 726-734. 93. Paumen, M.B., et al., Inhibition of Carnitine Palmitoyltransferase I Augments Sphingolipid Synthesis and Palmitate-induced Apoptosis*. Journal of Biological Chemistry, 1997. 272(6): p. 3324-3329. 94. Qu, Q., et al., Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death & Disease, 2016. 7(5): p. e2226-e2226. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89222 | - |
| dc.description.abstract | 代謝症候群會增加人們罹患肥胖、第二型糖尿病、心血管疾病的風險,是目前全世界棘手的健康問題。患有代謝症候群的人們時常伴隨著高胰島素血症的發生,而高胰島素血症也會促進乳腺癌進程。多項研究指出肥胖會使乳腺癌病患對放射線治療產生抗性且病患也會有預後較差之情形。三陰性乳腺癌(TNBC)約佔所有乳腺癌患者的15-20%,因其缺乏有效之治療靶點,故目前以手術搭配化學治療與放射線治療為主。然而,代謝症候群和乳腺癌病患產生放射線抗性之原因與詳細機制目前仍不清楚。
實驗室於過往研究中建立了一個飲食誘導肥胖的EO771乳腺癌同源小鼠模型,透過生化檢測觀察到,相較於正常飲食之小鼠,由高脂肪飲食所誘導之肥胖小鼠血中胰島素含量較高,顯示高胰島素血症的發生。另外,高脂肪飲食不但會誘使小鼠腫瘤的生長,也增加小鼠腫瘤對放射線治療的抗性。為了進一步探討由肥胖所誘導之高胰島素血症與放射線抗性的關聯與詳細機制,將多個TNBC細胞株長期培養於高胰島素環境(CI)中,以觀察其DNA損傷反應以及對放射線抗的感受性。首先,我們確認這些CI細胞對額外之胰島素刺激已不再有反應。另外,CI細胞皆表現較佳之生長能力且對放射線具有抗性。除此之外,我們發現MDA-MB-231-CI細胞經放射線照射過後,DNA雙股斷裂有減少的情形。因此,我們推測CI TNBC細胞產生放射線抗性的機制,很有可能是因為在放射線照射後較少的DNA損傷產生。 接著,我們進一步利用轉錄體分析觀察到CI細胞於粒線體代謝與脂肪酸氧化相關代謝路徑有上調的趨勢。後續也證明MDA-MB-231-CI細胞會增加其粒線體活性,且伴隨著細胞內及粒線體中活性氧化物質之積累。最後,透過藥物Etomoxir抑制MDA-MB-231-CI細胞中脂肪酸氧化之活性則會促進放射線誘導的DNA雙股斷裂增加並且提升MDA-MB-231-CI細胞對於放射線的敏感性。 綜上所述,CI TNBC細胞可能藉由粒線體與脂肪酸氧化之活性而產生放射抗性,而CI TNBC細胞與粒線體及脂肪酸氧化活性之關聯,以及其造成放射線抗性之詳細機制仍需進一步研究,以期待能更清楚了解高胰島素血症所造成乳腺癌細胞產生放射線抗性之分子機制。 | zh_TW |
| dc.description.abstract | Metabolic syndrome is a growing public health concern worldwide. It is associated with obesity, type 2 diabetes and is characterized by hyperinsulinemia which has been demonstrated to promote breast cancer progression. In addition, some studies have shown that obesity promotes breast cancer radioresistance and has poor therapeutic outcome. Triple-negative breast cancer (TNBC) is a subtype of breast cancer that accounts for 15-20% of all cases and is characterized by low expression of estrogen, progesterone, and HER2 receptors, resulting in limited therapeutic strategies. The mainstay treatment for TNBC remains surgery followed by cytotoxic chemotherapy and radiotherapy. However, the link between metabolic syndrome and radioresistance in breast cancer remains unclear.
According to our previous study, we established a high-fat diet (HFD)-induced obesity EO771 syngeneic breast cancer model. Through biochemical analysis, we observed that mice fed with HFD had higher fasting insulin level in mice comparing to those fed with control diet, indicating the development of hyperinsulinemia. We also showed that HFD not only promoted tumor growth but also exhibited radioresistance after radiotherapy. To investigate the relationship and the underlying mechanism between obesity-associated hyperinsulinemia and tumor radioresistance, several chronic insulin (CI)-treated TNBC cell lines have been established for characterizing the DNA damage response and radiosensitivity. First, we confirmed that these CI TNBC cells, were no longer responsive to additional insulin stimulation. In addition, these CI cells exhibited higher cell proliferation rate and were more radioresistant. Besides, we observed that MDA-MB-231-CI cells had less DNA double-strand breaks after irradiation, suggesting that these CI TNBC cells were resistant to irradiation possibly due to less DNA damage production. Furthermore, we conducted transcriptomic analysis and observed an upregulation of metabolic pathways related to mitochondrial metabolism and fatty acid oxidation in CI cells. Subsequently, we confirmed that MDA-MB-231-CI cells exhibited increased mitochondrial activity, accompanied by the accumulation of intracellular and mitochondrial reactive oxygen species. Finally, by inhibiting fatty acid oxidation activity with a CPT1 inhibitor, etomoxir, we found an increase in DNA double-strand breaks in MDA-MB-231-CI cells following radiation exposure. Additionally, etomoxir resensitized MDA-MB-231-CI cells to radiation. In summary, CI TNBC cells might develop radioresistance through the activation of mitochondrial and fatty acid oxidation activities. The association between CI TNBC cells, mitochondrial function, fatty acid oxidation activity, and the detailed mechanisms underlying radioresistance require further investigation to acquire a clearer understanding of the molecular mechanisms by which hyperinsulinemia contributes to radioresistance in breast cancer cells. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:10:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-05T16:10:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………...……..ⅰ
中文摘要…………………………………………………………………...…...……..ⅱ English abstract…………………………………….……….. …………….….……..ⅳ List of Abbreviation……………………………...……...………………….………..ⅵ Table of contents……………………………………………….………………….....ⅸ List of Figure……………………………..……………...……………..………...….ⅻ List of Appendix………………………………………………..…………...………ⅹⅳ Chapter 1 Introduction………………………………………….………………..… 1 1.1 Breast cancer………...………………………………………………..…1 1.2 Triple-negative breast cancer (TNBC)………………………….……...2 1.2.1 Introduction of triple-negative breast cancer (TNBC)…………2 1.2.2 Mechanism and application of radiotherapy in breast cancer…5 1.2.3 The difficulty of radiotherapy for breast cancer……..…………6 1.2.4 The mechanism of radioresistance in cancer……………………7 1.3 Hyperinsulinemia and cancer……………………………...………….11 1.3.1 Metabolic syndrome and the development of cancer……….....11 1.3.2 Hyperinsulinemia, insulin resistance, and cancer progression.12 1.4 Fatty acid metabolism, cancer progression and radioresistance….…13 1.4.1 Tumor fatty acid metabolism and cancer progression…...……13 1.4.2 Tumor fatty acid metabolism and radioresistance……...……..14 1.5 High-fat diet-induced obesity promoted radioresistance and exhibited elevated fasting insulin levels in TNBC……...………………………..15 Chapter 2 Specific aim………………………………………………………………17 Chapter 3. Materials and Methods…………………………………………………17 3.1 Cell culture……………………………...……………………..……….18 3.2 Ionizing radiation…………………………………….……………..….19 3.3 Clonogenic survival assay ………………..………………..…………..19 3.4 Cell viability assay…………………………………………...………....20 3.5 Immunofluorescence staining for IR-induced foci formation…….....20 3.6 SDS-PAGE and Western blot ………………………….……………...21 3.7 Neutral Comet assay…………………………….…………………..…23 3.8 Cell cycle assay………………………………………………...…….…24 3.9 Seahorse - Mitostress assay……………...………………………..…...25 3.10 Cellular ROS assay…………………………………………………...25 3.11 Mitochondrial ROS assay…………………………………………….26 3.12 Cell apoptosis assay………………………………………………...…26 3.13 I-SceI-based DSB repair assay……………………………………….27 3.14 RNA extraction………………………………………………………..27 3.15 RNA-sequencing and gene expression profile analysis…………...…28 3.16 Statistical analysis………………………………………………...…..28 Chapter 4 Results 4.1 Chronic-insulin treated TNBC cells promoted cell growth and enhanced radioresistance………………………………...…………..30 4.2 Chronic insulin treatment might attenuate apoptosis in TNBC cells after IR treatment…………………….…………………………........31 4.3 Chronic insulin treatment does not alter the cell cycle distribution in TNBC cells after IR treatment…………………………….…............32 4.4 Chronic insulin treatment decreased DNA double-strand breaks in TNBC cells after IR treatment……………………….........................32 4.5 Short-term insulin treatment for U2OS cells does not alter the HR and NHEJ repair efficiency…………………………………...….……….33 4.6 Chronic insulin treatment enhanced mitochondrial activity and ROS accumulation in TNBC cells………………………………………….34 4.7 The radioresistance of chronic insulin-treated TNBC cells was attributed to fatty acid oxidation………………………………….…36 Chapter 5 Conclusion………………………………………………….....................39 Chapter 6 Discussion……………………………………………………………..…40 Figures……………………………………………………………………….………47 Appendix……………………………………………………………………….……68 Reference…………………………………………………..……………...................72 | - |
| dc.language.iso | en | - |
| dc.subject | 三陰性乳腺癌 | zh_TW |
| dc.subject | DNA損傷反應 | zh_TW |
| dc.subject | 放射線抗性 | zh_TW |
| dc.subject | 脂肪酸氧化 | zh_TW |
| dc.subject | 高胰島素血症 | zh_TW |
| dc.subject | radioresistance | en |
| dc.subject | fatty acid oxidation | en |
| dc.subject | hyperinsulinemia | en |
| dc.subject | Triple-negative breast cancer | en |
| dc.subject | DNA damage response | en |
| dc.title | 探討長期高胰島素培養對於三陰性乳癌細胞放射線感受性的影響 | zh_TW |
| dc.title | Investigating the Effects of Chronic Insulin Treatment on the Susceptibility of Triple-Negative Breast Cancer Cells to Ionizing Radiation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林亮音;蘇剛毅;楊雅倩;卓爾婕 | zh_TW |
| dc.contributor.oralexamcommittee | Liang-In Lin;Kang-Yi Su;Ya-Chien Yang;Er-Chieh Cho | en |
| dc.subject.keyword | 三陰性乳腺癌,高胰島素血症,脂肪酸氧化,放射線抗性,DNA損傷反應, | zh_TW |
| dc.subject.keyword | Triple-negative breast cancer,hyperinsulinemia,fatty acid oxidation,radioresistance,DNA damage response, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202302229 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
