請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89220
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡欣祐 | zh_TW |
dc.contributor.advisor | Hsin-Yue Tsai | en |
dc.contributor.author | 李柏緒 | zh_TW |
dc.contributor.author | Po-Hsu Li | en |
dc.date.accessioned | 2023-09-05T16:10:10Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-05 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-07 | - |
dc.identifier.citation | Bohmert, K., et al., AGO1 defines a novel locus of Arabidopsis controlling leaf development. Embo j, 1998. 17(1): p. 170-80.
Yigit, E., et al., Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell, 2006. 127(4): p. 747-57. Wu, J., et al., Argonaute proteins: Structural features, functions and emerging roles. J Adv Res, 2020. 24: p. 317-324. Youngman, E.M. and J.M. Claycomb, From early lessons to new frontiers: the worm as a treasure trove of small RNA biology. Front Genet, 2014. 5: p. 416. Hoogstrate, S.W., et al., Nematode endogenous small RNA pathways. Worm, 2014. 3: p. e28234. Blumenfeld, A.L. and A.M. Jose, Reproducible features of small RNAs in C. elegans reveal NU RNAs and provide insights into 22G RNAs and 26G RNAs. Rna, 2016. 22(2): p. 184-92. Faehnle, C.R. and L. Joshua-Tor, Argonautes confront new small RNAs. Curr Opin Chem Biol, 2007. 11(5): p. 569-77. Höck, J. and G. Meister, The Argonaute protein family. Genome Biol, 2008. 9(2): p. 210. Rashid, U.J., et al., Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function. J Biol Chem, 2007. 282(18): p. 13824-32. Kaya, E., et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci U S A, 2016. 113(15): p. 4057-62. Song, J.J., et al., Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004. 305(5689): p. 1434-7. Lingel, A., et al., Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol, 2004. 11(6): p. 576-7. Xiao, Y., et al., Structural basis for RNA slicing by a plant Argonaute. Nat Struct Mol Biol, 2023. 30(6): p. 778-784. Doxzen, K.W. and J.A. Doudna, DNA recognition by an RNA-guided bacterial Argonaute. PLoS One, 2017. 12(5): p. e0177097. Anzelon, T.A., et al., Structural basis for piRNA targeting. Nature, 2021. 597(7875): p. 285-289. Gu, W., et al., Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell, 2009. 36(2): p. 231-44. Claycomb, J.M., et al., The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell, 2009. 139(1): p. 123-34. Cecere, G., et al., Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat Struct Mol Biol, 2014. 21(4): p. 358-65. Shirayama, M., et al., piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell, 2012. 150(1): p. 65-77. Seth, M., et al., The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev Cell, 2013. 27(6): p. 656-63. Nguyen, D.A.H. and C.M. Phillips, Arginine methylation promotes siRNA-binding specificity for a spermatogenesis-specific isoform of the Argonaute protein CSR-1. Nat Commun, 2021. 12(1): p. 4212. Charlesworth, A.G., et al., Two isoforms of the essential C. elegans Argonaute CSR-1 differentially regulate sperm and oocyte fertility. Nucleic Acids Res, 2021. 49(15): p. 8836-8865. Schirle, N.T. and I.J. MacRae, The crystal structure of human Argonaute2. Science, 2012. 336(6084): p. 1037-40. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589. Mirdita, M., et al., ColabFold: making protein folding accessible to all. Nat Methods, 2022. 19(6): p. 679-682. Yang, F.J., et al., phiC31 integrase for recombination-mediated single-copy insertion and genome manipulation in Caenorhabditis elegans. Genetics, 2022. 220(2). Schedl, T. and J. Kimble, fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics, 1988. 119(1): p. 43-61. Yip, K.M., et al., Atomic-resolution protein structure determination by cryo-EM. Nature, 2020. 587(7832): p. 157-161. Carroni, M. and H.R. Saibil, Cryo electron microscopy to determine the structure of macromolecular complexes. Methods, 2016. 95: p. 78-85. Schmidt, A., et al., Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011. 67(Pt 4): p. 424-8. García-Nafría, J. and C.G. Tate, Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem Soc Trans, 2021. 49(5): p. 2345-2355. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89220 | - |
dc.description.abstract | Argoanute蛋白是一個高度序列保守的蛋白質,它被廣泛地發現在不同生物體之間,包含了人類、果蠅、線蟲以及細菌。而做為一個在RNA干擾的過程裡,於RNA induced silencing complex (RISC)當中扮演重要的功能性角色,Argoanute在秀麗隱桿線蟲之中有超過20個蛋白質家族成員,它們分別都在小RNA pathway裡面扮演著不同功能的角色。而當中,CSR-1,一個隸屬於秀麗隱桿線蟲的次級Argoanute蛋白,它在近年來科學家們廣泛的研究中被認為是線蟲當中相當重要的蛋白,特別的是它可以進入細胞核中去調控其相關的基因的表現量,甚至會去影響到了染色體分離的過程,這些功能都說明了CSR-1對於秀麗隱桿線蟲的生殖能力的重要性,當CSR-1突變時,會導致線蟲有嚴重的不孕情形產生。然而對於CSR-1蛋白質本身的結構功能上的理解還並未透徹。
因此,在這篇研究裡,我們利用昆蟲細胞以及昆蟲桿狀病毒去製造CSR-1a的重組蛋白並加以純化,期望能夠利用冷凍電子顯微鏡的方式將此重組蛋白進行蛋白質結構的分析。 我們也進一步的製造出了蛋白質結構域置換的基因改造線蟲,利用製造額外一條CSR-1a的基因並加以改造成帶有WAGO-1的PAZ結構域的重組基因,WAGO-1是線蟲中具有抑制基因表現的次級Argonaute蛋白,這樣子我們就可以順利的深入研究CSR-1的蛋白結構域對其功能的影響而不會影響到線蟲本身的生殖能力。 除此之外,我們也利用了近年來蓬勃發展的蛋白質結構預測的電腦軟體,將秀麗隱桿線蟲的CSR-1、WAGO-1以及CSR-1 (WAGO-1 PAZ)的蛋白質進行立體結構模擬分析,並且也進一步的進行蛋白質結構上的差異比對分析,從我們比對分析的結果,可以得知CSR-1相對於WAGO-1的結構上存在差異性,即便兩者同是隸屬於線蟲當中的次級蛋白質,藉由這樣的結果或許可以進一步的知曉並分析CSR-1為何如此的重要以及其特別的功能性。 | zh_TW |
dc.description.abstract | Argonaute proteins are highly conserved across different species and play a crucial role in targeted mRNA decay through their association with small interfering RNAs, a process known as RNA interference. The Argonaute protein family is characterized by the presence of two domains: the PAZ domain and the PIWI domain. In the nematode Caenorhabditis elegans, there are over 20 different Argonaute proteins, with CSR-1 being the sole protein required for fertility and embryo survival. Unlike its conventional function in targeted mRNA degradation, CSR-1 is also involved in promoting the expression of its target genes by recruiting RNA polymerase II in the nucleus. Interestingly, CSR-1 exhibits two isoforms: CSR-1a, a longer isoform that regulates spermatogenic genes, and CSR-1b, a shorter isoform that regulates oogenic genes. The unique differences in CSR-1 compared to other gene silencing Argonautes have yet to be fully understood.
In this study, our primary focus is to determine the three-dimensional protein structure of CSR-1a using cryo-electron microscopy (cryo-EM). To achieve this, we expressed recombinant CSR-1a protein utilizing the insect cell baculovirus system, following a previously established protocol. We also modified the purification step in order to get pure soluble recombinant protein. Additionally, we conducted domain swapping experiments by exchanging the PAZ domain of CSR-1a with the PAZ domain of WAGO-1. WAGO-1 is a secondary Argonaute protein known for its role in gene silencing. We introduced this chimeric variant of CSR-1a, which contains the PAZ domain of WAGO-1, into worms that carried a single-copy of CSR-1a on chromosome II. Through this approach, we were able to bypass the infertility phenotype caused by endogenous csr-1 mutation and successfully examine the expression of both CSR-1a protein and its chimeric variant. Furthermore, we employed computational methods to predict the protein models of various Argonaute proteins, including CSR-1a, WAGO-1, and CSR-1a (WAGO-1 PAZ). By comparing these predicted models, we observed distinct structural differences between CSR-1a and WAGO-1, providing intriguing insights into the diverse functions of these two Argonaute proteins with opposing roles. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:10:10Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-05T16:10:10Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員會審定書 i
Acknowledgements ii 摘要 iii Abstract v Table of contents vii Chapter 1 Introduction 1 1.1 Argonaute protein 1 1.2 Domain function and protein structure of Argonaute protein 2 1.3 C. elegans Argonaute CSR-1 and its compelling interaction with WAGO-1 4 Chapter 2 Material and Methods 9 2.1 Cell lines and culture conditions 9 2.2 Baculovirus production, transfection and infection conditions 9 2.3 Recombinant protein extraction 10 2.4 Recombinant protein purification 12 2.5 Worm strains 13 2.6 Transgenic worms with single copy insertion of gfp::csr-1a and its variants 14 2.7 Worms protein extraction 16 2.8 Western blot analysis 16 2.10 Immunoprecipitation analysis 17 2.11 Brood size analysis 18 2.12 Fluorescence image 19 2.13 Computational protein structure modeling 19 Chapter 3 Results 21 3.1 Recombinant baculoviurs production and amplification 21 3.2 Recombinant Csr-1a protein production and extraction 22 3.3 Purification of the recombinant CSR-1a protein using a nickel column 23 3.4 Generation of extra single copy insertion of csr-1a worm (HYT195) 24 3.5 Extra single-copy insertion of csr-1a (HYT195, HYT196) expressed in the gonad of L4 stage of worms both in male and hermaphrodite 25 3.6 Comparison between the CSR-1a and WAGO-1 predicted protein structures and the generation of the extra single-copy csr-1a PAZ domain swapped worms 26 3.7 Computational predicting of the domain swapped CSR-1a protein structure and comparisons with CSR-1a and WAGO-1 28 Chapter 4 Discussion 30 1. Recombinant protein purity for structural analysis using Cryo-EM 30 2. Single-copy expression of csr-1a could not rescue csr-1 function 31 3. Domain swapped csr-1a can be successfully expressed 32 4. Domain analysis through structural model prediction 34 Chapter 5 Figures 36 Figure 1. Sf21 and H5 cell lines infected with baculovirus for recombinant CSR-1a protein production 38 Figure 2. Recombinant CSR-1a protein production and modified protein extraction and purification 42 Figure 3. The expression of the extra single copy CSR-1a protein can be observed in the gonad of HYT195 hermaphrodite and HYT196 male worm 46 Figure 4. A large fragment deletion was detected in the first attempt to generate HYT219 49 Figure 5. Expression of extra single copy insertion CSR-1a and its variants from HYT195, 196, 219_1st and 219_2nd 51 Figure 6. The predicted protein structures and the comparisons of CSR-1a, WAGO-1 and CSR-1a (WAGO PAZ) 55 Table 56 Table 1. Primer lists for baculovirus plasmid genotyping 56 Table 2. Primer lists for HYT195, HYT196, HYT219 stains genotyping 56 Reference 57 | - |
dc.language.iso | zh_TW | - |
dc.title | 秀麗隱桿線蟲重要 Argonaute 蛋白 CSR-1 其蛋白質結構及結構域功能之探討 | zh_TW |
dc.title | Protein structure and domain function of the essential C. elegans Argonaute protein CSR-1 | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 詹世鵬;朱家瑩 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Peng Chan;Chia-Ying Chu | en |
dc.subject.keyword | 秀麗隱桿線蟲,Argonaute,CSR-1,WAGO-1,蛋白質結構域交換, | zh_TW |
dc.subject.keyword | C. elegans,Argonaute,CSR-1,WAGO-1,domain swap, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU202303289 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 11.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。