請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙 | zh_TW |
| dc.contributor.advisor | Hsiu-Hsi Chen | en |
| dc.contributor.author | 胡冠伶 | zh_TW |
| dc.contributor.author | Kuan-Lin Hu | en |
| dc.date.accessioned | 2023-09-05T16:09:54Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | 1.Ettinger DS, Wood DE, Aisner DL, et al. NCCN Guidelines Insights: Non–Small Cell Lung Cancer, Version 2.2021. Journal of the National Comprehensive Cancer Network 2021;19(3):254-266. DOI: 10.6004/jnccn.2021.0013.
2.Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. Journal of Pain Research 2017;Volume 10:2287-2298. DOI: 10.2147/jpr.s144066. 3.Hyuna Sung P. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA CANCER J CLIN 2021. 4.Gupta R, Van De Ven T, Pyati S. Post-Thoracotomy Pain: Current Strategies for Prevention and Treatment. Drugs 2020;80(16):1677-1684. DOI: 10.1007/s40265-020-01390-0. 5.Rui Wang SW, Na Duan and Qiang Wang. From Patient-Controlled Analgesia to Artificial Intelligence-Assisted Patient-Controlled Analgesia: Practices and Perspectives. Front Med 22 May 2020;7:145. DOI: 10.3389/fmed.2020.00145. 6.Lakra. APA. Patient Controlled Analgesia. StatPearls. 2022 Jan ed: StatPearls Publishing; May 1, 2022. 7.Fernandes MTP, Hernandes FB, Almeida TND, Sobottka VP, Poli-Frederico RC, Fernandes KBP. Patient-Controlled Analgesia (PCA) in Acute Pain: Pharmacological and Clinical Aspects. InTech; 2017. 8.Rui Wang SW, Na Duan and Qiang Wang. From Patient-Controlled Analgesia to Artificial Intelligence-Assisted Patient-Controlled Analgesia: Practices and Perspectives. Frontiers in Medicine 22 May 2020;7. 9.Yuh-Jyh Hu1, Tien-Hsiung Ku3, Rong-Hong Jan2, Kuochen Wang2, Yu-Chee Tseng2 and Shu-Fen Yang3. Decision tree-based learning to predict patient controlled analgesia consumption and readjustment. BMC Medical Informatics and Decision Making 2012. 10.Makkad B, Heinke TL, Sheriffdeen R, et al. Practice Advisory for Preoperative and Intraoperative Pain Management of Thoracic Surgical Patients: Part 1. Anesth Analg 2023;137(1):2-25. (In eng). DOI: 10.1213/ane.0000000000006441 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89219 | - |
| dc.description.abstract | 隨著肺癌發生率的上升,肺癌手術也日益增多,手術雖然是現代醫療不可或缺的一環,但手術後的疼痛也應該受到重視,不良的術後疼痛控制會造成心理與生理的併發症,例如:慢性疼痛的生成、延後手術復原、鴉片類藥物使用增加,以及整體醫療花費消耗。
現行手術後疼痛治療包含,術後口服或靜脈的嗎啡類或非嗎啡類止痛藥,最能有效阻止慢性疼痛產生的則是在疼痛刺激前即給予的區域性止痛,以肺癌手術為主的區域性止痛包括:神經阻斷、胸椎硬脊膜外麻醉。其中胸椎硬脊膜外麻醉不僅可以達到術前給予降低慢性疼痛的生成,並且搭配管路留置加上病患自控系統有效幫助術後疼痛治療。現行的胸腔硬脊膜外自控式止痛系統,因為其去中心化、無可參考的精準劑量開立,整體止痛效果仍待改進。 本研究為回朔性分析藉由資料探勘分析肺癌患者手術後疼痛症狀,隨著時間的改變情形,以統計分析方式了解可能造成不同疼痛症狀表現的因子,以利改善現行止痛方式不足之處。疼痛症狀分析本研究使用疼痛軌跡做集群分析,根據疼痛軌跡分布將此類患者分為兩大族群,其中術後疼痛基準值較高的患者在自控式止痛系統使用72小時移除後,可見反彈疼痛的產生,另一組疼痛基礎值較低患者在自控式止痛系統移除後則不見反彈疼痛的產生。本研究希望藉由邏輯斯迴歸分析,比較兩組患者的特性,發現女性和手術時較多出血量患者有較高比例在自控式止痛系統移除後產生反彈性疼痛。藉此結果在臨床照顧上,術前可針對女性患者提供多模式止痛以及延長自控是止痛系統的選擇,在術後則馬上將較多失血量患者加入疼痛評估重點族群,以此精準化術後疼痛控制。 | zh_TW |
| dc.description.abstract | With the rising incidence of lung cancer, the number of lung cancer surgeries is also increasing. Surgery, although an indispensable part of modern medicine, the pain after surgery should also be given attention. Poor postoperative pain control can cause psychological and physiological complications, such as the generation of chronic pain, delayed surgical recovery, increased use of opioid drugs, and the overall consumption of medical costs.
Current postoperative pain treatment includes postoperative oral or intravenous opioid or non-opioid analgesics. The most effective way to prevent the generation of chronic pain is to provide regional analgesia before the pain stimulus. Regional analgesia mainly for lung cancer surgery includes nerve block and thoracic epidural analgesia. Thoracic epidural analgesia can not only achieve preoperative pain reduction, but also effectively assist in postoperative pain treatment when combined with epidural catheter placement and a patient-controlled system. The current thoracic epidural patient-controlled analgesia system still needs to be improved due to its decentralization and lack of reference for precise dose administration. This study is a retrospective analysis that uses data mining to analyze the postoperative pain of lung cancer patients and how it changes over time. By using statistical analysis, we seek to understand the factors that may cause different pain characters, thereby improving the deficiencies in current pain management methods. This study uses pain trajectory cluster analysis for pain symptom analysis. According to the distribution of pain trajectories, these patients are divided into two major groups. In the group where the postoperative pain baseline is higher, rebound pain can be seen after the patient-controlled analgesia system is removed for 72 hours. The group with a lower pain baseline does not show rebound pain after the removal of the patient-controlled analgesia system. This study then use logistic regression analysis to compare the characteristics of the two groups of patients. It was found that females and patients with more bleeding during surgery have a higher tendency of rebound pain. Based on these results, in clinical care, multi-modal analgesia can be provided for female patients before surgery and longer duration of patient-controlled analgesia system usage. After surgery, patients with more blood loss are immediately added to the key group for pain assessment for personalized postoperative pain management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:09:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-05T16:09:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要_2
Abstract_3 研究動機與目的_7 文獻探討_8 實習單位特色與簡介_11 研究方法_12 研究設計_12 分析方式_12 資料蒐集_13 結果_14 病患組成資料_14 集聚分析術後疼痛軌跡_15 兩組疼痛軌機患者特性比較_16 以羅吉斯回歸建立疼痛軌跡相關風險因子模型_17 預測反彈性疼痛風險因子_18 討論_19 參考文獻_21 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 硬脊膜外麻醉 | zh_TW |
| dc.subject | 疼痛軌跡 | zh_TW |
| dc.subject | 自控式止痛 | zh_TW |
| dc.subject | 術後疼痛 | zh_TW |
| dc.subject | 集聚分析 | zh_TW |
| dc.subject | Lung Cancer | en |
| dc.subject | Pain Trajectory | en |
| dc.subject | Cluster Analysis | en |
| dc.subject | Self-controlled Analgesia | en |
| dc.subject | Postoperative Pain | en |
| dc.subject | Epidural Anesthesia | en |
| dc.subject | Epidural Anesthesia | en |
| dc.title | 以疼痛軌跡分析肺癌手術後病患自控式硬脊膜外止痛藥設定 | zh_TW |
| dc.title | Analyzing the Setting of Patient Controlled Epidural Analgesia after Lung Cancer Surgery via Postoperative Pain Trajectory | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林世斌;許辰陽 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Pin Lin;Chen-Yang Hsu | en |
| dc.subject.keyword | 肺癌,術後疼痛,集聚分析,自控式止痛,疼痛軌跡,硬脊膜外麻醉, | zh_TW |
| dc.subject.keyword | Lung Cancer,Postoperative Pain,Self-controlled Analgesia, Epidural Anesthesia,Pain Trajectory,Cluster Analysis,Epidural Anesthesia, | en |
| dc.relation.page | 21 | - |
| dc.identifier.doi | 10.6342/NTU202303457 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 公共衛生碩士學位學程 | - |
| 顯示於系所單位: | 公共衛生碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 531.31 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
