請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89218完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方啓泰 | zh_TW |
| dc.contributor.advisor | Chi-Tai Fang | en |
| dc.contributor.author | 鍾子謙 | zh_TW |
| dc.contributor.author | Tzu-Chien Chung | en |
| dc.date.accessioned | 2023-09-05T16:09:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | World Health Organization. WHO Coronavirus (COVID-19) Dashboard. World Health Organization. Nov 4, 2022. https://covid19.who.int/
U.S. Food and Drug Administration. COVID-19 Vaccines. November 4, 2022. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines Centers for Disease Control and Prevention. Requirement or Proof of COVID-19 Vaccination for Air Passengers. July 14, 2022. https://www.cdc.gov/coronavirus/2019-ncov/travelers/proof-of-vaccination.html 外交部領事事務局:世界各國因應COVID-19疫情相關措施一覽表。https://www.boca.gov.tw/cp-56-5248-791bd-1.html 中央社 [2022 年 6 月 22日]:何美鄉詳解無敵星星–打3劑疫苗加自然感染。 https://udn.com/news/story/122190/6406519?from=udn-referralnews_ch2artbottom da Costa C, et al. Assessment of mutations on RBD in the spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants. Sci Rep 2022; 12(1): 8540. Nextstrain. Genomic Epidemiology of SARS-CoV-2 with Subsampling Focused Globally Over the Past 6 Months. https://nextstrain.org/ncov/open/global/6m Ferdinands JM, et al. Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: test negative, case-control study. BMJ 2022; 379: e072141. Kirsebom F, et al. COVID-19 vaccine effectiveness against the Omicron (BA.2) variant in England. Lancet. Infect Dis 2022; 22(7): 931-933. Andrews N, et al. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 2022; 386(16), 1532-1546. Pulliam J, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 2022; 376 (6593): eabn4947. 張尹瑄:SARS-CoV-2 Omicron BA.2變異株群體免疫:數理模式研究. 國立臺灣大學公共衛生學院流行病學與預防醫學研究所碩士論文 (2022)。 Centers for Disease Control and Prevention. Stay Up to Date with COVID-19 Vaccines Including Boosters. Centers for Disease Control and Prevention. Nov 1, https://www.cdc.gov/coronavirus/2019-ncov/vaccines/stay-up-to-date.html 衛生福利部食品藥物管理署. 衛福部食藥署核准BioNTech及Moderna雙價疫苗專案輸入. 2022-10-26. https://www.fda.gov.tw/TC/newsContent.aspx?cid=4&id=t601280 衛生福利部. 衛福部食藥署核准莫德納雙價疫苗作為18歲以上成人主動免疫之追加接種. 衛生福利部. https://www.mohw.gov.tw/cp-16-71320-1.html National Center for High-performance Computing. COVID-19 Dashboard. Vaccination. https://covid-nchc.org.tw/dt_002-csse_covid_19_daily_reports_vaccine_city2.php?language=en 衛生福利部疾病管制署. 為保障年輕族群健康,自10月11日起,擴大納入18-49歲民眾接種莫德納次世代雙價疫苗追加劑. 衛生福利部疾病管制署. https://www.cdc.gov.tw/Bulletin/Detail/KGQ9Wd7NcenxXNnESqFAKQ?typeid=9 衛生福利部疾病管制署.今年採購第一批Moderna次世代BA.4/5雙價疫苗70.3萬劑將於11/10上午抵臺. 衛生福利部疾病管制署. Nov, 9 https://www.cdc.gov.tw/Bulletin/Detail/eNALPvi9yoKRa847dKm25Q?typeid=9 衛生福利部疾病管制署. COVID-19疫苗統計資料. https://www.cdc.gov.tw/En/Category/Page/9jFXNbCe-sFK9EImRRi2Og Yahoo!新聞. 維持正常生活、不要不敢出門 何美鄉:打疫苗後染疫是最好的免疫. 2022; https://tw.news.yahoo.com/news/維持正常生活-不要不敢出門-何美鄉-打疫苗後染疫是最好的免疫-091710356.html Wu, N., Joyal-Desmarais, K., Ribeiro, P. A. B., Vieira, A. M., Stojanovic, J., Sanuade, C., Yip, D., & Bacon, S. L. (2023). Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. The Lancet. Respiratory medicine, S2213-2600(23)00015-2. Advance online publication. https://doi.org/10.1016/S2213-2600(23)00015-2 衛生福利部疾病管制署. 傳染病統計資料查詢系統. 2023; https://nidss.cdc.gov.tw/Home/Index 衛生福利部疾病管制署. 3月20日起,COVID-19輕症免通報、免隔離,改為「0+n自主健康管理」,相關防治措施同步放寬. 2023; https://www.cdc.gov.tw/Bulletin/Detail/rZc7LPu4cH_vI0BDNF5nVw?typeid=9 疾病管制署- 1922防疫達人. https://www.facebook.com/TWCDC/?locale=zh_TW Powell, A. A., Kirsebom, F., Stowe, J., Ramsay, M. E., Lopez-Bernal, J., Andrews, N., & Ladhani, S. N. (2023). Protection against symptomatic infection with delta (B.1.617.2) and omicron (B.1.1.529) BA.1 and BA.2 SARS-CoV-2 variants after previous infection and vaccination in adolescents in England, August, 2021-March, 2022: a national, observational, test-negative, case-control study. The Lancet. Infectious diseases, 23(4), 435–444. https://doi.org/10.1016/S1473-3099(22)00729-0 中時新聞網. 疫情中斷篩檢 去年5.1萬人罹癌過世. 2023; https://www.chinatimes.com/newspapers/20230613000393-260114?chdtv 聯合新聞網. 薛承泰:3大原因造成超額死亡. 2023; https://udn.com/news/story/123550/7230870 衛生福利部. 111年國人死因統計結果. 2023; https://www.mohw.gov.tw/cp-16-74869-1.html Link-Gelles, R., Ciesla, A. A., Fleming-Dutra, K. E., Smith, Z. R., Britton, A., Wiegand, R. E., Miller, J. D., Accorsi, E. K., Schrag, S. J., Verani, J. R., Shang, N., Derado, G., & Pilishvili, T. (2022). Effectiveness of Bivalent mRNA Vaccines in Preventing Symptomatic SARS-CoV-2 Infection - Increasing Community Access to Testing Program, United States, September-November 2022. MMWR. Morbidity and mortality weekly report, 71(48), 1526–1530. https://doi.org/10.15585/mmwr.mm7148e1 Link-Gelles, R., Ciesla, A. A., Roper, L. E., Scobie, H. M., Ali, A. R., Miller, J. D., Wiegand, R. E., Accorsi, E. K., Verani, J. R., Shang, N., Derado, G., Britton, A., Smith, Z. R., & Fleming-Dutra, K. E. (2023). Early Estimates of Bivalent mRNA Booster Dose Vaccine Effectiveness in Preventing Symptomatic SARS-CoV-2 Infection Attributable to Omicron BA.5- and XBB/XBB.1.5-Related Sublineages Among Immunocompetent Adults - Increasing Community Access to Testing Program, United States, December 2022-January 2023. MMWR. Morbidity and mortality weekly report, 72(5), 119–124. https://doi.org/10.15585/mmwr.mm7205e1 Chemaitelly, H., Tang, P., Coyle, P., Yassine, H. M., Al-Khatib, H. A., Smatti, M. K., Hasan, M. R., Ayoub, H. H., Altarawneh, H. N., Al-Kanaani, Z., Al-Kuwari, E., Jeremijenko, A., Kaleeckal, A. H., Latif, A. N., Shaik, R. M., Abdul-Rahim, H. F., Nasrallah, G. K., Al-Kuwari, M. G., Butt, A. A., Al-Romaihi, H. E., … National Study Group for COVID-19 Epidemiology (2023). Protection against Reinfection with the Omicron BA.2.75 Subvariant. The New England journal of medicine, 388(7), 665–667. https://doi.org/10.1056/NEJMc2214114 Altarawneh, H. N., Chemaitelly, H., Ayoub, H. H., Hasan, M. R., Coyle, P., Yassine, H. M., Al-Khatib, H. A., Smatti, M. K., Al-Kanaani, Z., Al-Kuwari, E., Jeremijenko, A., Kaleeckal, A. H., Latif, A. N., Shaik, R. M., Abdul-Rahim, H. F., Nasrallah, G. K., Al-Kuwari, M. G., Butt, A. A., Al-Romaihi, H. E., Al-Thani, M. H., … Abu-Raddad, L. J. (2022). Protective Effect of Previous SARS-CoV-2 Infection against Omicron BA.4 and BA.5 Subvariants. The New England journal of medicine, 387(17), 1620–1622. https://doi.org/10.1056/NEJMc2209306 Tan, C. Y., Chiew, C. J., Pang, D., Lee, V. J., Ong, B., Lye, D. C., & Tan, K. B. (2023). Protective immunity of SARS-CoV-2 infection and vaccines against medically attended symptomatic omicron BA.4, BA.5, and XBB reinfections in Singapore: a national cohort study. The Lancet. Infectious diseases, S1473-3099(23)00060-9. Advance online publication. https://doi.org/10.1016/S1473-3099(23)00060-9 Altarawneh, H. N., Chemaitelly, H., Ayoub, H. H., Tang, P., Hasan, M. R., Yassine, H. M., Al-Khatib, H. A., Smatti, M. K., Coyle, P., Al-Kanaani, Z., Al-Kuwari, E., Jeremijenko, A., Kaleeckal, A. H., Latif, A. N., Shaik, R. M., Abdul-Rahim, H. F., Nasrallah, G. K., Al-Kuwari, M. G., Butt, A. A., Al-Romaihi, H. E., … Abu-Raddad, L. J. (2022). Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections. The New England journal of medicine, 387(1), 21–34. https://doi.org/10.1056/NEJMoa2203965 Huang, L., Lai, F. T. T., Yan, V. K. C., Cheng, F. W. T., Cheung, C. L., Chui, C. S. L., Li, X., Wan, E. Y. F., Wong, C. K. H., Hung, I. F. N., Lau, C. S., Wong, I. C. K., & Chan, E. W. Y. (2022). Comparing hybrid and regular COVID-19 vaccine-induced immunity against the Omicron epidemic. NPJ vaccines, 7(1), 162. https://doi.org/10.1038/s41541-022-00594-7 Bobrovitz, N., Ware, H., Ma, X., Li, Z., Hosseini, R., Cao, C., Selemon, A., Whelan, M., Premji, Z., Issa, H., Cheng, B., Abu Raddad, L. J., Buckeridge, D. L., Van Kerkhove, M. D., Piechotta, V., Higdon, M. M., Wilder-Smith, A., Bergeri, I., Feikin, D. R., Arora, R. K., … Subissi, L. (2023). Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression. The Lancet. Infectious diseases, S1473-3099(22)00801-5. Advance online publication. https://doi.org/10.1016/S1473-3099(22)00801-5 Wu, S., Li, Y., Mishra, S., Bodner, K., Baral, S., Kwong, J. C., & Wei, X. (2023). Effect of the incremental protection of previous infection against Omicron infection among individuals with a hybrid of infection- and vaccine-induced immunity: a population-based cohort study in Canada. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 127, 69–76. https://doi.org/10.1016/j.ijid.2022.11.028 Tartof, S. Y., Slezak, J. M., Fischer, H., Hong, V., Ackerson, B. K., Ranasinghe, O. N., Frankland, T. B., Ogun, O. A., Zamparo, J. M., Gray, S., Valluri, S. R., Pan, K., Angulo, F. J., Jodar, L., & McLaughlin, J. M. (2021). Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet (London, England), 398(10309), 1407–1416. https://doi.org/10.1016/S0140-6736(21)02183-8 Tartof, S. Y., Slezak, J. M., Puzniak, L., Hong, V., Frankland, T. B., Xie, F., Ackerson, B. K., Valluri, S. R., Jodar, L., & McLaughlin, J. M. (2023). Effectiveness and durability of BNT162b2 vaccine against hospital and emergency department admissions due to SARS-CoV-2 omicron sub-lineages BA.1 and BA.2 in a large health system in the USA: a test-negative, case-control study. The Lancet. Respiratory medicine, 11(2), 176–187. https://doi.org/10.1016/S2213-2600(22)00354-X 衛生福利部疾病管制署. 季節性流感防治. 2023; https://www.cdc.gov.tw/Category/QAPage/DQWXG19u2cXMH1jwGKXHug Centers for Disease Control and Prevention. Long COVID or Post-COVID Conditions. 2023. https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html World Health Organization (WHO). Post COVID-19 condition (Long COVID). 2022; https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition Yahoo!新聞. 流感死亡人數+2!呼吸道疾病好發季節到來 疾管署籲出現「發燒、咳嗽」應當心. 2023; https://tw.news.yahoo.com/news/流感死亡人數-2-呼吸道疾病好發季節到來-疾管署籲出現-發燒-應當心-034314722.html Yahoo!新聞. 首批莫德納XBB疫苗 最快9月中開打. 2023; https://tw.news.yahoo.com/news/首批莫德納XBB疫苗-201000870.html Lin, D. Y., Xu, Y., Gu, Y., Zeng, D., Wheeler, B., Young, H., Sunny, S. K., & Moore, Z. (2023). Effectiveness of Bivalent Boosters against Severe Omicron Infection. The New England journal of medicine, 388(8), 764–766. https://doi.org/10.1056/NEJMc2215471 Tseng, H. F., Ackerson, B. K., Bruxvoort, K. J., Sy, L. S., Tubert, J. E., Lee, G. S., Ku, J. H., Florea, A., Luo, Y., Qiu, S., Choi, S. K., Takhar, H. S., Aragones, M., Paila, Y. D., Chavers, S., Talarico, C. A., & Qian, L. (2023). Effectiveness of mRNA-1273 vaccination against SARS-CoV-2 omicron subvariants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5. Nature communications, 14(1), 189. https://doi.org/10.1038/s41467-023-35815-7 Lau, J. J., Cheng, S. M. S., Leung, K., Lee, C. K., Hachim, A., Tsang, L. C. H., Yam, K. W. H., Chaothai, S., Kwan, K. K. H., Chai, Z. Y. H., Lo, T. H. K., Mori, M., Wu, C., Valkenburg, S. A., Amarasinghe, G. K., Lau, E. H. Y., Hui, D. S. C., Leung, G. M., Peiris, M., & Wu, J. T. (2023). Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nature medicine, 29(2), 348–357. https://doi.org/10.1038/s41591-023-02219-5 Grewal, R., Nguyen, L., Buchan, S. A., Wilson, S. E., Nasreen, S., Austin, P. C., Brown, K. A., Fell, D. B., Gubbay, J. B., Schwartz, K. L., Tadrous, M., Wilson, K., & Kwong, J. C. (2023). Effectiveness of mRNA COVID-19 vaccine booster doses against Omicron severe outcomes. Nature communications, 14(1), 1273. https://doi.org/10.1038/s41467-023-36566-1 Irving SA, Buchan SA. Considerations of hybrid immunity and the future of adolescent COVID-19 vaccination. Lancet Infect Dis. 2023 Apr;23(4):382-383. doi: 10.1016/S1473-3099(22)00759-9. Epub 2022 Nov 24. PMID: 36436535; PMCID: PMC9691141. Malato, J., Ribeiro, R. M., Fernandes, E., Leite, P. P., Casaca, P., Antunes, C., Fonseca, V. R., Gomes, M. C., & Graca, L. (2023). Stability of hybrid versus vaccine immunity against BA.5 infection over 8 months. The Lancet. Infectious diseases, 23(2), 148–150. https://doi.org/10.1016/S1473-3099(22)00833-7 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89218 | - |
| dc.description.abstract | 背景及研究目的:因應SARS-CoV-2 Omicron BA.1, BA.2, BA.4, BA.5變異株陸續出現,疫苗廠研發同時針對原始株及Omicron變異株的COVID-19雙價疫苗。最初的雙價疫苗為針對Omicron BA.1/2變異株,在全球Omicron BA.5大流行後,雙價疫苗也演進至針對BA.4/5變異株。然而,COVID-19雙價疫苗是否能有效強化群體免疫,降低SARS-CoV-2在人群中的有效再生數(Effective reproductive number, Rt值),進而降低中重症流行趨勢,目前尚未有基於流行病學實證資料的傳染病數理模式研究。有學者提倡透過打完三劑疫苗後不斷自然感染產生的混和免疫(Hybrid immunity)以終結COVID-19疫情。目前尚不清楚積極追加施打COVID-19雙價疫苗是否能夠產生優於混和免疫的防疫效果。
方法:本研究以系統性文獻回顧彙整COVID-19雙價疫苗保護力實證數據,建立考量免疫衰退(Waning of immunity)、混和免疫、重症率及死亡率之SEIRS SARS-CoV-2傳播動態模型。根據臺灣在2022年至2023年經歷四波主流變異株(BA.2、BA.5、BQ.1及XBB),本研究依序建立四個主要架構相似的數理模型,並依據臺灣2022年及2023年疫苗接種數,以數理模型擬合2022/4/1至2023/6/25 疾病管制署公布之每日新增通報確診人數、中重症人數及死亡人數,估計全臺灣曝險人口平均口罩配戴率、輕症確診於指數爆發期的起始人數、易感族群曝險比例、染疫後重症率、重症致死率、以及自然免疫平均衰退的時間,以此為基礎,進一步推估 2023/1/1至2023/12/31 Rt值、重症及死亡的變化趨勢,估計相較於混和免疫策略(不再追加雙價疫苗,僅憑自然感染維持免疫力),不同強度的雙價疫苗施打率(維持臺灣疫苗施打現況、疫苗施打速率提升為10倍、50倍或100倍)對Rt值及重症人數變化趨勢的影響。敏感度分析考慮雙價疫苗對新變異株保護力之不確定性(預防接種者感染及重症的效果各增減10%)對主分析結果的影響。 結果:藉由模型擬合,推估而得本土流行病學參數:(1)曝險人口平均口罩配戴率為77% (未曝險人口口罩配戴率為100%);(2) BA.2時期染疫後中重症率為0.66%;(3)中重症死亡率為29.17%;(4)BA.2變異株之自染免疫衰退期約為76天; (5) BQ.1時期染疫後中重症率為0.32%;(6)BQ.1變異株之自染免疫衰退期約為68天。若維持臺灣目前疫苗接種現狀至2023年底,則2023年全年平均每日約有190人重症,累計約63309人重症;將施打速率提升至臺灣目前施打疫苗現況之 50倍,則平均每日重症人數可降至約132人,累計約49640人重症;而若施打速率大幅提升至臺灣施打疫苗現況之 100倍,則平均每日重症人數則可降至約102人,累計約41948人重症。相較於停止施打次世代疫苗或臺灣目前接種疫苗之現況,若將施打速率提升至臺灣目前施打疫苗現況之 50倍,將可降低約 21.6% 的重症人數以及 21.4% 的死亡人數;若將施打速率提升至臺灣目前施打疫苗現況之100倍,則可以降低約 33.47% 之重症及死亡人數。在停止施打次世代疫苗、臺灣目前接種疫苗現況,以及提升至臺灣目前疫苗施打速率10倍的三種情境中,Rt值雖能短暫降至0.86 (2023/1/1 - 2023/1/13),但隨著免疫衰退,Rt值會持續上升,並在2023年四月初,上升至1.0,至年底皆持續維持在0.96至0.98左右,降不下來。而在提升至臺灣施打疫苗速率50倍及100倍的情境中,Rt值在2023年皆未突破1.0,雖在年初至5月中有上升趨勢,從0.83提升至0.88,但接下來會持續下降,至年底皆維持在0.8左右。敏感度分析的結果發現,若疫苗預防感染及重症效果皆增加10%,相較於停止施打次世代疫苗以及臺灣目前接種疫苗現況,大幅提升疫苗接種速率至現狀之100倍的策略,可降低32.4%的重症人數以及37.5%的死亡人數,而若疫苗防感染及重症效果均降低10%,則可降低約30.4%的重症人數及30.1%的死亡人數。 結論:相較於混和免疫的防疫策略,積極追加疫苗可有效降低約22% - 33%的重症及死亡人數,並降低Rt值。 | zh_TW |
| dc.description.abstract | Background: In response to the emergence of SARS-CoV-2 Omicron BA.1, BA.2, BA.4, and BA.5 variants, vaccine manufacturers have been developing bivalent COVID-19 vaccines that target both the original strain and the Omicron variant strains. However, whether mass vaccination can reduce the effective reproductive number (Rt value) and consequently mitigate the trends of severe and critical cases still remains unclear. Some scholars advocate terminating COVID-19 pandemic through hybrid immunity, which is achieved by continuous natural infections after completing three doses of vaccination. Currently, it is unclear whether actively administering additional doses of COVID-19 bivalent vaccines can generate superior protection compared to hybrid immunity.
Methods:This study conducted a systematic literature review to consolidate empirical data on the effectiveness of bivalent COVID-19 vaccines, subsequently, established an SEIRS SARS-CoV-2 transmission dynamic model that considered waning of immunity, hybrid immunity, severity rate, and mortality rate. Based on four major variant waves (BA.2, BA.5, BQ.1, and XBB) between 2022 and 2023 in Taiwan, the study sequentially constructed four similar mathematical models. Using vaccination data from 2022 and 2023 in Taiwan, the models were fitted to the daily reported numbers of new confirmed cases, severe cases, and deaths announced by the Taiwan Centers for Disease Control from April 1, 2022, to June 25, 2023. The study estimated parameters including the mask-wearing rate among the population, initial number of infected people during the exponential growth phase, susceptible-exposed ratio of the population, post-infection severity rate, severe case fatality rate, and average duration of natural immunity. Based on these estimations, the study further predicted the effective reproductive number (Rt value), severe cases, and deaths from January 1, 2023, to December 31, 2023. The study compared different intensities of bivalent vaccine administration (maintaining the current vaccination rate, increasing vaccination rate by 10 times, 50 times, or 100 times) to the hybrid immunity strategy (no further administration of bivalent vaccines, relying solely on natural infections to maintain immunity) in terms of their impacts on Rt value, severe cases, and death. In the sensitivity analysis, the study considered the uncertainty of bivalent vaccine effectiveness against new Omicron variant (with ±10% of vaccine effectiveness against both infection and severe disease) and assessed its impact on the main outcomes. Results: Based on the model fitting procedures, the study estimated several parameters as follows: (1) mask-wearing rate among the population was 77%, (2) severity rate after infection with the BA.2 variant was 0.66%, (3) fatality rate for severe cases was 29.17%, (4) mean duration of natural immunity for the BA.2 variant was approximately 76 days, (5) severity rate after infection with the BQ.1 variant was 0.32%. (6) mean duration of natural immunity for the BQ.1 variant was approximately 68 days. If Taiwan remains the vaccination rate as status quo until the end of 2023, daily severe cases would be approximately 190, with a cumulative total of around 63,309 severe cases. Increasing the vaccination rate to 50 times the current rate would reduce the daily severe cases to approximately 132 individuals, with a cumulative total of around 49,640. Further, if the vaccination rate is dramatically increased to 100 times the current rate, the daily number of severe cases would be approximately 102 individuals, with a cumulative total of around 41,948. Comparing the scenario to a situation where no further doses of bivalent vaccine are administered, increasing the vaccination rate to 50 times the current rate could reduce severe cases and deaths by approximately 21.6% and 21.4%, respectively. Similarly, increasing the vaccination rate to 100 times the current rate could lead to reductions of approximately 33.47% in severe cases and deaths. In the scenarios of no further doses of bivalent vaccines, the Rt value could briefly decrease to 0.86 (from January 1 to January 13, 2023). However, with the waning of immunity, the Rt value would continue to rise and reach 1.0 on April 9, 2023, remaining around 0.96 – 0.98 until the end of the year. On the other hand, in the scenarios of increasing the vaccination rate to 50 times and 100 times the current rate, the Rt value would not exceed 1.0 throughout 2023, instead, the Rt value would remain around 0.8 until the end of the year. The sensitivity analysis revealed that if the vaccine effectiveness against infection and severity are increased by 10%, dramatically increasing the vaccination rate to 100 times the current rate can reduce severe cases and deaths by 32.4% and 37.5%, respectively. Conversely, if the vaccine effectiveness is decreased by 10%, it could still reduce severe cases by approximately 30.4% and deaths by 30.1% compared to the scenarios of no further boosting. Conclusion:Compared to the hybrid immunity strategy, actively administering additional vaccines can effectively reduce severe cases and deaths by approximately 22% to 33% and reduce the Rt value. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:09:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-05T16:09:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III ABSTRACT V 目錄 VIII 圖目錄 XI 表目錄 XII 第一章 背景 1 1.1背景與研究動機 1 1.2 研究目標 4 第二章 方法 5 2.1研究倫理 5 2.2 研究設計 5 2.2.1 系統性文獻回顧 5 2.2.2 SARS-CoV-2 Omicron SEIRS傳播動態模型架構說明 6 2.3 研究資料性質及來源 7 2.3.1 每日新增確定病例數、重症數、死亡數 7 2.3.2 疫苗接種率 8 2.4 SARS-CoV-2 Omicron SEIRS傳播動態模型設定 8 2.4.1 模型基本假設說明 8 2.4.2 模型參數設定說明 8 2.4.3 估計有效再生數Rt值 11 2.5 擬合臺灣四波本土疫情 (2022/4/1 - 2023/6/25) 12 2.5.1 擬合Omicron BA.2疫情 (2022/4/1 – 2022/7/30) 13 2.5.2 擬合Omicron BA.5疫情 (2022/8/1 – 2022/11/30) 14 2.5.3 擬合Omicron BQ.1疫情 (2022/12/1 – 2023/3/25) 14 2.5.4 擬合Omicron XBB疫情 (2023/3/26 – 2023/6/30) 15 2.6 模擬不同程度疫苗接種情境 15 2.7 疫苗接種成效評估指標 16 2.8 疫苗接種成效計算 16 2.9 敏感度分析 17 2.10 建模軟體 17 第三章 結果 18 3.1 系統性文獻回顧結果 18 3.1.1 COVID1-19雙價疫苗保護力 18 3.1.2 混和免疫保護力、自然感染及疫苗保護力之比較 18 3.2 擬合臺灣四波本土疫情 (2022/4/1 – 2023/6/25) 22 3.2.1 Omicron BA.2疫情 (2022/4/1 – 2022/7/30) 22 3.2.2 Omicron BA.5疫情 (2022/8/1 – 2022/11/30) 22 3.2.3 Omicron BQ.1疫情 (2022/12/1 – 2023/3/25) 23 3.2.4 Omicron XBB疫情 (2022/3/26 – 2023/6/30) 23 3.3 預測不同疫苗接種程度在2023/1/1 - 2023/12/31疫情 24 3.3.1 主分析結果 24 3.3.2 敏感度分析結果 25 第四章 討論 26 4.1 主要發現 26 4.2 本研究建模之創新特色 26 4.3 比較COVID-19與流行性感冒(以下簡稱流感)的特性 27 4.4 現今COVID-19疫苗之挑戰 28 4.5 比較混和免疫策略與大規模接種疫苗 28 4.6 研究優勢與研究限制 29 4.7 結論及建議 29 ACKNOWLEDGMENT 30 參考文獻 31 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Omicron | zh_TW |
| dc.subject | COVID-19雙價疫苗 | zh_TW |
| dc.subject | 疫苗保護力 | zh_TW |
| dc.subject | 混和免疫 | zh_TW |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | SARS-CoC-2 | zh_TW |
| dc.subject | bivalent booster | en |
| dc.subject | COVID-19 | en |
| dc.subject | hybrid immunity | en |
| dc.subject | vaccine effectiveness | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | Omicron | en |
| dc.title | COVID-19雙價疫苗對群體免疫的影響:數理模式研究 | zh_TW |
| dc.title | Impact of Bivalent COVID-19 Vaccine on Herd Immunity to SARS-CoV-2: A Modeling Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 盛望徽;林菀俞;溫在弘 | zh_TW |
| dc.contributor.oralexamcommittee | Wang-Huei Sheng;Wan-Yu Lin;Tzai-Hung Wen | en |
| dc.subject.keyword | COVID-19雙價疫苗,疫苗保護力,混和免疫,COVID-19,SARS-CoC-2,Omicron, | zh_TW |
| dc.subject.keyword | COVID-19,SARS-CoV-2,Omicron,bivalent booster,vaccine effectiveness,hybrid immunity, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202303001 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
