Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89213
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor周祖述zh_TW
dc.contributor.advisorTzuu-Shuh Jouen
dc.contributor.author許展彰zh_TW
dc.contributor.authorJhan-Jhang Syuen
dc.date.accessioned2023-09-05T16:08:15Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-05-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citation1. Satir P and Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377-400. https://doi.org/10.1146/annurev.physiol.69.040705.141236
2. Besschetnova TY, Kolpakova-Hart E, Guan Y et al. (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 20:182-7. https://doi.org/10.1016/j.cub.2009.11.072
3. Sorokin S (1962) Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15:363-77. https://doi.org/10.1083/jcb.15.2.363
4. Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207-30. https://doi.org/10.1242/jcs.3.2.207
5. Dawe HR, Smith UM, Cullinane AR et al. (2007) The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 16:173-86. https://doi.org/10.1093/hmg/ddl459
6. Dawe HR, Adams M, Wheway G et al. (2009) Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton. J Cell Sci 122:2716-26. https://doi.org/10.1242/jcs.043794
7. Lemullois M, Boisvieux-Ulrich E, Laine MC et al. (1988) Development and functions of the cytoskeleton during ciliogenesis in metazoa. Biol Cell 63:195-208. https://doi.org/10.1016/0248-4900(88)90058-5
8. Follit JA, Tuft RA, Fogarty KE et al. (2006) The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 17:3781-92. https://doi.org/10.1091/mbc.e06-02-0133
9. Nachury MV, Loktev AV, Zhang Q et al. (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201-13. https://doi.org/10.1016/j.cell.2007.03.053
10. Westlake CJ, Baye LM, Nachury MV et al. (2011) Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A 108:2759-64. https://doi.org/10.1073/pnas.1018823108
11. Rosenbaum JL and Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813-25. https://doi.org/10.1038/nrm952
12. Taschner M and Lorentzen E (2016) The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol 8:a028092. https://doi.org/10.1101/cshperspect.a028092
13. Marshall WF and Rosenbaum JL (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155:405-14. https://doi.org/10.1083/jcb.200106141
14. Engel BD, Ludington WB and Marshall WF (2009) Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187:81-9. https://doi.org/10.1083/jcb.200812084
15. Ludington WB, Wemmer KA, Lechtreck KF et al. (2013) Avalanche-like behavior in ciliary import. PNAS 110:3925-30. https://doi.org/10.1073/pnas.1217354110
16. Wren KN, Craft JM, Tritschler D et al. (2013) A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 23:2463-71. https://doi.org/10.1016/j.cub.2013.10.044
17. Craft JM, Harris JA, Hyman S et al. (2015) Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J Cell Biol 208:223-37. https://doi.org/10.1083/jcb.201409036
18. Reiter JF, Blacque OE and Leroux MR (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13:608-18. https://doi.org/10.1038/embor.2012.73
19. Garcia-Gonzalo FR and Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197:697-709. https://doi.org/10.1083/jcb.201111146
20. Goncalves J and Pelletier L (2017) The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate. Mol Cells 40:243-53. https://doi.org/10.14348/molcells.2017.0054
21. O'Toole ET, Giddings TH, Jr. and Dutcher SK (2007) Understanding microtubule organizing centers by comparing mutant and wild-type structures with electron tomography. Methods Cell Biol 79:125-43. https://doi.org/10.1016/S0091-679X(06)79005-7
22. Quinlan RJ, Tobin JL and Beales PL (2008) Modeling ciliopathies: Primary cilia in development and disease. Curr Top Dev Biol 84:249-310. https://doi.org/10.1016/S0070-2153(08)00605-4
23. Liu Q, Tan G, Levenkova N et al. (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6:1299-317. https://doi.org/10.1074/mcp.M700054-MCP200
24. Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS et al. (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43:776-84. https://doi.org/10.1038/ng.891
25. Schou KB, Mogensen JB, Morthorst SK et al. (2017) KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling. Nat Commun 8:14177. https://doi.org/10.1038/ncomms14177
26. Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33:543-71. https://doi.org/10.1083/jcb.33.3.543
27. Janich P and Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581:1783-7. https://doi.org/10.1016/j.febslet.2007.03.065
28. Yamakawa D, Katoh D, Kasahara K et al. (2021) Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep 34:108817. https://doi.org/10.1016/j.celrep.2021.108817
29. Carlsson S, Oberg CT, Carlsson MC et al. (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17:663-76. https://doi.org/10.1093/glycob/cwm026
30. Elola MT, Ferragut F, Cardenas Delgado VM et al. (2014) Expression, localization and function of galectin-8, a tandem-repeat lectin, in human tumors. Histol Histopathol 29:1093-105. https://doi.org/10.14670/HH-29.1093
31. Poland PA, Rondanino C, Kinlough CL et al. (2011) Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J Biol Chem 286:6780-90. https://doi.org/10.1074/jbc.M110.179002
32. Kasai K, Oda Y, Nishikata M et al. (1986) Frontal affinity chromatography: theory for its application to studies on specific interactions of biomolecules. J Chromatogr 376:33-47. https://doi.org/10.1016/s0378-4347(00)80822-1
33. Hirabayashi J, Hashidate T, Arata Y et al. (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232-54. https://doi.org/10.1016/s0304-4165(02)00311-2
34. Ideo H, Matsuzaka T, Nonaka T et al. (2011) Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. J Biol Chem 286:11346-55. https://doi.org/10.1074/jbc.M110.195925
35. Lim H, Yu CY and Jou TS (2017) Galectin-8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells. FASEB J 31:4917-27. https://doi.org/10.1096/fj.201601386R
36. Li FY, Weng IC, Lin CH et al. (2019) Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 29:151-62. https://doi.org/10.1093/glycob/cwy095
37. Obino D, Fetler L, Soza A et al. (2018) Galectin-8 Favors the Presentation of Surface-Tethered Antigens by Stabilizing the B Cell Immune Synapse. Cell Rep 25:3110-22 e6. https://doi.org/10.1016/j.celrep.2018.11.052
38. Porebska N, Pozniak M, Matynia A et al. (2021) Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 60:89-106. https://doi.org/10.1016/j.cytogfr.2021.03.004
39. Meinohl C, Barnard SJ, Fritz-Wolf K et al. (2019) Galectin-8 binds to the Farnesylated C-terminus of K-Ras4B and Modifies Ras/ERK Signaling and Migration in Pancreatic and Lung Carcinoma Cells. Cancers (Basel) 12. https://doi.org/10.3390/cancers12010030
40. Anvarian Z, Mykytyn K, Mukhopadhyay S et al. (2019) Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 15:199-219. https://doi.org/10.1038/s41581-019-0116-9
41. Corbit KC, Aanstad P, Singla V et al. (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018-21. https://doi.org/10.1038/nature04117
42. Haycraft CJ, Banizs B, Aydin-Son Y et al. (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53. https://doi.org/10.1371/journal.pgen.0010053
43. Bergmann C, Fliegauf M, Bruchle NO et al. (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82:959-70. https://doi.org/10.1016/j.ajhg.2008.02.017
44. Lancaster MA, Schroth J and Gleeson JG (2011) Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol 13:700-7. https://doi.org/10.1038/ncb2259
45. Dalbay MT, Thorpe SD, Connelly JT et al. (2015) Adipogenic Differentiation of hMSCs is Mediated by Recruitment of IGF-1r Onto the Primary Cilium Associated With Cilia Elongation. Stem Cells 33:1952-61. https://doi.org/10.1002/stem.1975
46. Zhu D, Shi S, Wang H et al. (2009) Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J Cell Sci 122:2760-8. https://doi.org/10.1242/jcs.046276
47. Heydeck W, Fievet L, Davis EE et al. (2018) The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr Opin Cell Biol 55:139-49. https://doi.org/10.1016/j.ceb.2018.08.001
48. Liu CH, Huang ZH, Huang SC et al. (2021) Endocytosis of peroxiredoxin 1 links sterile inflammation to immunoparalysis in pediatric patients following cardiopulmonary bypass. Redox Biol 46:102086. https://doi.org/10.1016/j.redox.2021.102086
49. Liu PJ, Chen CD, Wang CL et al. (2015) In-depth proteomic analysis of six types of exudative pleural effusions for nonsmall cell lung cancer biomarker discovery. Mol Cell Proteomics 14:917-32. https://doi.org/10.1074/mcp.M114.045914
50. Wang YH, Chiu WY, Chen YT et al. (2022) Golgin Imh1 and GARP complex cooperate to restore the impaired SNARE recycling transport induced by ER stress. Cell Rep 38:110488. https://doi.org/10.1016/j.celrep.2022.110488
51. Perez-Riverol Y, Bai J, Bandla C et al. (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543-D52. https://doi.org/10.1093/nar/gkab1038
52. Popa SJ, Stewart SE and Moreau K (2018) Unconventional secretion of annexins and galectins. Semin Cell Dev Biol 83:42-50. https://doi.org/10.1016/j.semcdb.2018.02.022
53. Han SJ, Jang HS, Kim JI et al. (2016) Unilateral nephrectomy elongates primary cilia in the remaining kidney via reactive oxygen species. Sci Rep 6:22281. https://doi.org/10.1038/srep22281
54. Chen JY, Lin YY and Jou TS (2012) Phosphorylation of EBP50 negatively regulates beta-PIX-dependent Rac1 activity in anoikis. Cell Death Differ 19:1027-37. https://doi.org/10.1038/cdd.2012.4
55. Kolter T (2012) Ganglioside biochemistry. ISRN Biochem 2012:506160. https://doi.org/10.5402/2012/506160
56. Schnaar RL, Gerardy-Schahn R and Hildebrandt H (2014) Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 94:461-518. https://doi.org/10.1152/physrev.00033.2013
57. Prinetti A, Chigorno V, Tettamanti G et al. (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658-65. https://doi.org/10.1074/jbc.275.16.11658
58. Dutta P and Ray K (2022) Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 237:2613-31. https://doi.org/10.1002/jcp.30787
59. Roberson EC, Dowdle WE, Ozanturk A et al. (2015) TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J Cell Biol 209:129-42. https://doi.org/10.1083/jcb.201411087
60. Lambacher NJ, Bruel AL, van Dam TJ et al. (2016) TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat Cell Biol 18:122-31. https://doi.org/10.1038/ncb3273
61. Jauregui AR, Nguyen KC, Hall DH et al. (2008) The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure. J Cell Biol 180:973-88. https://doi.org/10.1083/jcb.200707090
62. Li C, Jensen VL, Park K et al. (2016) MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biol 14:e1002416. https://doi.org/10.1371/journal.pbio.1002416
63. Huang L, Szymanska K, Jensen VL et al. (2011) TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 89:713-30. https://doi.org/10.1016/j.ajhg.2011.11.005
64. Jensen VL, Li C, Bowie RV et al. (2015) Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J 34:2537-56. https://doi.org/10.15252/embj.201488044
65. Williams CL, Li C, Kida K et al. (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192:1023-41. https://doi.org/10.1083/jcb.201012116
66. Rangel L, Bernabe-Rubio M, Fernandez-Barrera J et al. (2019) Caveolin-1alpha regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep 9:1116. https://doi.org/10.1038/s41598-018-38020-5
67. Scheidel N, Kennedy J and Blacque OE (2018) Endosome maturation factors Rabenosyn-5/VPS45 and caveolin-1 regulate ciliary membrane and polycystin-2 homeostasis. EMBO J 37:e98248. https://doi.org/10.15252/embj.201798248
68. Ferragut F, Cagnoni AJ, Colombo LL et al. (2019) Dual knockdown of Galectin-8 and its glycosylated ligand, the activated leukocyte cell adhesion molecule (ALCAM/CD166), synergistically delays in vivo breast cancer growth. Biochim Biophys Acta Mol Cell Res 1866:1338-52. https://doi.org/10.1016/j.bbamcr.2019.03.010
69. Cocucci E and Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364-72. https://doi.org/10.1016/j.tcb.2015.01.004
70. Dolo V, Ginestra A, Cassara D et al. (1998) Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res 58:4468-74.
71. Stec M, Baj-Krzyworzeka M, Baran J et al. (2015) Isolation and characterization of circulating micro(nano)vesicles in the plasma of colorectal cancer patients and their interactions with tumor cells. Oncol Rep 34:2768-75. https://doi.org/10.3892/or.2015.4228
72. Berchem G, Noman MZ, Bosseler M et al. (2016) Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology 5:e1062968. https://doi.org/10.1080/2162402X.2015.1062968
73. Del Conde I, Shrimpton CN, Thiagarajan P et al. (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604-11. https://doi.org/10.1182/blood-2004-03-1095
74. Jaiswal R, Luk F, Dalla PV et al. (2013) Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PLoS One 8:e61515. https://doi.org/10.1371/journal.pone.0061515
75. Pokharel D, Padula MP, Lu JF et al. (2014) Proteome analysis of multidrug-resistant, breast cancer-derived microparticles. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.24384
76. Stewart SE, Ashkenazi A, Williamson A et al. (2018) Transbilayer phospholipid movement facilitates the translocation of annexin across membranes. J Cell Sci 131:jcs217034. https://doi.org/10.1242/jcs.217034
77. Forschbach V, Goppelt-Struebe M, Kunzelmann K et al. (2015) Anoctamin 6 is localized in the primary cilium of renal tubular cells and is involved in apoptosis-dependent cyst lumen formation. Cell Death Dis 6:e1899. https://doi.org/10.1038/cddis.2015.273
78. Wein S, Fauroux M, Laffitte J et al. (2004) Mediation of annexin 1 secretion by a probenecid-sensitive ABC-transporter in rat inflamed mucosa. Biochem Pharmacol 67:1195-202. https://doi.org/10.1016/j.bcp.2003.11.015
79. Chapman LP, Epton MJ, Buckingham JC et al. (2003) Evidence for a role of the adenosine 5'-triphosphate-binding cassette transporter A1 in the externalization of annexin I from pituitary folliculo-stellate cells. Endocrinology 144:1062-73. https://doi.org/10.1210/en.2002-220650
80. Yabas M, Jing W, Shafik S et al. (2016) ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes. PLoS One 11:e0146774. https://doi.org/10.1371/journal.pone.0146774
81. Nitulescu GM, Van De Venter M, Nitulescu G et al. (2018) The Akt pathway in oncology therapy and beyond (Review). Int J Oncol 53:2319-31. https://doi.org/10.3892/ijo.2018.4597
82. Christensen ST, Clement CA, Satir P et al. (2012) Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 226:172-84. https://doi.org/10.1002/path.3004
83. Wang H, Zou X, Wei Z et al. (2015) Hsp90alpha forms a stable complex at the cilium neck for the interaction of signalling molecules in IGF-1 receptor signalling. J Cell Sci 128:100-8. https://doi.org/10.1242/jcs.155101
84. Stilling S, Kalliakoudas T, Benninghoven-Frey H et al. (2022) PIP(2) determines length and stability of primary cilia by balancing membrane turnovers. Commun Biol 5:93. https://doi.org/10.1038/s42003-022-03028-1
85. Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100:603-6. https://doi.org/10.1016/s0092-8674(00)80696-0
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89213-
dc.description.abstract在細胞分化後的頂端區域有著一個特殊的胞器稱為初級纖毛。在之前的研究中發現,初級纖毛有別於運動用的纖毛是屬於靜態的、能感知和傳遞環境訊息的胞器,初級纖毛的生成及長度受到各種機制的嚴格調控,例如纖毛的生成及伸長會受到物質在鞭毛內輸送蛋白運輸的頻率或大小來控制,這些輸送蛋白運送材料也包含纖毛生長所必需的微管蛋白和訊息分子等。在本次研究中,我們發現在初級纖毛的細胞膜上被唾液酸聚醣修飾的蛋白質或是脂質與半乳糖凝集素8的交互作用會調控初級纖毛的生長。在細胞進行極化的過程中,我們觀察到分泌到細胞頂端區域外部的半乳糖凝集素8會隨著時間增加,同時這些細胞外的半乳糖凝集素8會結合到初級纖毛及初級纖毛根部的過度區,根據我們的觀察,這樣的結合會使初級纖毛出現快速生長的現象。透過實驗分析,我們發現半乳糖凝集素8會和脂筏的組成分子有一定程度的交互關係,如:神經節苷脂和小窩蛋白1等,這個結果可以支持我們的假說,即半乳糖凝集素8會結合在初級纖毛及初級纖毛根部的過度區。此外我們觀察到半乳糖凝集素8結合在初級纖毛後會擾亂初級纖毛過渡區的屏障功能,促使初級纖毛的快速生長。我們的研究還發現,初級纖毛過渡區的屏障功能是否健全取決於初級纖毛過度區中脂筏結構的完整性,在小窩蛋白1基因敲除和脂筏的藥理學抑制實驗均表現出類似於頂端添加重組半乳糖凝集素8的效果,即初級纖毛快速生長和初級纖毛過度區屏障功能受損,因此我們推論半乳糖凝集素8在初級纖毛短期快速生長上扮演一個重要的角色。後續,我們透過轉錄組分析和蛋白質組分析也發現,半乳糖凝集素8會和胰島素樣生長因子1受體有高度的親和性,同時胰島素樣生長因子1受體下游的蛋白激酶B被活化、Myc的訊號路徑活化和Myc蛋白質表現量增加,這些都暗示著半乳糖凝集素8和初級纖毛的交互作用會誘導細胞重新進入有絲分裂的循環週期。zh_TW
dc.description.abstractPrimary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components ganglioside and caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of transition zone. Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; i.e., rapid elongation of primary cilia and redistribution of cilial proteins from transition zone to the growing cilial trunk. We also investigated the cellular response after galectin 8 interacted with primary cilia through transcriptome and proteome analysis. The proteomics analysis implied Gal8 might interact with insulin-like growth factor 1 receptor (IGF1R) while the transcriptomic analysis showed Myc signaling pathway was up-regulated. Moreover, the protein kinase B (AKT) which had been reported as a downstream target of IGF1R was activated and the Myc protein level was increased. Our results imply that the interaction of galectin 8 with primary cilia induces cell entry into the cell cycle.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:08:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-05T16:08:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文審定書 I
中文摘要 II
ABSTRACT III
CONTENT 1
BBREVIATION 4
INTRODUCTION 5
Primary cilia structure and ciliogenesis 5
The function of transition zone on primary cilia 6
The galectin 8 and galectin protein families 7
The cell signaling on primary cilia 8
METHODS AND MATERIALS 11
Cell Culture 11
Antibodies and chemicals 11
Plasmids construction and recombinant protein purification 12
Generation of a MDCK clone stably expressing Arl13B-mCherry 13
GST fused Gal8 pull-down assay and Western blot 14
Immunoprecipitation of Gal8 secreted in the culture medium 14
Lipid-binding assay 15
Lipid floatation assay 15
Immunofluorescence staining and microscopy 15
Surface biotinylation and mass spectrometry 16
Lipid raft labeling with Cholera toxin subunit B 17
The lipid raft perturbation treatment 18
CRISPR/Cas9 knockout Cav1 18
Transcriptomic analysis and next-generation sequencing (NGS) 18
EdU staining and cell proliferation rate assay 19
Quantification of primary cilia length and statistical analyses 19
RESULTS 20
PART I. Galectin 8 promoted primary cilia elongation 20
Extracellular galectin 8 interacted with primary cilia membrane and promoted cilia elongation in polarized MDCK monolayer. 20
Apical domain Gal8 increased in vitro MDCK cell culture and in vivo murine developing renal tubules during the course of cilia lengthening. 22
Gal8 interacted with membranous ganglioside to promote primary cilia elongation. 22
Gal8 perturbed a lipid raft based barrier to promote primary cilia elongation. 24
Cav1 organized a lipid raft barrier on transition zone to restrict primary cilia growth 25
PART II. Extracellular galectin 8 promoted cell proliferation 27
Apical Gal8 interacted with primary cilia would induce AKT-Myc signaling activation 27
DISCUSSION AND PROSPECTIVES 29
FIGURES 33
Fig. 1 Knockdown endogenous Gal8 reduced ciliogenesis. 33
Fig. 2 Endogenous Gal8 was localized on primary cilia. 34
Fig. 3 Extracellular Gal8 interacted with primary cilia membrane. 35
Fig. 4 Extracellular Gal8 interacted with primary cilia membrane and regulated ciliogenesis. 36
Fig. 5 Extracellular Gal8 interacted with primary cilia membrane on apical domain. 37
Fig. 6 Recombinant Gal8 facilitated primary cilia lengthening in a dose-dependent manner. 38
Fig. 7 Recombinant Gal8 facilitated primary cilia lengthening through transient intermediate tubulin based structures. 39
Fig. 8 Recombinant Gal8 facilitated primary cilia lengthening in NIH3T3 and IMCD3 cells. 40
Fig. 9 Primary cilia resorption followed after recombinant Gal8 was removed. 41
Fig. 10 Gal8 was secreted to apical domain during epithelial polarization. 42
Fig. 11 Both the primary cilia length and the number of ciliated cells increased during epithelial polarization. 43
Fig. 12 Gal8 was secreted to the apical domain during mouse kidney development. 44
Fig. 13 Gal8 interacted with the primary cilia and this interaction contributed to the cilia-elongating effect of Gal8. 45
Fig. 14 Recombinant Gal8 specifically interacted with ganglioside-GD3. 46
Fig. 15 Ganglioside-GD3 was localized on the primary cilia base. 47
Fig. 16 Several gangliosides were localized on the primary cilia. 48
Fig. 17 Gal8 interacted with gangliosides on the primary cilia and this interaction contributed to the cilia-elongating effect of Gal8. 49
Fig. 18. Scheme of the strategy used to identify apical interactome for galectin 8. 50
Fig. 19 The apical Gal8-interacting plasma membrane candidates were identified by mass spectrometry analysis. 51
Fig. 20 Gal8 interacted and co-migrated with lipid raft scaffold proteins 52
Fig. 21 Gal8 interacted with lipid raft on primary cilia. 53
Fig. 22 Gal8 interacted with primary cilia at the transition zone. 54
Fig. 23 Lipid raft disruption induced primary cilia elongation and caveolin 1 translocation. 55
Fig. 24 Caveolin 1 is localized on primary cilia. 56
Fig. 25 Caveolin 1 depletion induced primary cilia elongation. 57
Fig. 26 Transcriptomic analysis of MDCK cells after Gal8 treatment. 58
Fig. 27 Gal8 promote cell proliferation at early stage. 59
Fig. 28 Both of phosphorylated AKT and Myc protein levels were increased after Gal8 treatment. 60
TABLES 61
Table 1. Candidate list for apical interacting partners of galectin 8 61
Table 2. Candidate list for gene expression induced by galectin 8 65
RFERENCES 66
-
dc.language.isoen-
dc.subject神經節苷脂zh_TW
dc.subject脂筏zh_TW
dc.subject初級纖毛過渡區zh_TW
dc.subject初級纖毛zh_TW
dc.subject小窩蛋白1zh_TW
dc.subject半乳糖凝集素8zh_TW
dc.subjectgangliosideen
dc.subjectlipid raften
dc.subjecttransition zoneen
dc.subjectprimary ciliaen
dc.subjectgalectin 8en
dc.subjectcaveolin 1en
dc.title與脂筏交互作用的Galectin8調控初級纖毛生長之研究zh_TW
dc.titleLipid raft interacting galectin 8 regulates primary ciliogenesisen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee蔡欣祐;鄭永銘;葉秀慧;陳佑宗zh_TW
dc.contributor.oralexamcommitteeHsin-Yue Tsai;Yung-Ming Jeng;Shiou-Hwei Yeh;You-Tzung Chenen
dc.subject.keyword初級纖毛,初級纖毛過渡區,脂筏,神經節苷脂,半乳糖凝集素8,小窩蛋白1,zh_TW
dc.subject.keywordprimary cilia,transition zone,lipid raft,ganglioside,galectin 8,caveolin 1,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202302590-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf4.79 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved