請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89210
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖淑貞 | zh_TW |
dc.contributor.advisor | Shwu-Jen Liaw | en |
dc.contributor.author | 趙月蓉 | zh_TW |
dc.contributor.author | Yueh-Jung Chao | en |
dc.date.accessioned | 2023-09-05T16:07:24Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-05 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-03 | - |
dc.identifier.citation | 1. Rózalski, A., Z. Sidorczyk, and K. Kotełko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89.
2. Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr, 2015. 3(5). 3. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 4. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 5. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 6. Tsai, Y.L., et al., cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Sci Rep, 2017. 7(1): p. 7282. 7. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 8. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 9. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 10. Böckelmann, U., et al., Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett, 2006. 262(1): p. 31-8. 11. Campoccia, D., L. Montanaro, and C.R. Arciola, Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int J Mol Sci, 2021. 22(16). 12. Hu, W., et al., DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides. PLoS One, 2012. 7(12): p. e51905. 13. Trunk, T., H.S. Khalil, and J.C. Leo, Bacterial autoaggregation. AIMS Microbiol, 2018. 4(1): p. 140-164. 14. Goldstein, S. and G. Czapski, The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O2. J Free Radic Biol Med, 1986. 2(1): p. 3-11. 15. Rensing, C. and G. Grass, Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev, 2003. 27(2-3): p. 197-213. 16. Tanner, M.S., et al., Increased hepatic copper concentration in Indian childhood cirrhosis. Lancet, 1979. 1(8128): p. 1203-5. 17. Cuypers, A., et al., Cadmium stress: an oxidative challenge. Biometals, 2010. 23(5): p. 927-40. 18. Koppenol, W.H., The Haber-Weiss cycle--70 years later. Redox Rep, 2001. 6(4): p. 229-34. 19. Macomber, L. and J.A. Imlay, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A, 2009. 106(20): p. 8344-9. 20. Ramisetty, B.C.M., Regulation of Type II Toxin-Antitoxin Systems: The Translation-Responsive Model. Front Microbiol, 2020. 11: p. 895. 21. Lee, K.Y. and B.J. Lee, Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria. Toxins (Basel), 2016. 8(10). 22. Fraikin, N., F. Goormaghtigh, and L. Van Melderen, Type II Toxin-Antitoxin Systems: Evolution and Revolutions. J Bacteriol, 2020. 202(7). 23. Wang, X. and T.K. Wood, Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol, 2011. 77(16): p. 5577-83. 24. Soo, V.W. and T.K. Wood, Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD. Sci Rep, 2013. 3: p. 3186. 25. Kolodkin-Gal, I., et al., A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One, 2009. 4(8): p. e6785. 26. Wang, X., et al., Type VII Toxin/Antitoxin Classification System for Antitoxins that Enzymatically Neutralize Toxins. Trends Microbiol, 2021. 29(5): p. 388-393. 27. Paul, P., et al., The Hha-TomB toxin-antitoxin module in Salmonella enterica serovar Typhimurium limits its intracellular survival profile and regulates host immune response. Cell Biol Toxicol, 2022. 38(1): p. 111-127. 28. Norton, J.P. and M.A. Mulvey, Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog, 2012. 8(10): p. e1002954. 29. Sharma, V.K. and B.L. Bearson, Hha controls Escherichia coli O157:H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD. Appl Environ Microbiol, 2013. 79(7): p. 2384-96. 30. Kim, Y. and T.K. Wood, Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun, 2010. 391(1): p. 209-13. 31. de la Cruz, F., M. Carmona, and A. Juaréz, The Hha protein from Escherichia coli is highly homologous to the YmoA protein from Yersinia enterocolitica. Mol Microbiol, 1992. 6(22): p. 3451-2. 32. Nieto, J.M., et al., The hha gene modulates haemolysin expression in Escherichia coli. Mol Microbiol, 1991. 5(5): p. 1285-93. 33. Madrid, C., et al., The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol, 2007. 63(1): p. 7-14. 34. Belas, R., D. Erskine, and D. Flaherty, Transposon mutagenesis in Proteus mirabilis. J Bacteriol, 1991. 173(19): p. 6289-93. 35. Wu, Y. and F.W. Outten, IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol, 2009. 191(4): p. 1248-57. 36. Horng, Y.T., et al., Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. J Microbiol Immunol Infect, 2018. 51(2): p. 174-183. 37. Wu, J., et al., Pyruvate-associated acid resistance in bacteria. Appl Environ Microbiol, 2014. 80(14): p. 4108-13. 38. Peerbooms, P.G., A.M. Verweij, and D.M. MacLaren, Vero cell invasiveness of Proteus mirabilis. Infect Immun, 1984. 43(3): p. 1068-71. 39. Giulietti, A., et al., An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 2001. 25(4): p. 386-401. 40. Kim, W., et al., The Neutrally Charged Diarylurea Compound PQ401 Kills Antibiotic-Resistant and Antibiotic-Tolerant Staphylococcus aureus. mBio, 2020. 11(3). 41. Fukuoka, T., et al., Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother, 1991. 35(3): p. 529-32. 42. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 43. Jaiswal, S., et al., The Hha-TomB Toxin-Antitoxin System Shows Conditional Toxicity and Promotes Persister Cell Formation by Inhibiting Apoptosis-Like Death in S. Typhimurium. Sci Rep, 2016. 6: p. 38204. 44. García-Contreras, R., et al., Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS One, 2008. 3(6): p. e2394. 45. Marimon, O., et al., An oxygen-sensitive toxin-antitoxin system. Nat Commun, 2016. 7: p. 13634. 46. Grosse, C., S. Friedrich, and D.H. Nies, Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol, 2007. 12(3-4): p. 227-40. 47. Pontel, L.B., A. Pezza, and F.C. Soncini, Copper stress targets the rcs system to induce multiaggregative behavior in a copper-sensitive Salmonella strain. J Bacteriol, 2010. 192(23): p. 6287-90. 48. Williams, C.L., et al., Characterization of Acinetobacter baumannii Copper Resistance Reveals a Role in Virulence. Front Microbiol, 2020. 11: p. 16. 49. Qin, Y., et al., Genome Sequences of Three Highly Copper-Resistant Salmonella enterica subsp. I Serovar Typhimurium Strains Isolated from Pigs in Denmark. Genome Announc, 2014. 2(6). 50. Outten, F.W., et al., Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem, 2000. 275(40): p. 31024-9. 51. Quintana, J., L. Novoa-Aponte, and J.M. Argüello, Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. J Biol Chem, 2017. 292(38): p. 15691-15704. 52. Stewart, L.J., et al., Handling of nutrient copper in the bacterial envelope. Metallomics, 2019. 11(1): p. 50-63. 53. Liu, M.C., et al., New aspects of RpoE in uropathogenic Proteus mirabilis. Infect Immun, 2015. 83(3): p. 966-77. 54. Pannen, D., et al., Interaction of the RcsB Response Regulator with Auxiliary Transcription Regulators in Escherichia coli. J Biol Chem, 2016. 291(5): p. 2357-70. 55. Bijlsma, I.G.W., et al., Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology (Reading), 1995. 141 ( Pt 6): p. 1349-1357. 56. Scavone, P., et al., Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. Pathog Dis, 2016. 74(5). 57. Armbruster, C.E., H.L.T. Mobley, and M.M. Pearson, Pathogenesis of Proteus mirabilis Infection. EcoSal Plus, 2018. 8(1). 58. Li, X., et al., Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol, 2002. 45(3): p. 865-74. 59. Lewis, K., Persister cells, dormancy and infectious disease. Nat Rev Microbiol, 2007. 5(1): p. 48-56. 60. Keren, I., et al., Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol, 2004. 186(24): p. 8172-80. 61. Shah, D., et al., Persisters: a distinct physiological state of E. coli. BMC Microbiol, 2006. 6: p. 53. 62. Sivick, K.E., et al., The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J Immunol, 2010. 184(4): p. 2065-75. 63. Jenab, A., R. Roghanian, and G. Emtiazi, Bacterial Natural Compounds with Anti-Inflammatory and Immunomodulatory Properties (Mini Review). Drug Des Devel Ther, 2020. 14: p. 3787-3801. 64. Cheng, N., et al., Serum amyloid A promotes LPS clearance and suppresses LPS-induced inflammation and tissue injury. EMBO Rep, 2018. 19(10). 65. Owusu-Boaitey, N., et al., Macrophagic control of the response to uropathogenic E. coli infection by regulation of iron retention in an IL-6-dependent manner. Immun Inflamm Dis, 2016. 4(4): p. 413-426. 66. Hessle, C.C., B. Andersson, and A.E. Wold, Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine, 2005. 30(6): p. 311-8. 67. Pal, R.R., et al., Genetic components of stringent response in Vibrio cholerae. Indian J Med Res, 2011. 133(2): p. 212-7. 68. Dalebroux, Z.D., R.L. Edwards, and M.S. Swanson, SpoT governs Legionella pneumophila differentiation in host macrophages. Mol Microbiol, 2009. 71(3): p. 640-58. 69. Guo, Y., et al., Resistance to oxidative stress by inner membrane protein ElaB is regulated by OxyR and RpoS. Microb Biotechnol, 2019. 12(2): p. 392-404. 70. Pérez Audero, M.E., et al., Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol, 2010. 78(4): p. 853-65. 71. Humbert, M.V., et al., Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J Biol Chem, 2013. 288(28): p. 20510-9. 72. Changela, A., et al., Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science, 2003. 301(5638): p. 1383-7. 73. Chen, K., et al., An atypical linear Cu(I)-S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein. J Am Chem Soc, 2003. 125(40): p. 12088-9. 74. De Wulf, P. and E.C. Lin, Cpx two-component signal transduction in Escherichia coli: excessive CpxR-P levels underlie CpxA* phenotypes. J Bacteriol, 2000. 182(5): p. 1423-6. 75. Snyder, W.B., et al., Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol, 1995. 177(15): p. 4216-23. 76. Simpson, B.W. and M.S. Trent, Emerging Roles for NlpE as a Sensor for Lipoprotein Maturation and Transport to the Outer Membrane in Escherichia coli. mBio, 2019. 10(3). 77. Danese, P.N. and T.J. Silhavy, The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev, 1997. 11(9): p. 1183-93. 78. DiGiuseppe, P.A. and T.J. Silhavy, Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol, 2003. 185(8): p. 2432-40. 79. Danese, P.N., et al., The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev, 1995. 9(4): p. 387-98. 80. Dorel, C., P. Lejeune, and A. Rodrigue, The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol, 2006. 157(4): p. 306-14. 81. Jin, X. and J.S. Marshall, Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS One, 2020. 15(12): p. e0243280. 82. Chen, H.H., et al., A CpxR-Regulated zapD Gene Involved in Biofilm Formation of Uropathogenic Proteus mirabilis. Infect Immun, 2020. 88(7). 83. Wu, L.W., et al., [Progress on the function and regulatory mechanisms of bacterial Cpx signal transduction system]. Yi Chuan, 2021. 43(8): p. 747-757. 84. Xie, X., et al., RpoE is a Putative Antibiotic Resistance Regulator of Salmonella enteric Serovar Typhi. Curr Microbiol, 2016. 72(4): p. 457-64. 85. Filippova, E.V., et al., Crystal structure of nonphosphorylated receiver domain of the stress response regulator RcsB from Escherichia coli. Protein Sci, 2016. 25(12): p. 2216-2224. 86. Higgins, S., et al., Copper resistance genes of Burkholderia cenocepacia H111 identified by transposon sequencing. Environ Microbiol Rep, 2020. 12(2): p. 241-249. 87. Schätzle, H., et al., Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porinlike Genes. J Microbiol Biotechnol, 2021. 31(5): p. 645-658. 88. Overgaard, M., et al., Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol Microbiol, 2008. 69(4): p. 841-57. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89210 | - |
dc.description.abstract | 奇異變形桿菌(P. mirabilis)是一種重要的泌尿道病原體,主要是經由尿道或導尿管進入泌尿道,爬行進入膀胱並增生,接著再沿著輸尿管上行至腎臟,造成腎臟感染。而銅是所有生命皆必需的微量元素,但過量也會對生物體造成毒性。細菌引起的泌尿道感染(urinary tract infection, UTI)會讓尿液中銅離子的濃度顯著上升,包括以P. mirabilis引發的UTI。銅在巨噬細胞亦會發揮殺菌作用。
爲了探究P. mirabilis銅感受性的機制,本篇論文首先利用跳躍子突變法(transposon mutagenesis)的方式,篩選出對3.25 mM銅濃度感受性增加的P. mirabilis突變株(Cu-susceptible突變株),經過基因分析後得到hha突變株。本篇研究之Hha 蛋白在Escherichia coli及Salmonella中作為毒素,與antitoxin TomB構成Toxin-Antitoxin系統。在E. coli及Salmonella中有研究表明,Hha 控制致病因子基因的表達。我們的研究結果表明,Hha過表達對P. mirabilis菌體有毒性,TomB的表達則可保護菌體。hha 缺失會影響細胞對銅的感受性,並改變致病因子,包括運動性、生物膜形成,以及在壓力環境下的存活,例如抗生素下persistent cells形成。蠟蛾體內毒力試驗顯示hha缺失使毒力下降。同時我們發現hha 對致病因子的表達有dose effect的現象。Hha透過正調控flhDC促進鞭毛蛋白生成,讓細菌具備較好的運動性。檢測纖毛相關基因顯示Hha和pmpA以及mrp表現呈正相關,而由細胞貼附試驗結果也發現hha突變株貼附尿上皮細胞能力較野生株下降。由抗壓相關表現型可觀察到hha突變株於酸性環境中與巨噬細胞試驗之生存率及persister cell的形成能力較野生株下降,同時觀察到hha突變株會使spoT、relA及rpoS等壓力相關基因表現減少。接著觀察到 hha突變株較易促使細胞激素分泌。其後探討了hha突變株的基因調控,tomB-hha operon具autoregulation, hha缺失引起調控外膜壓力的rpoE、rcsB及cueR 表現量下降。在缺失cueR及cpxR的情況下,hha 表現量則下降,表明cueR及cpxR參與 Hha 的調控路徑。最後我們發現銅會誘導hha 表現。由上述可得知,hha於P. mirabilis致病力及抗銅中扮演著重要的角色。 這是首次發現TA系統toxin參與尿道致病菌P. mirabilis致病因子表現的研究。 | zh_TW |
dc.description.abstract | Proteus mirabilis, a Gram-negative bacterium, is an important urinary tract pathogen in human, often causing urinary tract infections (UTI). Copper is a member of host innate immune system. When a urinary tract infection occurs, the copper concentration of human urine will increase, together with the copper increase in macrophages, to protect from the invading pathogens. Because the accumulation of excessive copper causes damages to the bacterial cells, the bacteria evolve a series of anti-copper mechanisms to maintain the copper homeostasis.
To investigate copper resistance mechanisms in P. mirabilis, we isolated copper-sensitive mutants by transposon mutagenesis. One of the mutant was found to be disrupted in the hha gene. Hha and TomB constitute a toxin-antitoxin system (TA) in Escherichia coli and Salmonella in which the antitoxin TomB is an enzyme which modifies the Hha toxin directly. Studies performed in E. coli and Salmonella also highlight the contribution of Hha in regulating bacterial virulence. Therefore, we investigated the role of Hha in virulence factor expression and found that hha mutant had a significant decrease in swimming, swarming and biofilm-forming ability. The hha mutant also exhibited a higher copper susceptibility than the wild-type strain with a dose-effect. It means that only within an optimal concentration range of Hha could restore the mutant phenotype to the wild type strain. The virulence test of Galleria mellonella showed that the loss of hha decreased the virulence compared with wild-type and complemented strain. The reporter assay revealed that Hha positively regulated flhDC promoter activity. Moreover, the expression of the infectivity-related fimbrial genes, mrpA and pmpA, in hha mutant was significantly decreased. The hha mutant had lower spoT, relA and rpoS (genes involved in coping with stress environment) expression by the reporter assay. Accordingly, we observed that hha mutant had a lower survival rate on exposure to low pH or in macrophages and a lower ability to form persistent cells than the wild-type. The hha mutant exhibited lower adhesion ability and induced higher cytokine production than the wild-type strain. The expression of rpoE, rcsB and cueR was reduced in hha mutant, which suggests hha may participate in the rpoE, rcsB and cueR regulated pathways. We identified that copper or urea (high osmolarity) acts as a signal for induction of Hha expression, indicating the triggering of Hha-transduction pathway. In conclusion, Hha plays an important role in copper susceptibility and pathogenicity of P. mirabilis. This is the first study of investigating the TA system in P. mirabilis. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:07:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-05T16:07:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書................................................................................................... i
誌謝.......................................................................................................................... ii 中文摘要..................................................................................................................iii 英文摘要.................................................................................................................. v 目錄.........................................................................................................................vii 圖目錄......................................................................................................................ix 表目錄.....................................................................................................................xii 第一章 緒論.............................................................................................................1 第一節 奇異變形桿菌 (Proteus mirabilis)的基本介紹............................ 1 第二節 P. mirabilis的致病因子................................................................. 1 第三節 銅之生物特性.................................................................................3 第四節 Hha-TomB TA system之簡介........................................................4 第五節 Hha之基本特性..............................................................................5 第六節 研究動機與目的............................................................................ 6 第二章 實驗設計、材料與方法.............................................................................7 第一節 實驗設計.........................................................................................7 第二節 實驗材料.........................................................................................8 第三節 構建突變株、互補株及過度表達株...........................................11 第四節 突變基因之鑑定...........................................................................20 第五節 表現型(phenotype)及毒力因子(virulence factors)分析............. 25 第六節 基因表達.......................................................................................38 第三章 實驗結果...................................................................................................45 第一節 篩選對銅高感受性之突變株.......................................................45 第二節 Hha-TomB Toxin-Antitoxin System對生長的影響.....................46 第三節 突變株對銅之感受性...................................................................47 第四節 hha突變株之表現型分析............................................................48 第五節 Hha與TomB 之交互作用..........................................................55 第六節 hha之表現型相關基因調控機制................................................56 第四章 結論與討論...............................................................................................61 第一節 結論...............................................................................................61 第二節 討論...............................................................................................63 第五章 圖...............................................................................................................67 第六章 表...............................................................................................................94 附錄.......................................................................................................................100 參考文獻...............................................................................................................110 | - |
dc.language.iso | zh_TW | - |
dc.title | 尿道致病性奇異變形桿菌中一毒素-抗毒素系統的毒素蛋白Hha調控銅感受性及致病因子表現之研究 | zh_TW |
dc.title | Hha, a toxin of bacterial Toxin-Antitoxin system, regulates copper susceptibility and virulence factor expression in uropathogenic Proteus mirabilis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蘇伯琦;高正彥 | zh_TW |
dc.contributor.oralexamcommittee | Po-Chi Soo;Cheng-Yen Kao | en |
dc.subject.keyword | 奇異變形桿菌,hha,銅,TA 系統,壓力抵抗,致病因子, | zh_TW |
dc.subject.keyword | Proteus mirabilis,hha,copper,TA system,stress resistance,virulence factors, | en |
dc.relation.page | 122 | - |
dc.identifier.doi | 10.6342/NTU202302672 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-04 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 4.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。