Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89209
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡錦華zh_TW
dc.contributor.advisorChing-Hwa Tsaien
dc.contributor.author林豔玲zh_TW
dc.contributor.authorYan-Ling Linen
dc.date.accessioned2023-09-05T16:07:08Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-05-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citationAkey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., Jurkiw, T. J., DelProposto, J., Ogata, C. M., Skiniotis, G., Kuhn, R. J., & Smith, J. L. (2014). Flavivirus NS1 Structures Reveal Surfaces for Associations with Membranes and the Immune System. Science, 343(6173), 881-885. https://doi.org/doi:10.1126/science.1247749
Alcalá, A. C., Medina, F., González-Robles, A., Salazar-Villatoro, L., Fragoso-Soriano, R. J., Vásquez, C., Cervantes-Salazar, M., del Angel, R. M., & Ludert, J. E. (2016). The dengue virus non-structural protein 1 (NS1) is secreted efficiently from infected mosquito cells. Virology, 488, 278-287. https://doi.org/https://doi.org/10.1016/j.virol.2015.11.020
Alcalá, A. C., Palomares, L. A., & Ludert, J. E. (2018). Secretion of Nonstructural Protein 1 of Dengue Virus from Infected Mosquito Cells: Facts and Speculations. Journal of Virology, 92(14), 10.1128/jvi.00275-00218. https://doi.org/doi:10.1128/jvi.00275-18
Alcon, S., Talarmin, A., Debruyne, M., Falconar, A., Deubel, V., & Flamand, M. (2002). Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol, 40(2), 376-381. https://doi.org/10.1128/JCM.40.2.376-381.2002
Amorim, J. H., Porchia, B. F. M. M., Balan, A., Cavalcante, R. C. M., da Costa, S. M., de Barcelos Alves, A. M., & de Souza Ferreira, L. C. (2010). Refolded dengue virus type 2 NS1 protein expressed in Escherichia coli preserves structural and immunological properties of the native protein. Journal of Virological Methods, 167(2), 186-192. https://doi.org/https://doi.org/10.1016/j.jviromet.2010.04.003
Anasir, M. I., Ramanathan, B., & Poh, C. L. (2020). Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses, 12(4), 367. https://www.mdpi.com/1999-4915/12/4/367
Ansar, W., & Ghosh, S. (2013). Monoclonal Antibodies: A Tool in Clinical Research. Indian Journal of Clinical Medicine, 4, IJCM.S11968. https://doi.org/10.4137/ijcm.S11968
Antunes, P., Watterson, D., Parmvi, M., Burger, R., Boisen, A., Young, P., Cooper, M. A., Hansen, M. F., Ranzoni, A., & Donolato, M. (2015). Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Sci Rep, 5, 16145. https://doi.org/10.1038/srep16145
Armstrong, P. M., & Rico-Hesse, R. (2001). Differential susceptibility of Aedes aegypti to infection by the American and Southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis, 1(2), 159-168. https://doi.org/10.1089/153036601316977769
Ashburn, P. M., & Craig, C. F. (1907). Experimental Investigations Regarding the Etiology of Dengue Fever. The Journal of Infectious Diseases, 4(3), 440-475. http://www.jstor.org/stable/30073165
Athmaram, T. N., Saraswat, S., Misra, P., Shrivastava, S., Singh, A. K., Verma, S. K., Gopalan, N., Behara, P. K., & Rao, P. V. L. (2013). Optimization of Dengue-3 recombinant NS1 protein expression in E. coli and in vitro refolding for diagnostic applications. Virus Genes, 46(2), 219-230. https://doi.org/10.1007/s11262-012-0851-5
Avirutnan, P., Fuchs, A., Hauhart, R. E., Somnuke, P., Youn, S., Diamond, M. S., & Atkinson, J. P. (2010). Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. Journal of Experimental Medicine, 207(4), 793-806. https://doi.org/10.1084/jem.20092545
Avirutnan, P., Hauhart, R. E., Somnuke, P., Blom, A. M., Diamond, M. S., & Atkinson, J. P. (2011). Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol, 187(1), 424-433. https://doi.org/10.4049/jimmunol.1100750
Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., Jairungsri, A., Kanlaya, R., Tangthawornchaikul, N., Puttikhunt, C., Pattanakitsakul, S.-n., Yenchitsomanus, P.-t., Mongkolsapaya, J., Kasinrerk, W., Sittisombut, N., Husmann, M., Blettner, M., Vasanawathana, S., Bhakdi, S., & Malasit, P. (2006). Vascular Leakage in Severe Dengue Virus Infections: A Potential Role for the Nonstructural Viral Protein NS1 and Complement. The Journal of Infectious Diseases, 193(8), 1078-1088. https://doi.org/10.1086/500949
Bayer, V. (2019). An Overview of Monoclonal Antibodies. Seminars in Oncology Nursing, 35(5), 150927. https://doi.org/https://doi.org/10.1016/j.soncn.2019.08.006
Beatty, P. R., Puerta-Guardo, H., Killingbeck, S. S., Glasner, D. R., Hopkins, K., & Harris, E. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science Translational Medicine, 7(304), 304ra141-304ra141. https://doi.org/doi:10.1126/scitranslmed.aaa3787
Berger, M., Shankar, V., & Vafai, A. (2002). Therapeutic Applications of Monoclonal Antibodies. The American Journal of the Medical Sciences, 324(1), 14-30. https://doi.org/https://doi.org/10.1097/00000441-200207000-00004
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. https://doi.org/10.1038/nature12060
Biering, S. B., Akey, D. L., Wong, M. P., Brown, W. C., Lo, N. T. N., Puerta-Guardo, H., Tramontini Gomes de Sousa, F., Wang, C., Konwerski, J. R., Espinosa, D. A., Bockhaus, N. J., Glasner, D. R., Li, J., Blanc, S. F., Juan, E. Y., Elledge, S. J., Mina, M. J., Beatty, P. R., Smith, J. L., & Harris, E. (2021). Structural basis for antibody inhibition of flavivirus NS1–triggered endothelial dysfunction. Science, 371(6525), 194-200. https://doi.org/doi:10.1126/science.abc0476
Biswal, S., Reynales, H., Saez-Llorens, X., Lopez, P., Borja-Tabora, C., Kosalaraksa, P., Sirivichayakul, C., Watanaveeradej, V., Rivera, L., Espinoza, F., Fernando, L., Dietze, R., Luz, K., Venâncio da Cunha, R., Jimeno, J., López-Medina, E., Borkowski, A., Brose, M., Rauscher, M., . . . Wallace, D. (2019). Efficacy of a Tetravalent Dengue Vaccine in Healthy Children and Adolescents. New England Journal of Medicine, 381(21), 2009-2019. https://doi.org/10.1056/NEJMoa1903869
Boekhout, A. H., Beijnen, J. H., & Schellens, J. H. M. (2011). Trastuzumab. The Oncologist, 16(6), 800-810. https://doi.org/10.1634/theoncologist.2010-0035
Bosch, I., de Puig, H., Hiley, M., Carré-Camps, M., Perdomo-Celis, F., Narváez, C. F., Salgado, D. M., Senthoor, D., O'Grady, M., Phillips, E., Durbin, A., Fandos, D., Miyazaki, H., Yen, C. W., Gélvez-Ramírez, M., Warke, R. V., Ribeiro, L. S., Teixeira, M. M., Almeida, R. P., . . . Gehrke, L. (2017). Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci Transl Med, 9(409). https://doi.org/10.1126/scitranslmed.aan1589
Brandt, W. E., Cardiff, R. D., & Russell, P. K. (1970). Dengue virions and antigens in brain and serum of infected mice. J Virol, 6(4), 500-506. https://doi.org/10.1128/jvi.6.4.500-506.1970
Byk, L. A., & Gamarnik, A. V. (2016). Properties and Functions of the Dengue Virus Capsid Protein. Annu Rev Virol, 3(1), 263-281. https://doi.org/10.1146/annurev-virology-110615-042334
Castro-Jorge, L. A., Machado, P. R. L., Fávero, C. A., Borges, M. C., Passos, L. M. R., de Oliveira, R. M., & Fonseca, B. A. L. (2010). Clinical evaluation of the NS1 antigen-capture ELISA for early diagnosis of dengue virus infection in Brazil. Journal of Medical Virology, 82(8), 1400-1405. https://doi.org/https://doi.org/10.1002/jmv.21814
Chaiyaratana, W., Chuansumrit, A., Pongthanapisith, V., Tangnararatchakit, K., Lertwongrath, S., & Yoksan, S. (2009). Evaluation of dengue nonstructural protein 1 antigen strip for the rapid diagnosis of patients with dengue infection. Diagnostic Microbiology and Infectious Disease, 64(1), 83-84. https://doi.org/https://doi.org/10.1016/j.diagmicrobio.2009.01.004
Chao, C.-H., Wu, W.-C., Lai, Y.-C., Tsai, P.-J., Perng, G.-C., Lin, Y.-S., & Yeh, T.-M. (2019). Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLOS Pathogens, 15(4), e1007625. https://doi.org/10.1371/journal.ppat.1007625
Chen, H.-R., Chuang, Y.-C., Lin, Y.-S., Liu, H.-S., Liu, C.-C., Perng, G.-C., & Yeh, T.-M. (2016). Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLOS Neglected Tropical Diseases, 10(7), e0004828. https://doi.org/10.1371/journal.pntd.0004828
Chen, H.-R., Lai, Y.-C., & Yeh, T.-M. (2018). Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. Journal of Biomedical Science, 25(1), 58. https://doi.org/10.1186/s12929-018-0462-0
Chen, Y., Pan, Y., Guo, Y., Qiu, L., Ding, X., & Che, X. (2010). Comprehensive mapping of immunodominant and conserved serotype- and group-specific B-cell epitopes of nonstructural protein 1 from dengue virus type 1. Virology, 398(2), 290-298. https://doi.org/https://doi.org/10.1016/j.virol.2009.12.010
Cruz-Oliveira, C., Freire, J. M., Conceição, T. M., Higa, L. M., Castanho, M. A. R. B., & Da Poian, A. T. (2015). Receptors and routes of dengue virus entry into the host cells. FEMS Microbiology Reviews, 39(2), 155-170. https://doi.org/10.1093/femsre/fuu004
Datta, S., & Wattal, C. (2010). Dengue NS1 antigen detection: A useful tool in early diagnosis of dengue virus infection. Indian Journal of Medical Microbiology, 28(2), 107-110. https://doi.org/https://doi.org/10.4103/0255-0857.62484
de Azeredo, E. L., Monteiro, R. Q., & de-Oliveira Pinto, L. M. (2015). Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators. Mediators Inflamm, 2015, 313842. https://doi.org/10.1155/2015/313842
Dejnirattisai, W., Jumnainsong, A., Onsirisakul, N., Fitton, P., Vasanawathana, S., Limpitikul, W., Puttikhunt, C., Edwards, C., Duangchinda, T., Supasa, S., Chawansuntati, K., Malasit, P., Mongkolsapaya, J., & Screaton, G. (2010). Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science, 328(5979), 745-748. https://doi.org/doi:10.1126/science.1185181
Dussart, P., Labeau, B., Lagathu, G., Louis, P., Nunes, M. R. T., Rodrigues, S. G., Storck-Herrmann, C., Cesaire, R., Morvan, J., Flamand, M., & Baril, L. (2006). Evaluation of an Enzyme Immunoassay for Detection of Dengue Virus NS1 Antigen in Human Serum. Clinical and Vaccine Immunology, 13(11), 1185-1189. https://doi.org/doi:10.1128/CVI.00229-06
Dussart, P., Petit, L., Labeau, B., Bremand, L., Leduc, A., Moua, D., Matheus, S., & Baril, L. (2008). Evaluation of Two New Commercial Tests for the Diagnosis of Acute Dengue Virus Infection Using NS1 Antigen Detection in Human Serum. PLOS Neglected Tropical Diseases, 2(8), e280. https://doi.org/10.1371/journal.pntd.0000280
El-Manzalawy, Y., & Honavar, V. (2010). Recent advances in B-cell epitope prediction methods. Immunome Res, 6 Suppl 2(Suppl 2), S2. https://doi.org/10.1186/1745-7580-6-s2-s2
Firth, A. E., & Atkins, J. F. (2009). A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting. Virology Journal, 6(1), 14. https://doi.org/10.1186/1743-422X-6-14
Glasner, D. R., Puerta-Guardo, H., Beatty, P. R., & Harris, E. (2018). <2018 July Annual Review of Virology--The Good, the Bad, and the Shocking-The Muliple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis.pdf>. Annual Review of Virology https://doi.org/10.1146/annurev-virology-
Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice. Elsevier Science. https://books.google.com.tw/books?id=jPk4ZY4CnQQC
Graham, H. (1903). The Dengue: A Study of Its Pathology and Mode of Propagation. https://books.google.com.tw/books?id=OWEHGwAACAAJ
Gubler, D. J. (1998). Dengue and Dengue Hemorrhagic Fever. Clinical Microbiology Reviews, 11(3), 480-496. https://doi.org/doi:10.1128/cmr.11.3.480
Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 11(3), 480-496. https://doi.org/10.1128/cmr.11.3.480
Guevarra Jr., L. A., Boado, K. J. O., Ceñidoza, F. B. B., Imbao, M. R. L. M., Sia, M. J. G., & Dalmacio, L. M. M. (2020). A synthetic peptide analog of in silico-predicted immunogenic epitope unique to dengue virus serotype 2 NS1 antigen specifically binds immunoglobulin G antibodies raised in rabbits. Microbiology and Immunology, 64(2), 153-161. https://doi.org/https://doi.org/10.1111/1348-0421.12757
Gunawardana, S. A., & Shaw, R. H. (2018). Cross-reactive dengue virus-derived monoclonal antibodies to Zika virus envelope protein: Panacea or Pandora’s box? BMC Infectious Diseases, 18(1), 641. https://doi.org/10.1186/s12879-018-3572-0
Gutsche, I., Coulibaly, F., Voss, J. E., Salmon, J., d'Alayer, J., Ermonval, M., Larquet, E., Charneau, P., Krey, T., Mégret, F., Guittet, E., Rey, F. A., & Flamand, M. (2011). Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proceedings of the National Academy of Sciences, 108(19), 8003-8008. https://doi.org/doi:10.1073/pnas.1017338108
Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E., & Halstead, S. B. (2016). Dengue infection. Nat Rev Dis Primers, 2, 16055. https://doi.org/10.1038/nrdp.2016.55
Halstead, S. B. (2007). Dengue. Lancet, 370(9599), 1644-1652. https://doi.org/10.1016/s0140-6736(07)61687-0
Halstead, S. B. (2007). Dengue. The Lancet, 370(9599), 1644-1652. https://doi.org/https://doi.org/10.1016/S0140-6736(07)61687-0
Halstead, S. B., Udomsakdi, S., Simasthien, P., Singharaj, P., Sukhavachana, P., & Nisalak, A. (1970). Observations related to pathogenesis of dengue hemorrhagic fever. I. Experience with classification of dengue viruses. Yale J Biol Med, 42(5), 261-275.
Hammon, W. M., Rundnick, A., & Sather, G. E. (1960). Viruses Associated with Epidemic Hemorrhagic Fevers of the Philippines and Thailand. Science, 131(3407), 1102-1103. https://doi.org/doi:10.1126/science.131.3407.1102
Harapan, H., Michie, A., Sasmono, R. T., & Imrie, A. (2020). Dengue: A Minireview. Viruses, 12(8). https://doi.org/10.3390/v12080829
Hayat, S. M. G., Farahani, N., Golichenari, B., & Sahebkar, A. (2018). Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know. Curr Pharm Des, 24(6), 718-725. https://doi.org/10.2174/1381612824666180131121940
Hermann, L. L., Thaisomboonsuk, B., Poolpanichupatam, Y., Jarman, R. G., Kalayanarooj, S., Nisalak, A., Yoon, I.-K., & Fernandez, S. (2014). Evaluation of a Dengue NS1 Antigen Detection Assay Sensitivity and Specificity for the Diagnosis of Acute Dengue Virus Infection. PLOS Neglected Tropical Diseases, 8(10), e3193. https://doi.org/10.1371/journal.pntd.0003193
Iwamura, T., Guzman-Holst, A., & Murray, K. A. (2020). Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nature Communications, 11(1), 2130. https://doi.org/10.1038/s41467-020-16010-4
Jacobs, M. G., Robinson, P. J., Bletchly, C., Mackenzie, J. M., & Young, P. R. (2000). Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. Faseb j, 14(11), 1603-1610. https://doi.org/10.1096/fj.14.11.1603
Jahwarhar Izuan Abdul, R., & Nor Azah, Y. (2018). Laboratory Diagnosis and Potential Application of Nucleic Acid Biosensor Approach for Early Detection of Dengue Virus Infections. Biosciences Biotechnology Research Asia, 15(2), 245-255. https://doi.org/https://doi.org/10.13005/bbra/2628
Janaki, M. D. S., Aryaprema, V. S., Fernando, N., Handunnetti, S. M., Weerasena, O. V. D. S. J., Pathirana, P. P. S. L., & Tissera, H. A. (2022). Prevalence and resting behaviour of dengue vectors, Aedes aegypti and Aedes albopictus in dengue high risk urban settings in Colombo, Sri Lanka. Journal of Asia-Pacific Entomology, 25(3), 101961. https://doi.org/https://doi.org/10.1016/j.aspen.2022.101961
Jansen, C. C., & Beebe, N. W. (2010). The dengue vector Aedes aegypti: what comes next. Microbes and Infection, 12(4), 272-279. https://doi.org/https://doi.org/10.1016/j.micinf.2009.12.011
Jiskoot, W., Kijanka, G., Randolph, T. W., Carpenter, J. F., Koulov, A. V., Mahler, H.-C., Joubert, M. K., Jawa, V., & Narhi, L. O. (2016). Mouse Models for Assessing Protein Immunogenicity: Lessons and Challenges. Journal of Pharmaceutical Sciences, 105(5), 1567-1575. https://doi.org/https://doi.org/10.1016/j.xphs.2016.02.031
Katzelnick, L. C., Gresh, L., Halloran, M. E., Mercado, J. C., Kuan, G., Gordon, A., Balmaseda, A., & Harris, E. (2017). Antibody-dependent enhancement of severe dengue disease in humans. Science, 358(6365), 929-932. https://doi.org/doi:10.1126/science.aan6836
Kevadiya, B. D., Machhi, J., Herskovitz, J., Oleynikov, M. D., Blomberg, W. R., Bajwa, N., Soni, D., Das, S., Hasan, M., Patel, M., Senan, A. M., Gorantla, S., McMillan, J., Edagwa, B., Eisenberg, R., Gurumurthy, C. B., Reid, S. P. M., Punyadeera, C., Chang, L., & Gendelman, H. E. (2021). Diagnostics for SARS-CoV-2 infections. Nature Materials, 20(5), 593-605. https://doi.org/10.1038/s41563-020-00906-z
Khow, O., & Suntrarachun, S. (2012). Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed, 2(2), 159-162. https://doi.org/10.1016/s2221-1691(11)60213-x
KÖHler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495-497. https://doi.org/10.1038/256495a0
Kostyuchenko, V. A., Chew, P. L., Ng, T.-S., & Lok, S.-M. (2014). Near-Atomic Resolution Cryo-Electron Microscopic Structure of Dengue Serotype 4 Virus. Journal of Virology, 88(1), 477-482. https://doi.org/doi:10.1128/jvi.02641-13
Kumarasamy, V., Wahab, A. H. A., Chua, S. K., Hassan, Z., Chem, Y. K., Mohamad, M., & Chua, K. B. (2007). Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection. Journal of Virological Methods, 140(1), 75-79. https://doi.org/https://doi.org/10.1016/j.jviromet.2006.11.001
Lai, Y.-C., Chuang, Y.-C., Liu, C.-C., Ho, T.-S., Lin, Y.-S., Anderson, R., & Yeh, T.-M. (2017). Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Scientific Reports, 7(1), 6975. https://doi.org/10.1038/s41598-017-07308-3
Lazear, H. M., & Diamond, M. S. (2016). Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere. Journal of Virology, 90(10), 4864-4875. https://doi.org/doi:10.1128/jvi.00252-16
Lee, H., Ryu, J. H., Park, H.-S., Park, K. H., Bae, H., Yun, S., Choi, A.-R., Cho, S.-Y., Park, C., Lee, D.-G., Lim, J., Lee, J., Lee, S., Shin, S., Park, H., & Oh, E.-J. (2019). Comparison of Six Commercial Diagnostic Tests for the Detection of Dengue Virus Non-Structural-1 Antigen and IgM/IgG Antibodies. alm, 39(6), 566-571. https://doi.org/10.3343/alm.2019.39.6.566
Lee, H., Ryu, J. H., Park, H. S., Park, K. H., Bae, H., Yun, S., Choi, A. R., Cho, S. Y., Park, C., Lee, D. G., Lim, J., Lee, J., Lee, S., Shin, S., Park, H., & Oh, E. J. (2019). Comparison of Six Commercial Diagnostic Tests for the Detection of Dengue Virus Non-Structural-1 Antigen and IgM/IgG Antibodies. Ann Lab Med, 39(6), 566-571. https://doi.org/10.3343/alm.2019.39.6.566
Libraty, D. H., Young, P. R., Pickering, D., Endy, T. P., Kalayanarooj, S., Green, S., Vaughn, D. W., Nisalak, A., Ennis, F. A., & Rothman, A. L. (2002). High Circulating Levels of the Dengue Virus Nonstructural Protein NS1 Early in Dengue Illness Correlate with the Development of Dengue Hemorrhagic Fever. The Journal of Infectious Diseases, 186(8), 1165-1168. https://doi.org/10.1086/343813
Liu, J. K. H. (2014). The history of monoclonal antibody development – Progress, remaining challenges and future innovations. Annals of Medicine and Surgery, 3(4), 113-116. https://doi.org/https://doi.org/10.1016/j.amsu.2014.09.001
Lok, S.-M. (2016). The Interplay of Dengue Virus Morphological Diversity and Human Antibodies. Trends in Microbiology, 24(4), 284-293. https://doi.org/https://doi.org/10.1016/j.tim.2015.12.004
Malavige, G. N., & Ogg, G. S. (2017). Pathogenesis of vascular leak in dengue virus infection. Immunology, 151(3), 261-269. https://doi.org/https://doi.org/10.1111/imm.12748
Mason, P. W. (1989). Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology, 169(2), 354-364. https://doi.org/https://doi.org/10.1016/0042-6822(89)90161-X
McLAUGHLIN, J. W. (1886). RESEARCHES INTO THE ETIOLOGY OF DENGUE. Journal of the American Medical Association, VI(25), 673-680. https://doi.org/10.1001/jama.1886.04250060057001
McSherry, J. A. (1982). Some medical aspects of the Darien scheme: was it dengue? Scott Med J, 27(2), 183-184. https://doi.org/10.1177/003693308202700215
Melian, E. B., Hinzman, E., Nagasaki, T., Firth, A. E., Wills, N. M., Nouwens, A. S., Blitvich, B. J., Leung, J., Funk, A., Atkins, J. F., Hall, R., & Khromykh, A. A. (2010). NS1′ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness. Journal of Virology, 84(3), 1641-1647. https://doi.org/doi:10.1128/jvi.01979-09
Messina, J. P., Brady, O. J., Golding, N., Kraemer, M. U. G., Wint, G. R. W., Ray, S. E., Pigott, D. M., Shearer, F. M., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Gilbert, M., Velayudhan, R., Jones, P., Jaenisch, T., Scott, T. W., Reiner, R. C., & Hay, S. I. (2019). The current and future global distribution and population at risk of dengue. Nature Microbiology, 4(9), 1508-1515. https://doi.org/10.1038/s41564-019-0476-8
Messina, J. P., Brady, O. J., Scott, T. W., Zou, C., Pigott, D. M., Duda, K. A., Bhatt, S., Katzelnick, L., Howes, R. E., Battle, K. E., Simmons, C. P., & Hay, S. I. (2014). Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol, 22(3), 138-146. https://doi.org/10.1016/j.tim.2013.12.011
Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., Liu, L., Hume, D. A., Stacey, K. J., & Young, P. R. (2015). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine, 7(304), 304ra142-304ra142. https://doi.org/doi:10.1126/scitranslmed.aaa3863
Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and Dengue Transmission: Evidence and Implications. Environmental Health Perspectives, 121(11-12), 1264-1272. https://doi.org/doi:10.1289/ehp.1306556
Muller, D. A., Frentiu, F. D., Rojas, A., Moreira, L. A., O’Neill, S. L., & Young, P. R. (2012). A portable approach for the surveillance of dengue virus-infected mosquitoes. Journal of Virological Methods, 183(1), 90-93. https://doi.org/https://doi.org/10.1016/j.jviromet.2012.03.033
Muller, D. A., & Young, P. R. (2013). The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Research, 98(2), 192-208. https://doi.org/https://doi.org/10.1016/j.antiviral.2013.03.008
Murphy, K. M., & Weaver, C. (2016). Janeway's Immunobiology: Ninth International Student Edition. Garland Science. https://books.google.com.tw/books?id=DmebDwAAQBAJ
Murray, N. E. A., Quam, M. B., & Wilder-Smith, A. (2013). Epidemiology of dengue: past, present and future prospects. Clinical Epidemiology, 5, 299-309. https://doi.org/10.2147/CLEP.S34440
Mustafa, M. S., Rasotgi, V., Jain, S., & Gupta, V. (2015). Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India, 71(1), 67-70. https://doi.org/10.1016/j.mjafi.2014.09.011
Nelson, P. N., Reynolds, G. M., Waldron, E. E., Ward, E., Giannopoulos, K., & Murray, P. G. (2000). Monoclonal antibodies. Mol Pathol, 53(3), 111-117. https://doi.org/10.1136/mp.53.3.111
Noisakran, S., Dechtawewat, T., Avirutnan, P., Kinoshita, T., Siripanyaphinyo, U., Puttikhunt, C., Kasinrerk, W., Malasit, P., & Sittisombut, N. (2008). Association of dengue virus NS1 protein with lipid rafts. Journal of General Virology, 89(10), 2492-2500. https://doi.org/https://doi.org/10.1099/vir.0.83620-0
Normile, D. (2013). Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts. Science, 342(6157), 415-415. https://doi.org/doi:10.1126/science.342.6157.415
Nunes, P. C. G., Nogueira, R. M. R., Heringer, M., Chouin-Carneiro, T., Damasceno dos Santos Rodrigues, C., De Filippis, A. M. B., Lima, M. D. R. Q., & Dos Santos, F. B. (2018). NS1 Antigenemia and Viraemia Load: Potential Markers of Progression to Dengue Fatal Outcome? Viruses, 10(6), 326. https://www.mdpi.com/1999-4915/10/6/326
Pal, S., Dauner, A. L., Mitra, I., Forshey, B. M., Garcia, P., Morrison, A. C., Halsey, E. S., Kochel, T. J., & Wu, S.-J. L. (2014). Evaluation of Dengue NS1 Antigen Rapid Tests and ELISA Kits Using Clinical Samples. PLoS One, 9(11), e113411. https://doi.org/10.1371/journal.pone.0113411
Pan, P., Li, G., Shen, M., Yu, Z., Ge, W., Lao, Z., Fan, Y., Chen, K., Ding, Z., Wang, W., Wan, P., Shereen, M. A., Luo, Z., Chen, X., Zhang, Q., Lin, L., & Wu, J. (2021). DENV NS1 and MMP-9 cooperate to induce vascular leakage by altering endothelial cell adhesion and tight junction. PLOS Pathogens, 17(7), e1008603. https://doi.org/10.1371/journal.ppat.1008603
Paranavitane, S. A., Gomes, L., Kamaladasa, A., Adikari, T. N., Wickramasinghe, N., Jeewandara, C., Shyamali, N. L. A., Ogg, G. S., & Malavige, G. N. (2014). Dengue NS1 antigen as a marker of severe clinical disease. BMC Infectious Diseases, 14(1), 570. https://doi.org/10.1186/s12879-014-0570-8
Phadungsombat, J., Lin, M. Y., Srimark, N., Yamanaka, A., Nakayama, E. E., Moolasart, V., Suttha, P., Shioda, T., & Uttayamakul, S. (2018). Emergence of genotype Cosmopolitan of dengue virus type 2 and genotype III of dengue virus type 3 in Thailand. PLoS One, 13(11), e0207220. https://doi.org/10.1371/journal.pone.0207220
Płaszczyca, A., Scaturro, P., Neufeldt, C. J., Cortese, M., Cerikan, B., Ferla, S., Brancale, A., Pichlmair, A., & Bartenschlager, R. (2019). A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLoS Pathog, 15(5), e1007736. https://doi.org/10.1371/journal.ppat.1007736
Pryor, M. J., & Wright, P. J. (1994). Glycosylation mutants of dengue virus NS1 protein. J Gen Virol, 75 ( Pt 5), 1183-1187. https://doi.org/10.1099/0022-1317-75-5-1183
Puerta-Guardo, H., Glasner, D. R., & Harris, E. (2016). Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLOS Pathogens, 12(7), e1005738. https://doi.org/10.1371/journal.ppat.1005738
Rahman, A., Susmi, T. F., Yasmin, F., Bhattacharjee, A., Hossain, M. U., Das, K. C., Keya, C. A., & Salimullah, M. (2021). Unveiling ancestral relations, host–pathogen interactions and comparative viral miRNA insights of dengue virus serotypes. Network Modeling Analysis in Health Informatics and Bioinformatics, 10(1), 27. https://doi.org/10.1007/s13721-021-00297-4
Ramirez, R. R., & Ludert, J. E. (2019). The Dengue Virus Nonstructural Protein 1 (NS1) Is Secreted from Mosquito Cells in Association with the Intracellular Cholesterol Transporter Chaperone Caveolin Complex. Journal of Virology, 93(4), 10.1128/jvi.01985-01918. https://doi.org/doi:10.1128/jvi.01985-18
Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects, 9(4), 158. https://www.mdpi.com/2075-4450/9/4/158
Rodenhuis-Zybert, I. A., van der Schaar, H. M., da Silva Voorham, J. M., van der Ende-Metselaar, H., Lei, H.-Y., Wilschut, J., & Smit, J. M. (2010). Immature Dengue Virus: A Veiled Pathogen? PLOS Pathogens, 6(1), e1000718. https://doi.org/10.1371/journal.ppat.1000718
Roy, S. K., & Bhattacharjee, S. (2021). Dengue virus: epidemiology, biology, and disease aetiology. Can J Microbiol, 67(10), 687-702. https://doi.org/10.1139/cjm-2020-0572
Rush, B. (1951). An account of the bilious remitting fever: As it appeared in philadelphia, in the summer and autumn of the year 1780. The American Journal of Medicine, 11(5), 546-550. https://doi.org/https://doi.org/10.1016/0002-9343(51)90035-6
Sabin, A. B., & Schlesinger, R. W. (1945). Production of Immunity to Dengue with Virus Modified by Propagation in Mice. Science, 101(2634), 640-642. https://doi.org/doi:10.1126/science.101.2634.640
Sambrook, J., Russell, D. W., Irwin, C. A., & Janssen, K. A. (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press. https://books.google.com.tw/books?id=Bosc5JVxNpkC
Santoso, M. S., Yohan, B., Denis, D., Hayati, R. F., Haryanto, S., Trianty, L., Noviyanti, R., Hibberd, M. L., & Sasmono, R. T. (2020). Diagnostic accuracy of 5 different brands of dengue virus non-structural protein 1 (NS1) antigen rapid diagnostic tests (RDT) in Indonesia. Diagnostic Microbiology and Infectious Disease, 98(2), 115116. https://doi.org/https://doi.org/10.1016/j.diagmicrobio.2020.115116
Scaturro, P., Cortese, M., Chatel-Chaix, L., Fischl, W., & Bartenschlager, R. (2015). Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins. PLoS Pathog, 11(11), e1005277. https://doi.org/10.1371/journal.ppat.1005277
SCHERER, W. F. (1968). COMMENTARY: THE COMPLEXITY OF ARBOVIRUS NOMENCLATURE: A PROPOSAL TO SIMPLIFY IT. American Journal of Epidemiology, 88(2), 145-146. https://doi.org/10.1093/oxfordjournals.aje.a120872
Schlesinger, R. W. (1977). Dengue viruses / by R. W. Schlesinger. Springer-Verlag.
Scott, M. G. (1985). Monoclonal antibodies — Approaching adolescence in diagnostic immunoassays. Trends in Biotechnology, 3(7), 170-175. https://doi.org/https://doi.org/10.1016/0167-7799(85)90117-9
Screaton, G., Mongkolsapaya, J., Yacoub, S., & Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology, 15(12), 745-759. https://doi.org/10.1038/nri3916
Shepard, H. M., Phillips, G. L., C, D. T., & Feldmann, M. (2017). Developments in therapy with monoclonal antibodies and related proteins. Clin Med (Lond), 17(3), 220-232. https://doi.org/10.7861/clinmedicine.17-3-220
Shimizu, S. (2004). Routes of administration. The laboratory mouse, 1.
Shu, B., Ooi, J. S. G., Tan, A. W. K., Ng, T.-S., Dejnirattisai, W., Mongkolsapaya, J., Fibriansah, G., Shi, J., Kostyuchenko, V. A., Screaton, G. R., & Lok, S.-M. (2022). CryoEM structures of the multimeric secreted NS1, a major factor for dengue hemorrhagic fever. Nature Communications, 13(1), 6756. https://doi.org/10.1038/s41467-022-34415-1
Shu, P.-Y., Chen, L.-K., Chang, S.-F., Yueh, Y.-Y., Chow, L., Chien, L.-J., Chin, C., Lin, T.-H., & Huang, J.-H. (2003). Comparison of Capture Immunoglobulin M (IgM) and IgG Enzyme-Linked Immunosorbent Assay (ELISA) and Nonstructural Protein NS1 Serotype-Specific IgG ELISA for Differentiation of Primary and Secondary Dengue Virus Infections. Clinical and Vaccine Immunology, 10(4), 622-630. https://doi.org/doi:10.1128/CDLI.10.4.622-630.2003
Smith, G. W., & Wright, P. J. (1985). Synthesis of proteins and glycoproteins in dengue type 2 virus-infected vero and Aedes albopictus cells. J Gen Virol, 66 ( Pt 3), 559-571. https://doi.org/10.1099/0022-1317-66-3-559
Smith, T. J., Brandt, W. E., Swanson, J. L., McCown, J. M., & Buescher, E. L. (1970). Physical and Biological Properties of Dengue-2 Virus and Associated Antigens. Journal of Virology, 5(4), 524-532. https://doi.org/doi:10.1128/jvi.5.4.524-532.1970
Somnuke, P., Hauhart, R. E., Atkinson, J. P., Diamond, M. S., & Avirutnan, P. (2011). N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology, 413(2), 253-264. https://doi.org/https://doi.org/10.1016/j.virol.2011.02.022
Souza, L. R., Colonna, J. G., Comodaro, J. M., & Naveca, F. G. (2022). Using amino acids co-occurrence matrices and explainability model to investigate patterns in dengue virus proteins. BMC Bioinformatics, 23(1), 80. https://doi.org/10.1186/s12859-022-04597-y
Staines, N. A., & Lew, A. M. (1980). Whither monoclonal antibodies? Immunology, 40(3), 287-293.
Stumpe, M. C., & Grubmüller, H. (2007). Interaction of Urea with Amino Acids:  Implications for Urea-Induced Protein Denaturation. Journal of the American Chemical Society, 129(51), 16126-16131. https://doi.org/10.1021/ja076216j
Tadkalkar, N., Prasad, S., Gangodkar, S., Ghosh, K., & Basu, A. (2019). Dengue Virus NS1 Exposure Affects von Willebrand Factor Profile and Platelet Adhesion Properties of Cultured Vascular Endothelial Cells. Indian J Hematol Blood Transfus, 35(3), 502-506. https://doi.org/10.1007/s12288-018-1058-2
Taiwan Centers for Disease Control. Disease & Conditions, Dengue Fever. https://www.cdc.gov.tw/En/Category/ListContent/bg0g_VU_Ysrgkes_KRUDgQ?uaid=9_Oq7OYHa-l8B05iUwyVvQ#accesskeyU
Tan, B. E. K., Beard, M. R., & Eyre, N. S. (2023). Identification of Key Residues in Dengue Virus NS1 Protein That Are Essential for Its Secretion. Viruses, 15(5), 1102. https://www.mdpi.com/1999-4915/15/5/1102
Teymouri, M., Mollazadeh, S., Mortazavi, H., Naderi Ghale-noie, Z., Keyvani, V., Aghababaei, F., Hamblin, M. R., Abbaszadeh-Goudarzi, G., Pourghadamyari, H., Hashemian, S. M. R., & Mirzaei, H. (2021). Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathology - Research and Practice, 221, 153443. https://doi.org/https://doi.org/10.1016/j.prp.2021.153443
Thomas, S. J. (2023). Is new dengue vaccine efficacy data a relief or cause for concern? npj Vaccines, 8(1), 55. https://doi.org/10.1038/s41541-023-00658-2
Thomas, S. J., & Yoon, I.-K. (2019). A review of Dengvaxia®: development to deployment. Human Vaccines & Immunotherapeutics, 15(10), 2295-2314. https://doi.org/10.1080/21645515.2019.1658503
Twiddy, S. S., Woelk, C. H., & Holmes, E. C. (2002). Phylogenetic evidence for adaptive evolution of dengue viruses in nature. Journal of General Virology, 83(7), 1679-1689. https://doi.org/https://doi.org/10.1099/0022-1317-83-7-1679
Ty Hang, V., Minh Nguyet, N., The Trung, D., Tricou, V., Yoksan, S., Minh Dung, N., Van Ngoc, T., Hien, T. T., Farrar, J., Wills, B., & Simmons, C. P. (2009). Diagnostic Accuracy of NS1 ELISA and Lateral Flow Rapid Tests for Dengue Sensitivity, Specificity and Relationship to Viraemia and Antibody Responses. PLOS Neglected Tropical Diseases, 3(1), e360. https://doi.org/10.1371/journal.pntd.0000360
Vicente, C. R., Herbinger, K.-H., Fröschl, G., Malta Romano, C., de Souza Areias Cabidelle, A., & Cerutti Junior, C. (2016). Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitória, Brazil. BMC Infectious Diseases, 16(1), 320. https://doi.org/10.1186/s12879-016-1668-y
Voge, N. V., Sánchez-Vargas, I., Blair, C. D., Eisen, L., & Beaty, B. J. (2013). Detection of dengue virus NS1 antigen in infected Aedes aegypti using a commercially available kit. Am J Trop Med Hyg, 88(2), 260-266. https://doi.org/10.4269/ajtmh.2012.12-0477
Wang, S. M., & Sekaran, S. D. (2010). Evaluation of a Commercial SD Dengue Virus NS1 Antigen Capture Enzyme-Linked Immunosorbent Assay Kit for Early Diagnosis of Dengue Virus Infection. Journal of Clinical Microbiology, 48(8), 2793-2797. https://doi.org/doi:10.1128/jcm.02142-09
Weaver, S. C., & Vasilakis, N. (2009). Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol, 9(4), 523-540. https://doi.org/10.1016/j.meegid.2009.02.003
Winkler, G., Maxwell, S. E., Ruemmler, C., & Stollar, V. (1989). Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology, 171(1), 302-305. https://doi.org/https://doi.org/10.1016/0042-6822(89)90544-8
Winkler, G., Randolph, V. B., Cleaves, G. R., Ryan, T. E., & Stollar, V. (1988). Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology, 162(1), 187-196. https://doi.org/https://doi.org/10.1016/0042-6822(88)90408-4
World Health Organization = Organisation mondiale de la, S. (2018). Dengue vaccine: WHO position paper – September 2018 – Note de synthèse de l’OMS sur le vaccin contre la dengue– septembre 2018. Weekly Epidemiological Record = Relevé épidémiologique hebdomadaire, 93(36), 457-476. https://apps.who.int/iris/handle/10665/274316
World Health Organization, W. H. O. O. i. C., Research, S. P. f., Diseases, T. i. T., Diseases, W. H. O. D. o. C. o. N. T., Epidemic, W. H. O., Alert, P., & Response. (2009). Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. World Health Organization. https://books.google.com.tw/books?id=dlc0YSIyGYwC
World Health Organization. Regional Office for the Western, P. (2017). Dengue Situation Updates 2017. http://iris.wpro.who.int/handle/10665.1/14183
https://apps.who.int/iris/handle/10665/274099
World Health Organization. Regional Office for the Western, P. (2018). Dengue Situation Updates 2018. http://iris.wpro.who.int/handle/10665.1/14184
World Health Organization. Regional Office for the Western, P. (2019). Dengue Situation Updates 2019. In. Manila: WHO Regional Office for the Western Pacific.
World Health Organization. Regional Office for the Western, P. (2020). Dengue Situation Updates 2020. In. Manila: WHO Regional Office for the Western Pacific.
World Health Organization. Regional Office for the Western, P. (2021). Dengue Situation Updates 2021. In. Manila: WHO Regional Office for the Western Pacific.
World Health Organization. Regional Office for the Western, P. (2022). Dengue Situation Updates 2022. In. Manila: WHO Regional Office for the Western Pacific.
Ye, Q., Li, X. F., Zhao, H., Li, S. H., Deng, Y. Q., Cao, R. Y., Song, K. Y., Wang, H. J., Hua, R. H., Yu, Y. X., Zhou, X., Qin, E. D., & Qin, C. F. (2012). A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1' formation and contributes to attenuation. J Gen Virol, 93(Pt 9), 1959-1964. https://doi.org/10.1099/vir.0.043844-0
Young, P. R. (2018). Arboviruses: A Family on the Move. In R. Hilgenfeld & S. G. Vasudevan (Eds.), Dengue and Zika: Control and Antiviral Treatment Strategies (pp. 1-10). Springer Singapore. https://doi.org/10.1007/978-981-10-8727-1_1
Young, P. R., Hilditch, P. A., Bletchly, C., & Halloran, W. (2000). An Antigen Capture Enzyme-Linked Immunosorbent Assay Reveals High Levels of the Dengue Virus Protein NS1 in the Sera of Infected Patients. Journal of Clinical Microbiology, 38(3), 1053-1057. https://doi.org/doi:10.1128/jcm.38.3.1053-1057.2000
Yu, I.-M., Zhang, W., Holdaway, H. A., Li, L., Kostyuchenko, V. A., Chipman, P. R., Kuhn, R. J., Rossmann, M. G., & Chen, J. (2008). Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation. Science, 319(5871), 1834-1837. https://doi.org/doi:10.1126/science.1153264
Yung, C. F., Lee, K. S., Thein, T. L., Tan, L. K., Gan, V. C., Wong, J. G. X., Lye, D. C., Ng, L. C., & Leo, Y. S. (2015). Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, singapore. Am J Trop Med Hyg, 92(5), 999-1005. https://doi.org/10.4269/ajtmh.14-0628
Zhang, X., Sheng, J., Plevka, P., Kuhn, R. J., Diamond, M. S., & Rossmann, M. G. (2013). Dengue structure differs at the temperatures of its human and mosquito hosts. Proceedings of the National Academy of Sciences, 110(17), 6795-6799. https://doi.org/doi:10.1073/pnas.1304300110
Zheng, A., Umashankar, M., & Kielian, M. (2010). In Vitro and In Vivo Studies Identify Important Features of Dengue Virus pr-E Protein Interactions. PLOS Pathogens, 6(10), e1001157. https://doi.org/10.1371/journal.ppat.1001157
Zhou, D., Jia, F., Li, Q., Zhang, L., Chen, Z., Zhao, Z., Cui, M., Song, Y., Chen, H., Cao, S., & Ye, J. (2018). Japanese Encephalitis Virus NS1' Protein Antagonizes Interferon Beta Production. Virol Sin, 33(6), 515-523. https://doi.org/10.1007/s12250-018-0067-5
Zybert, I. A., van der Ende-Metselaar, H., Wilschut, J., & Smit, J. M. (2008). Functional importance of dengue virus maturation: infectious properties of immature virions. Journal of General Virology, 89(12), 3047-3051. https://doi.org/https://doi.org/10.1099/vir.0.2008/002535-0
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89209-
dc.description.abstract登革熱 (dengue fever) 是由登革熱病毒 (dengue virus, DENV) 引起的一種急性傳染病,主要透過病媒蚊蟲傳播給人類。該疾病在全球範圍內廣發流行,特別是在熱帶和亞熱帶地區,對公共衛生造成重大挑戰。登革熱感染由四種不同血清型的登革熱病毒引起,由於目前缺乏安全有效的疫苗和藥物,早期診斷可以提高患者的治療效果和生存率。登革熱病毒的非結構蛋白NS1,是一種高度免疫原性的醣蛋白,可以由登革熱感染的宿主細胞持續分泌,被認爲是一個潛在的診斷生物標誌物。然而,市售的NS1抗原檢測靈敏度有限,並且容易與其他黃病毒的NS1蛋白發生交叉反應。因此,生產製備高靈敏度的抗NS1蛋白抗體對於開發NS1蛋白快速檢測方法至關重要。
本研究的目標是篩選和鑑定針對登革熱病毒NS1蛋白的專一性單株抗體,以提高未來登革熱的臨床早期診斷和血清型鑑定的準確性。本研究先對四種血清型登革熱病毒的多種毒株進行親緣關係樹分析,首次確認了NS1蛋白具有分型登革熱病毒的能力。我們基於實驗室現有的114個抗NS1蛋白之單株抗體,經由西方墨點法和斑點印跡法初步篩選,確認了114個單株抗體的登革熱病毒血清型特異性。其中僅有1個單株抗體靶向DENV1-4 NS1蛋白的保守且線性區域,8個單株抗體具有與登革熱病毒和茲卡病毒 NS1蛋白高度保守區域 (conserved region) 的抗原決定位 (epitopes),6個單株抗體具有DENV-2 strain 16681 NS1線性抗原決定位,還有10個單株抗體爲DENV-3 NS1線性抗原決定位。
此外,本研究還利用大腸桿菌BL21細胞表現NS1重組蛋白,以確認篩選出的單株抗體是否能夠辨識近年流行之登革熱病毒NS1蛋白,亦可作爲免疫小鼠的免疫源製備更多的單株抗體。然而在細菌表現系統中,NS1重組蛋白容易存在於不可溶的包涵體,需要進行變性處理才能增加其可溶性。變性處理可能導致蛋白失去天然的結構和功能,使本研究無法進一步確認單株抗體是否能夠識別天然形式NS1蛋白。經過登革熱病毒血清型2 NS1重組蛋白免疫兩次的小鼠血清中,抗登革熱病毒血清型2 NS1蛋白的抗體效力佳,卻也存在對其他DENV血清型及茲卡病毒NS1蛋白有交叉反應的抗體。
最後,我們評估了具有登革熱病毒NS1蛋白表面連續抗原決定位的單株抗體對其他黃病毒NS1蛋白的交叉反應。我們發現其中15個單株抗體與日本腦炎病毒NS1蛋白存在交叉反應。進一步的實驗揭示了這些單株抗體對日本腦炎病毒NS1蛋白的抗原決定位類型,其中有部分單株抗體具有構象抗原決定位,而其他能夠識別日本腦炎病毒變性的NS1/NS1’蛋白的單株抗體,展示出其對登革熱病毒NS1蛋白高度保守的線性抗原決定位識別的能力。
總而言之,本研究的成果對於提高登革熱的早期檢測和分型能力具有重要意義。然而,仍需要進一步的研究來改進抗原的免疫原性、提高抗體的專一性,並在臨床實踐中驗證其效能.
zh_TW
dc.description.abstractDengue fever is an acute infectious disease caused by dengue virus (DENV), primarily transmitted to humans through vector mosquitoes. This disease has been widely prevalent globally, particularly in tropical and subtropical regions, posing significant challenges to public health. Dengue is caused by four different serotypes of dengue virus. Early diagnosis is essential to improve patient treatment outcomes and survival rates due to the lack of safe and effective vaccines and drugs. The non-structural protein 1 (NS1) of dengue virus is a highly immunogenic glycoprotein and is considered as a potential diagnostic biomarker since it is continuously secreted by host cells during dengue infections. However, commercially available NS1 antigen tests have limited sensitivity and are prone to cross-reactivity with NS1 proteins of other flaviviruses. Therefore, it is crucial to produce highly specific anti-NS1 antibodies in order to develop a rapid test for NS1 detection.
The objective of this study is to clarify and characterize monoclonal antibodies specifically targeting the NS1 protein of dengue virus, aiming to enhance the accuracy of clinical early diagnosis and serotyping of dengue viruses. Phylogenetic tree analysis was performed on multiple strains of the four dengue virus serotypes, confirming for the first time that the NS1 protein has serotyping capabilities. Based on our existing panel of 114 monoclonal antibodies against NS1 protein, we conducted preliminary characterization using western blot and dot blot assays, confirming the serotype specificity of the 114 monoclonal antibodies. Among them, only one monoclonal antibody targets the conserved and linear region of DENV1-4 NS1 protein, eight monoclonal antibodies recognize highly conserved epitope in the NS1 proteins of both dengue and Zika viruses, six monoclonal antibodies target linear antigenic determinants of DENV-2 strain 16681 NS1, and ten monoclonal antibodies only target linear antigenic determinants of DENV-3 NS1.
Additionally, we expressed recombinant NS1 protein in Escherichia coli BL21 cells to verify whether the selected monoclonal antibodies can recognize the NS1 protein of recently circulating DENV and to produce more monoclonal antibodies as immunogens for mice. However, in the bacterial expression system, recombinant NS1 protein tends to form insoluble inclusion bodies, requiring denaturation treatments to enhance solubility. Urea treatments may lead to the loss of native conformation and function of recombinant NS1 protein, which hinders the subsequent validation of monoclonal antibody recognition towards the native NS1 protein. Antibodies against DENV-2 NS1 protein showed good efficacy in mouse sera after immunization with recombinant NS1 protein twice. However, they still exhibited cross-reactivity with other DENV serotypes and NS1 protein of the Zika virus.
Finally, we evaluated the cross-reactivity of monoclonal antibodies targeting linear epitopes on the surface of dengue virus NS1 protein with NS1 proteins from other flaviviruses. We found that 15 monoclonal antibodies exhibited cross-reactivity with Japanese encephalitis virus NS1 protein. Further experiments revealed the antigenic determinant types of these monoclonal antibodies. Some of the monoclonal antibodies exhibited conformational epitopes, while others demonstrated the ability to recognize linear epitopes on denatured NS1/NS1' proteins of Japanese encephalitis virus. These findings showcased their highly conserved linear epitope recognition ability for the NS1 protein of the dengue virus.
In conclusion, the findings of this study hold significant implications for improving early detection and serotyping capabilities for dengue virus. However, further research is needed to enhance the immunogenicity of antigens, improve antibody specificity, and validate their efficacy in clinical practice.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:07:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-05T16:07:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract III
第一章 序論 1
1.1. 登革熱病毒 1
1.2. 登革熱病毒非結構性蛋白NS1 6
1.3. 單株抗體 (monoclonal antibody) 12
1.4. 研究目的 15
第二章 材料與方法 16
2.1. 實驗材料 16
2.2. 實驗方法 23
第三章 結果 32
3.1. 抗NS1蛋白單株抗體的登革熱病毒血清型鑑定 32
3.2. 探討南美洲和亞洲七年內登革熱病毒 NS1蛋白突變情形 35
3.3. 製備單株抗體所用的登革熱病毒NS1抗原蛋白質 36
3.4. 小鼠免疫反應 38
3.5. 抗登革熱病毒NS1蛋白之單株抗體的交叉反應 39
第四章 討論 43
第五章 圖表 52
表一、實驗中所使用之引子列表 52
表二、實驗中所使用之抗體列表 53
圖一、登革熱病毒基因組轉譯蛋白示意圖 54
圖二、登革熱病毒之生活史 55
圖三、亞洲七國登革熱病例總數分佈地理圖 56
圖四、登革熱病毒NS1蛋白結構示意圖 57
圖五、登革熱病毒NS1蛋白參與補體拮抗之示意圖 58
圖六、pET21a(+)-DENV1-NS1質體示意圖 59
圖七、pET21a(+)-DENV2-NS1質體示意圖 60
圖八、pET21a(+)-DENV3-NS1質體示意圖 61
圖九、pET21a(+)-DENV4-NS1質體示意圖 62
圖十、利用西方墨點法和斑點印跡法探查抗DENV-1 NS1蛋白的單株抗體之專一性 63
圖十一、利用西方墨點法和斑點印跡法探查抗DENV-2 16681 strain NS1蛋白的單株抗體之專一性 65
圖十二、利用西方墨點法探查抗DENV-3 NS1蛋白的單株抗體之專一性 66
圖十三、利用斑點印跡法探查抗DENV-3 NS1蛋白的單株抗體之專一性 67
圖十四、利用西方墨點法探查抗DENV-4 NS1蛋白的單株抗體之專一性 68
圖十五、利用西方墨點法和斑點印跡法探查抗登革熱病毒四種血清型NS1蛋白的單株抗體之特異性 69
圖十六、利用西方墨點法探查抗登革熱病毒和茲卡病毒NS1蛋白的單株抗體之特異性 70
圖十七、利用斑點印跡法探查抗登革熱病毒和茲卡病毒NS1蛋白的單株抗體之特異性 71
圖十八、利用斑點印跡法探查114個單株抗體之登革熱病毒血清型特異性 73
圖十九、利用西方墨點法探查114個單株抗體之登革熱病毒血清型特異性 75
圖二十、七年內南美洲和亞洲DENV-1 NS1胺基酸(81-160 a.a.)之序列比對 76
圖二十一、七年內南美洲和亞洲DENV-2 NS1胺基酸(161-240 a.a.)之序列比對 77
圖二十二、七年內南美洲和亞洲DENV-3 NS1胺基酸(161-240 a.a.)之序列比對 78
圖二十三、七年內南美洲和亞洲DENV-4 NS1胺基酸(81-160 a.a.)之序列比對 79
圖二十四、七年內南美洲和亞洲四種血清型登革熱病毒NS1胺基酸親緣關係樹 80
圖二十五、四種血清型登革熱病毒NS1胺基酸之序列比對 81
圖二十六、利用聚合酶連鎖反應挑選含目標質體之大腸桿菌BL21 StarTM (DE3) 菌落 82
圖二十七、利用IPTG誘導大腸桿菌BL21表現DENV-1 NS1重組蛋白 83
圖二十八、利用IPTG誘導大腸桿菌BL21表現DENV-2 NS1重組蛋白 84
圖二十九、利用IPTG誘導大腸桿菌BL21表現DENV-3 NS1重組蛋白 85
圖三十、 利用IPTG誘導大腸桿菌BL21表現DENV-4 NS1重組蛋白 86
圖三十一、測試培養中不同溫度下的大腸桿菌BL21中DENV-1 NS1重組蛋白表現量 87
圖三十二、在不同誘導時長的大腸桿菌BL21中DENV-1 NS1重組蛋白表現量 88
圖三十三、測試不同IPTG濃度誘導的大腸桿菌BL21中DENV-1 NS1重組蛋白表現量 89
圖三十四、經Ni-NTA樹脂純化之DENV-1 NS1重組蛋白 90
圖三十五、經Ni-NTA樹脂純化之DENV-2 NS1重組蛋白 91
圖三十六、經Ni-NTA樹脂純化之DENV-4 NS1重組蛋白 92
圖三十七、探查經DENV-2 NS1重組蛋白免疫之小鼠體內抗體效力 93
圖三十八、探查具有線性抗原決定位之抗NS1蛋白單株抗體對不同血清型登革熱病毒及茲卡病毒的特異性 95
圖三十九、利用斑點印跡法探查110個抗登革熱病毒NS1蛋白之單株抗體對日本腦炎病毒天然蛋白NS1的交叉反應 97
圖四十、利用斑點印跡法探查抗登革熱病毒NS1蛋白之單株抗體對不同血清型登革熱病毒、茲卡病毒及日本腦炎病毒天然蛋白NS1的交叉反應 98
圖四十一、利用西方墨點法探查抗登革熱病毒NS1蛋白之單株抗體與日本腦炎病毒變性蛋白NS1的交叉反應 99
圖四十二、利用西方墨點法探查抗登革熱病毒NS1蛋白之單株抗體與日本腦炎病毒變性蛋白NS1和NS1’的交叉反應 100
圖四十三、四種血清型登革熱病毒的原型毒株NS1胺基酸親緣關係樹 101
圖四十四、DENV-2 NGC strain與16681 strain NS1胺基酸之序列比對 102
圖四十五、利用斑點印跡法探查抗DENV-4變性蛋白NS1之單株抗體的特異性 103
圖四十六、日本腦炎病毒NS1、NS1’胺基酸及DENV-2 16681 strain NS1胺基酸之序列比對 104
參考文獻 105
-
dc.language.isozh_TW-
dc.subject登革熱zh_TW
dc.subject血清學鑑定zh_TW
dc.subject登革熱病毒zh_TW
dc.subjectNS1蛋白zh_TW
dc.subject單株抗體zh_TW
dc.subjectDengue virusen
dc.subjectserotypingen
dc.subjectNS1 proteinen
dc.subjectDengue feveren
dc.subjectmonoclonal antibodiesen
dc.title鑑定抗登革熱病毒非結構蛋白1的單株抗體zh_TW
dc.titleCharacterization of the monoclonal antibodies against non-structural protein 1 of Dengue virusen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee顧家綺;蔡明翰zh_TW
dc.contributor.oralexamcommitteeChia-Chi Ku;Ming-Han Tsaien
dc.subject.keyword登革熱,登革熱病毒,血清學鑑定,NS1蛋白,單株抗體,zh_TW
dc.subject.keywordDengue fever,Dengue virus,serotyping,NS1 protein,monoclonal antibodies,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202302601-
dc.rights.note未授權-
dc.date.accepted2023-08-01-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
7.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved