Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭宗記zh_TW
dc.contributor.advisorTzong-Jih Chengen
dc.contributor.author林哲寬zh_TW
dc.contributor.authorJhe-Kuan Linen
dc.date.accessioned2023-08-30T16:17:48Z-
dc.date.available2025-08-01-
dc.date.copyright2023-08-30-
dc.date.issued2023-
dc.date.submitted2023-07-20-
dc.identifier.citation衛生福利部。2020。食品中黴菌毒素檢驗方法-黃麴毒素之檢驗。
吳大維。2021。食品中黃麴毒素檢測自動化前處理機之開發。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
Abdulkadar, A. H. W., Al-Ali, A. A., Al-Kildi, A. M., & Al-Jedah, J. H. (2004). Mycotoxins in food products available in Qatar. Food Control, 15(7), 543-548.
Alshannaq, A., & Yu, J.-H. (2017). Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. International Journal of Environmental Research and Public Health, 14(6), 632.
Anjaiah, Mehan, V. K., Jayanthi, S., Reddy, D. V. R., & Mcdonald, D. (1989). Enzyme-Linked Immunosorbent Assay (ELISA) for Aflatoxin B1 Estimation in Groundnuts.
Balzer, I., Bogdanić, C., & Pepeljnjak, S. (1978). Rapid thin layer chromatographic method for determining aflatoxin B1, ochratoxin A, and zearalenone in corn. J Assoc Off Anal Chem, 61(3), 584-585.
Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clin Microbiol Rev, 16(3), 497-516.
Cahill, L. M., Kruger, S. C., McAlice, B. T., Ramsey, C. S., Prioli, R., & Kohn, B. (1999). Quantification of deoxynivalenol in wheat using an immunoaffinity column and liquid chromatography. Journal of Chromatography A, 859(1), 23-28.
Chan, D., MacDonald, S. J., Boughtflower, V., & Brereton, P. (2004). Simultaneous determination of aflatoxins and ochratoxin A in food using a fully automated immunoaffinity column clean-up and liquid chromatography-fluorescence detection. J Chromatogr A, 1059(1-2), 13-16.
Chang, M., Jin, Q., Liu, Y., Liu, R., & Wang, X. (2013). Efficiency and safety evaluation of photodegradation of Aflatoxin B1 on peanut surface. International Journal of Food Science & Technology, 48(12), 2474-2479.
Chen, R., Ma, F., Li, P.-W., Zhang, W., Ding, X.-X., Zhang, Q., Li, M., Wang, Y.-R., & Xu, B.-C. (2014). Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chemistry, 146, 284-288.
Chu, F. S. (1996). Recent Studies on Immunoassays for Mycotoxins. In Immunoassays for Residue Analysis (Vol. 621, pp. 294-313). American Chemical Society.
David Ondieki1, S. T. L. M. O. O., Paul Kering. (2014). Rapid assessment of aflatoxin contamination of groundnuts by thin layer chromatography and competitive enzyme linked immunosorbent assay from selected divisions of Busia county in Kenya. African Journal of Food Science and Technology, 5, 12-20.
Delmulle, B. S., De Saeger, S. M. D. G., Sibanda, L., Barna-Vetro, I., & Van Peteghem, C. H. (2005). Development of an Immunoassay-Based Lateral Flow Dipstick for the Rapid Detection of Aflatoxin B1 in Pig Feed. Journal of Agricultural and Food Chemistry, 53(9), 3364-3368.
Dhanshetty, M., & Banerjee, K. (2019). Simultaneous Direct Analysis of Aflatoxins and Ochratoxin A in Cereals and Their Processed Products by Ultra-High Performance Liquid Chromatography with Fluorescence Detection. J AOAC Int, 102(6), 1666-1672.
Dänicke, S., Ueberschär, K. H., Valenta, H., Matthes, S., Matthäus, K., & Halle, I. (2004). Effects of graded levels of Fusarium-toxin-contaminated wheat in Pekin duck diets on performance, health and metabolism of deoxynivalenol and zearalenone. Br Poult Sci, 45(2), 264-272.
Dors, G., Caldas, S., Feddern, V., Bemvenuti, R., Hackbart, H., Souza, M., Oliveira, M., Garda-Buffon, J., Primel, E., & Badiale-Furlong, E. (2011). Aflatoxins: Contamination, Analysis and Control. In. https://doi.org/10.5772/24902
Francis, O. J., Jr, Lipinskl, L. J., Gaul, J. A., & Campbell, A. D. (2020). High Pressure Liquid Chromatographic Determination of Aflatoxins in Peanut Butter Using a Silica Gel-Packed Flowcell for Fluorescence Detection. Journal of Association of Official Analytical Chemists, 65(3), 672-676.
Ghanem, I., Orfi, M., & Shamma, M. (2008). Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops. Braz J Microbiol, 39(4), 787-791.
Haschek, W. M., & Voss, K. A. (2013). Chapter 39 - Mycotoxins. In W. M. Haschek, C. G. Rousseaux, & M. A. Wallig (Eds.), Haschek and Rousseaux's Handbook of Toxicologic Pathology (Third Edition) (pp. 1187-1258). Academic Press.
Herzallah, S. M. (2009). Determination of aflatoxins in eggs, milk, meat and meat products using HPLC fluorescent and UV detectors. Food Chemistry, 114(3), 1141-1146.
Ho, J. A., & Wauchope, R. D. (2002). A strip liposome immunoassay for aflatoxin B1. Anal Chem, 74(7), 1493-1496.
Holaday, C. E. (1981). Minicolumn chromatography: State of the art. Journal of the American Oil Chemists’ Society, 58(12), A931-A934.
Ismail, A., Gonçalves, B. L., de Neeff, D. V., Ponzilacqua, B., Coppa, C. F. S. C., Hintzsche, H., Sajid, M., Cruz, A. G., Corassin, C. H., & Oliveira, C. A. F. (2018). Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Research International, 113, 74-85.
Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I., Oswald, I. P., Speijers, G., Chiodini, A., Recker, T., & Dussort, P. (2016). Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 32(4), 179-205.
Krska, R., & Molinelli, A. (2009). Rapid test strips for analysis of mycotoxins in food and feed. Anal Bioanal Chem, 393(1), 67-71.
Lee, J., Her, J. Y., & Lee, K. G. (2015). Reduction of aflatoxins (B₁, B₂, G₁, and G₂) in soybean-based model systems. Food Chem, 189, 45-51.
Li, J., Yu, Y., Tian, M., Wang, H., Wei, F., Li, L., & Wang, X. (2006). [Simultaneous determination of aflatoxins, zearalenone and ochratoxin A in cereal grains by immunoaffinity column and high performance liquid chromatography coupled with post-column photochemical derivatization]. Se Pu, 24(6), 581-584.
Li, P., Zhang, Q., & Zhang, W. (2009). Immunoassays for aflatoxins. TrAC Trends in Analytical Chemistry, 28(9), 1115-1126.
Liao, C.-D. L., H.-Y.; Chiueh, L.-C.; and Shih, D.Y.-C. (2011). Simultaneous quantification of aflatoxins, ochratoxin A and zearalenone in cereals by LC-MS/MS. Journal of Food and Drug Analysis, 19(3), Article 3.
Mahato, D. K., Lee, K. E., Kamle, M., Devi, S., Dewangan, K. N., Kumar, P., & Kang, S. G. (2019). Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front Microbiol, 10, 2266.
Miklós, G., Angeli, C., Ambrus, Á., Nagy, A., Kardos, V., Zentai, A., Kerekes, K., Farkas, Z., Jóźwiak, Á., & Bartók, T. (2020). Detection of Aflatoxins in Different Matrices and Food-Chain Positions. Front Microbiol, 11, 1916.
Ostadrahimi, A., Ashrafnejad, F., Kazemi, A., Sargheini, N., Mahdavi, R., Farshchian, M., & Mahluji, S. (2014). Aflatoxin in raw and salt-roasted nuts (pistachios, peanuts and walnuts) sold in markets of tabriz, iran. Jundishapur J Microbiol, 7(1), e8674.
Pereira, V. L., Fernandes, J. O., & Cunha, S. C. (2014). Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science & Technology, 36(2), 96-136.
Rahmani, A., Jinap, S., & Soleimany, F. (2009). Qualitative and Quantitative Analysis of Mycotoxins. Comprehensive Reviews in Food Science and Food Safety, 8(3), 202-251.
Ridgway, K., Smith, R., & Lalljie, S. (2012). Sample Preparation for Food Contaminant Analysis. Comprehensive Sampling and Sample Preparation, 3, 819-833.
Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol, 124, 81-100.
Rustom, I. Y. S. (1997). Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chemistry, 59(1), 57-67.
Scott, P. M. (1993). Recent developments in methods of analysis for mycotoxins in foodstuffs. TrAC Trends in Analytical Chemistry, 12(9), 382-386.
Scott, P. M., & Trucksess, M. W. (1997). Application of immunoaffinity columns to mycotoxin analysis. J AOAC Int, 80(5), 941-949.
Shephard, G. S. (2008). Determination of mycotoxins in human foods. Chem Soc Rev, 37(11), 2468-2477.
Spanjer, M. C., Scholten, J. M., Kastrup, S., Jörissen, U., Schatzki, T. F., & Toyofuku, N. (2006). Sample comminution for mycotoxin analysis: dry milling or slurry mixing? Food Addit Contam, 23(1), 73-83.
Stroka, J., Petz, M., Joerissen, U., & Anklam, E. (1999). Investigation of various extractants for the analysis of aflatoxin B1 in different food and feed matrices. Food Addit Contam, 16(8), 331-338.
Tarter, E. J., Hanchay, J. P., & Scott, P. M. (1984). Improved liquid chromatographic method for determination of aflatoxins in peanut butter and other commodities. J Assoc Off Anal Chem, 67(3), 597-600.
Thean, J. E., Lorenz, D. R., Wilson, D. M., Rodgers, K., & Gueldner, R. C. (1980). Extraction, cleanup, and quantitative determination of aflatoxins in corn. J Assoc Off Anal Chem, 63(3), 631-633.
Thirumala-Devi, K., Mayo, M. A., Hall, A. J., Craufurd, P. Q., Wheeler, T. R., Waliyar, F., Subrahmanyam, A., & Reddy, D. V. (2002). Development and application of an indirect competitive enzyme-linked immunoassay for aflatoxin m(1) in milk and milk-based confectionery. J Agric Food Chem, 50(4), 933-937.
Turner, N. W., Bramhmbhatt, H., Szabo-Vezse, M., Poma, A., Coker, R., & Piletsky, S. A. (2015). Analytical methods for determination of mycotoxins: An update (2009–2014). Analytica Chimica Acta, 901, 12-33.
van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food: perspectives in a global and European context. Anal Bioanal Chem, 389(1), 147-157.
Vasconcelos Soares Maciel, E., Mejía-Carmona, K., & Lanças, F. M. (2020). Evaluation of Two Fully Automated Setups for Mycotoxin Analysis Based on Online Extraction-Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 25(12), 2756.
Velasco, J., & Morris, S. L. (1976). Use of water slurries in aflatoxin analysis. J Agric Food Chem, 24(1), 86-88.
Wacoo, A. P., Wendiro, D., Vuzi, P. C., & Hawumba, J. F. (2014). Methods for Detection of Aflatoxins in Agricultural Food Crops. Journal of Applied Chemistry, 2014, 706291.
Williams, J. H., Phillips, T. D., Jolly, P. E., Stiles, J. K., Jolly, C. M., & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr, 80(5), 1106-1122.
Wilson, D. M., Tabor, W. H., & Trucksess, M. W. (2020). Screening Method for the Detection of Aflatoxin, Ochratoxin, Zearalenone, Penicillic Acid, and Citrinin. Journal of Association of Official Analytical Chemists, 59(1), 125-127.
Xie, L., Chen, M., & Ying, Y. (2016). Development of Methods for Determination of Aflatoxins. Crit Rev Food Sci Nutr, 56(16), 2642-2664.
Xiulan, S., Xiaolian, Z., Jian, T., Xiaohong, G., Jun, Z., & Chu, F. S. (2006). Development of an immunochromatographic assay for detection of aflatoxin B1 in foods. Food Control, 17(4), 256-262.
Yang, Y., Li, G., Wu, D., Liu, J., Li, X., Luo, P., Hu, N., Wang, H., & Wu, Y. (2020). Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology, 96, 233-252.
Yazdanpanah, H., Mohammadi, T., Abouhossain, G., & Cheraghali, A. M. (2005). Effect of roasting on degradation of Aflatoxins in contaminated pistachio nuts. Food and Chemical Toxicology, 43(7), 1135-1139.
Zahra, N., Khan, M., Mehmood, Z., Saeed, M., Kalim, I., Ahmad, I., & Malik, K. (2018). Determination of Aflatoxins in Spices and Dried Fruits. Journal of Scientific Research, 10, 315.
Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129-144.
Zhang, K., & Banerjee, K. (2020). A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins, 12(9), 539.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89198-
dc.description.abstract台灣溫暖濕熱的環境,容易使得黃麴毒素於花生、穀類、豆類等農產品中孳生。其中,黃麴毒素B1有強烈的肝毒性與致癌性,且其耐高熱性也導致完全消除毒素有一定的困難。因此,事先預防受汙染的農產品進入市場,為保障消費者健康的唯一方法。本研究旨在完成開發一項針對固體樣品(以花生為例)的自動化前處理機,並優化其性能,以符合法規對於製備黃麴毒素B1檢液的步驟要求,從而確保後續檢驗結果之有效性。該前處理機主要由重量感測、研磨萃取以及流道系統組成,以實現樣品的磨碎、均質、過濾步驟。透過修改研磨機構設計以及參考過往文獻中提及的濕研磨方法,將磨碎效能由過篩率(孔徑:1 mm) 30%提升至99%。隔離流道系統中感測器之訊號干擾,將350 ml下的流量誤差百分比控制於1%,以確保萃取效率的一致性。重量感測系統則透過更換合適感測器以及實施自動校正程序,將重量感測誤差百分比由0.2%降低至0.02%。進樣機構與進樣管道的設計確保了量測完畢之樣品可掉落至研磨機構內。注水口位置的設計充分清除前處理過程中,噴濺於進樣管道內的樣品。探討清洗程序內的各項參數,包括清洗時間、清潔溶液體積、清洗次數,並驗證了系統在重複使用的情況下,經過清洗程序後仍能將殘留樣品的含量清洗至0.1%以下。本研究使用甲烯藍代替黃麴毒素B1塗抹在樣品上,並進行樣品前處理。對前處理後的檢液進行量測,結果顯示回收率為78%,表明了本系統能夠處理固體樣品,並有效萃取出目標物。本研究以原系統設計之基礎進行性能上的優化,且結果均滿足法規對於樣品前處理之要求。此外,自動化可行性的驗證確保了優化後的系統能夠重複處理固體樣品且不影響後續檢液之有效性。zh_TW
dc.description.abstractThe warm and humid climate in Taiwan makes it susceptible to the growth of aflatoxin in agricultural products such as peanuts, grains, and beans. Among them, aflatoxin B1 is highly hepatotoxic and carcinogenic, and its heat resistance makes complete toxin elimination challenging. Therefore, the safeguarding of consumer health relies on the prevention of contaminated agricultural products from entering the market in advance. The objective of this study was to develop an automated pre-treatment apparatus for solid samples (using peanuts as an example) and optimize its performance to meet the official requirements for aflatoxin B1 detection, ensuring the effectiveness of subsequent analysis results. The pretreatment apparatus was mainly comprised of weight sensing, grinding & extraction, and flow control systems to achieve sample crushing, homogenization, and filtration steps. By modifying the grinding mechanism design and adopting wet grinding methods, the grinding efficiency was improved from 30% (sieve size: 1 mm) to 99%. The flow control system ensured that the flow error percentage under 350 ml was controlled within 1% by isolating the signal interference of the flow sensor. The weight sensing error percentage of the weight sensing system was reduced from 0.2% to 0.02% by an appropriate sensor module and by implementing an automatic calibration procedure. The design of the sample injection mechanism and pipeline ensured that the measured samples could be completely dropped into the grinding cup after the weighting procedure. The design of the water injection port effectively removed the sample splashed inside the sample injection pipeline during pretreatment. Parameters within the cleaning procedure, including cleaning time, cleaning solution volume, and the number of cleaning cycles, were discussed and validated. The residual sample content was cleaned to below 0.1% even after repeated use. Finally, methylene blue was used as a substitute indicator for aflatoxin B1 applied to the validation of pretreatments. The result showed a recovery rate of 78%, indicating that the system could handle solid samples and effectively extract the target substance. The optimization of performance was conducted based on the pre-version prototype design, and the results met the requirements for sample pretreatment according to official regulations. Furthermore, the feasibility verification of automation ensured that the optimized system could handle solid samples repeatedly without affecting the effectiveness of subsequent analysis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:17:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-30T16:17:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第ㄧ章 前言 1
1.1研究背景 1
1.2研究目的 2
1.3研究架構 3
第二章 文獻探討 4
2.1真菌毒素與黃麴毒素 4
2.1.1真菌毒素 4
2.1.2黃麴毒素 5
2.1.3黃麴毒素解毒方法 6
2.2食品中的黃麴毒素檢測樣品前處理 7
2.2.1取樣 7
2.2.2檢液製備 8
2.3黃麴毒素檢測方法 12
2.3.1色層分析技術 12
2.3.2 免疫化學檢測法 15
2.4自動化之樣品前處理儀器與研究 18
2.4.1自動化之前處理儀器 18
2.4.2樣品前處理串聯毒素檢測之自動化儀器 21
2.4.3自動化前處理儀器與研究總結 22
第三章 研究方法 24
3.1實驗藥品製備與材料 24
3.1.1實驗藥品 24
3.1.2實驗材料 24
3.2儀器與軟體 24
3.2.1實驗儀器 24
3.2.2實驗軟體 25
3.3原自動化前處理機之系統架構與效能評估 25
3.3.1原系統架構與作業流程 25
3.3.2原系統性能規格與效能評估 27
3.4子系統效能優化 28
3.4.1制定子系統性能規格 28
3.4.2重量感測系統效能優化 29
3.4.3研磨萃取系統效能優化 32
3.4.4流道系統效能優化 34
3.5自動化前處理之可行性 36
3.5.1自動化清洗程序探討與效果評估 36
3.5.2實際進行樣品前處理 37
第四章 結果與討論 38
4.1重量感測系統 38
4.1.1重量感測系統效能評估 38
4.1.2重量感測系統效能優化 42
4.1.3重量感測系統確效 49
4.2研磨萃取系統 50
4.2.1研磨萃取系統效能評估 50
4.2.2研磨萃取系統效能優化 53
4.2.3充分萃取時間 60
4.2.4研磨萃取系統確效 61
4.3流道系統 62
4.3.1流道系統效能評估 62
4.3.2流道系統效能優化 64
4.3.3流道系統確效 65
4.4過濾系統 68
4.5自動化前處理之可行性 70
4.5.1自動化清洗程序 70
4.5.2前處理機之子系統性能 74
4.5.3實際進行樣品前處理 75
第五章 結論與未來展望 76
5.1結論 76
5.2未來展望 77
第六章 參考文獻 78
附錄 85
A系統內部機構圖 85
A.1研磨機構 85
A.2進樣機構 87
B程序程式碼 88
-
dc.language.isozh_TW-
dc.subject樣品前處理zh_TW
dc.subject自動化系統zh_TW
dc.subject性能優化zh_TW
dc.subject黃麴毒素zh_TW
dc.subjectAflatoxinsen
dc.subjectPerformance optimizationen
dc.subjectAutomated systemen
dc.subjectSample pretreatmenten
dc.title用於測定食物中黃麴毒素的樣品檢液製備之自動化預處理機性能優化zh_TW
dc.titlePerformance Optimization of Automated Pretratment Apparatus Used For the Sample Solution Preparation to Determine Aflatoxins in Foodstuffen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖國基;龔毅;陳柏中zh_TW
dc.contributor.oralexamcommitteeKuo-Chi Liao;Yi Kung;Po-Chung Chenen
dc.subject.keyword黃麴毒素,性能優化,自動化系統,樣品前處理,zh_TW
dc.subject.keywordAflatoxins,Performance optimization,Automated system,Sample pretreatment,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202301749-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-21-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved