請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾仁賜(Ren-Shih Chung) | |
| dc.contributor.author | Wei-Sheng Wei | en |
| dc.contributor.author | 魏偉勝 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:04:06Z | - |
| dc.date.available | 2009-08-20 | |
| dc.date.available | 2021-05-20T20:04:06Z | - |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-17 | |
| dc.identifier.citation | 王西華。1989。農業廢棄物在有機農業之利用。有機農業研討會專集。pp. 221-227。台中區農業改良場,台中,台灣。
王俊文。1997。不同氮肥對玉米及水稻生長與氮組成之影響。國立台灣大學農業化學系碩士論文,台北,台灣。 王斐能、羅秋雄。2005。溫室栽培下長期施用不同有機質肥料對土壤性質影響。有機肥料之施用對土壤與作物品質之影響研討會論文集。pp. 97-103。中華土壤肥料學會,台中,台灣。 王敏昭。1998。土壤生態變異對土壤溶液有機碳境況之影響。土壤與環境 1: 249-268。 王銀波、趙震慶。1995。有機與化學農法下土壤環境及養份收支之比較。八十三年度土壤肥料試驗研究成果報告 (下)。pp. 491-555,台灣省政府農林廳,南投,台灣。 王銀波。1989。有機肥料再有機農業應用之範疇。有機農業。pp. 99-103。台灣省台中區農業改良場,台中,台灣。 行政院農業委員會。1987。作物施肥手冊,第四版,台灣省政府農林廳,南投,台灣。 周恩存。2006。不同施肥管理對土壤之磷及氮劃份之影響。國立台灣大學農業化學系碩士論文,台北,台灣。 吳正宗。2006。主要肥料簡介。肥料要覽 (民國95年)。pp. 46-72。中華土壤肥料學會,台北,台灣。 何念祖、孟賜福。1987。植物營養原理。上海科學技術出版社,上海,中國。 林晉卿、楊秋忠、林宏鋕、黃山內。2006。三種綠肥在浸水土壤可溶性有機碳的變化。台南區農業改良場研究彙報,47: 17-30。 徐華盛、蔡永暭。2001。不同農耕法及輪作系統之比較研究。高雄區農業改良場研究彙報,12: 37-54。 徐陽春、沈其榮、茆澤聲。2002。長期施用有機肥料對土壤及不同粒集中酸解有機氮含量與分配之影響。中國農業科學,35: 403-409。 游逸凡。1997。施肥管理對土壤磷素狀態之影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。 陳仁炫、歐淑蒖。2005。不同有機質材之磷釋出特性及對土壤性質之影響。有機肥料之施用對土壤與作物品質之影響研討會論文集。pp. 19-46。中華土壤肥料學會,台中,台灣。 陳存澤。2008。不同的施肥管理對土壤化學性質、酵素活性及微生物族群結構的影響。 國立台灣大學農業化學系碩士論文,台北,台灣。 黃東邁。1986。有基但各化學組成分在土壤中的轉化。江蘇農業學報,2: 17-25。 黃美華。2005a。不同施肥管理對經八年水旱田輪作系統的玉米與水稻產量及養分吸收的影響。國立台灣大學農業化學系碩士論文,台北,台灣。 黃裕銘。2005b。作物營養及肥料。國立中興大學土壤環境科學系,台中,台灣。 楊秋忠。1988。泥炭的特徵及應用。土壤與肥料,313-320。 楊盛行、鍾仁賜、林鴻棋。1992。食品、農產廢棄物減量、資源及堆肥化之探討 (第二年)。行政院環境保護署委託研究計畫報告。pp. 1-3。台北,台灣。 蔡永暭。2005。有機農法之地力增進與作物生產。有機肥料之施用對土壤與作物品質之影響研討會論文集。pp. 1-18。中華土壤肥料學會,台中,台灣。 鍾仁賜、葉美雲、張則周。1993。酸性土壤中施用有機物對作物生長及鋁錳毒害之解毒作用。台灣東部問題土壤改良研討會論文集。pp.193-217。花蓮區農業改良場,花蓮,台灣。 蘇俊郎。2000。兩種輪作制度下經十年連續施用不同肥料之土壤對作物生長與養分吸收的影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。 羅秋雄。2006。綠肥作物種類與栽培要領。pp. 10-15。綠肥作物栽培利用手冊。中華肥料協會,台中,台灣。 Alvarez, R. and C. R. Alvarez. 2000. Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Sci. Soc. Am. J. 64: 184-189. Anderson, J.P.E. 1982. Soil respiration. pp. 837-871. In A.L. Page (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA. Angers, D.A. and G.R. Mehuys. 1988. Effects of cropping on macro-aggregation of marine clay soil . Can. J. Soil Sci. 68: 723-732. Asghar, M. and Y. Kanehiro. 1980. Effect of sugarcane trash and pineapple residue on soil pH, redox potential, extractable Al, Fe and Mn. Trop. Agric. 57:245-258. Barker, A.V. and G.M. Bryson. 2007. Nitrogen. pp. 32-39. In A.V. Barker, D.J. Pibleam (eds.) Handbook of Plant nutrition. Taylor and Francis, New York, USA. Barlett, R.J. and D.S. Ross. 1988. Colorimetric determination of oxidizable carbon in acid soil solution. Soil Sci. Soc. Am. J. 52: 1191-1192. Beare, M.H., M.L. Cabrera, P.F. Hendrix, and D.C. Coleman. 1994. Aggregate-protected and unprotected pools of organic matter in conventional and no-tillage ultisols. Soil Sci. Soc. Am. J. 58: 787-795. Beck, T., R.G. Joergensen, E. Kandeler, F. Makeschin, E. Nuss. H.R. Oberholzer, and S. Scheu. 1997. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass carbon. Soil Biol. Biochem. 17: 837-842. Blair, G.J., R.D.B. Lefroy, and L. Lise. 1995. Soil carbon fraction based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46: 1459-1466. Bowman, R.A., M.F. Vigil, D.C. Nielsen, and R.L. Anderson. 1999. Soil organic matter changes intensively cropped dryland system. Soil Sci. Soc. Am. J. 63: 186-191. Bradely, D.B. and D.H. Sieling. 1953. Effect of organic anions and sugars on phosphate precipitation by iron and aluminum as influenced by pH. Soil Sci. 76: 175-179. Brady, N.C., and R.R. Weil. 2004. Soil organic matter. pp. 353-385. In F. Magdoff and R.R. Weil (eds.) Elements of the Nature and Properties of Soils, 2nd edition. Upper Saddle River, New Jersey, USA. Bray, R.H. and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59: 39-45. Cambardella, C.A. and E.T. Eillott. 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56: 777-783. Cambardella, C.A. and E.T. Eillott. 1993. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 57: 1071-1076. Chae, Y.M. and M.A. Tabatabai. 1986. Mineralization of nitrogen in soils amended with organic wastes. J. Environ. Qual. 15: 193-198. Chan, K.Y. 2001. Soil particulate organic carbon under different land use and management. Soil Use Manage. 17: 217-221. Chang, C., T.G. Sommerfeldt, and T. Entz. 1990. Rates of soil chemical changes with eleven annual applications of cattle feedlot manure. Can J. Soil Sci. 70: 673-681. Chang, C., T.G. Sommerfeldt, and T. Entz. 1991. Soil Chemistry after eleven annual applications of cattle feedlot manure. J. Environ. Qual. 20: 475-480. Chen, Y., and T. Aviad. 1990. Effects of humic substance on plant growth. pp. 161-186. In P. MacCarthy et al. (ed.) Humic substance in soil and crop sciences: selected reading. ASA and SSSA, Madison, WI, USA. Collins, H.P., P.E. Rausmussen, and C.L.J. Douglas. 1992. Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Sci. Soc. Am. J. 56: 783-788. Dick, W. 1997. Tillage system impacts on environmental quality and soil biological parameters. Soil Tillage Res. 41:165-167. Doran, J.W., A.J. Jones, M.A. Arshed, and J.E. Gilley. 1999. Determinants of soil quality and health. pp. 17-36. In R. Lal (ed.) Soil quality and soil erosion. Lewis Publ., Boca Raton, FL, USA. Dou, F., A.L. Wright, F.M. Hons. 2008. Sensitivity of labile soil organic carbon to tillage in wheat-based cropping systems. Soil Sci. Soc. Am. J. 72: 1445-1453. Drury, C.F., J.A. Stone, and W.I. Findlay. 1991. Physical separation of soil organic matter. Agric. Ecosyst. Environ. 34: 407-419. Dyer, R.H. 1984. Beverages: Distilled liquors. pp. 188. In Official Methods of Analysis of the Association of Official Agricultural Chemist, 14th ed. Washington D.C., USA. Eaton, A.D., L.S. Clesceri, and A.E. Greenberg. 1995. Standard methods for the examination of water and wastewater. 19th ed. APHA, Washington D.C., USA. Flaig, W., H. Beutelspacher, and E. Rietz. 1975. Chemical composition and physical properties of humic substance. pp. 4-118. In J.E. Gieseking (ed.) Soil Components. Vol. 1: Organic Components. Springer-Velarg, New York, USA. Franzluebbers, A.J. and M.A. Arshed. 1992. Oarticulate organic carbon content and potential mineralization as affected by tillage and texture. Soil Sci. Soc. Am. J. 61: 1382-1386. Franzluebbers, A.J., E.M. Hons, and D.A. Zuberer. 1995. Soil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Sci. Soc. Am. J. 59: 460-466. Frey, S.D., E.T. Elliott, and K. Paustian. 1999. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol. Biochem. 31: 573-585. Ghani, A., M. Dexter, and K.W. Perrott. 2003. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem. 35: 1231-1243. Goh, K.M., Stout, J.D., B.J. O’Brien. 1984. The significance of fractionation in dating the age and turnover of soil organic matter. New Zealand J. Sci. 27: 69-72. Gonzalez-Prieto, S.J., and T. Carballs. 1988. Modified method for the fractionation of soil organic nitrogen by successive hydrolyses. Soil Biol. Biochem. 20: 1-6. Gregorich. E.G., M.H. Beare, U. Stoklas, and P. St-Deorges. 2003. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma 113: 237-252. Hao, X., F. Fodlinski, and C. Chang. 2008. Distribution of phosphorus forms in soil following long-term continuous and discontinuous cattle manure applications. Soil Sci. Am. J. 72: 90-97. Hayanes, R.J. and R.S. Swift. 1989. The effect of pH and drying on adsorption of phosphate by aluminum-organic matter associations. Soil Sci. 40: 773-781. Holford, I.C.R. and G.E.G. Mattingly. 1975. Phosphate sorpition by Jurassic Oolitic limestones. Gerderma 13: 257-264. Holland, E.A. and D.C. Coleman. 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 68: 425-433. Hoyt, P.B. and R.C. Turner. 1975. Effects of organic materials added to very acid on pH, aluminum, exchangeable NH4+, and crop yields. Soil Sci. 119: 227-237. Hue, N.V., I. Amien, and J. Hasen. 1989. Aluminum detoxification with green manures. Commun. Soil Sci. Plant Anal. 20: 1499-1511. Jackson, M.L. 1958. Soluble salt analysis for soils and waters. pp. 227-271. In Soil Chemical Analysis. Prentice-Hall, Inc. Englewood Cliffs. N. J., USA. Jenkinson, D.S. 1981. The fate of plant and animal residues in soil. pp. 505-561. In D.J. Greenland and M.H.B. Hayes (eds.) The Chemistry of Soil Processes. John Wiley & Sons, Chichester, UK. Jokinen, R. 1981. Effect of liming on the magnesium status of some mineral soils and on the fate of fertilizer magnesium. J. Sci. Agr. Soc. Finl. 53: 126-137. Karlen, D.L., J.C. Gardner, and M.J. Rosek. 1998. A soil quality framework for evaluating the impact of CRP. J. Prod. Agric. 11: 56-60. Kaschl, A. V. Romheld, and Y. Chen. 2000. The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Sci. Tot. Environ. 291: 45-57. Kemper, W.D. and W.S. Chepil. 1965. Size distribution of aggregates. pp. 499-510. In C.A. Black (ed.) Methods of Soil Analysis. Part I- Physical and Mineralogical Properties, Including Statics of Measurement and Sampling. Agron. Monogr. 9. ASA, Madison, WI, USA. Kospell, D.E. and D.A. Kospell. 2007. Copper. pp. 316-320. In A.V. Barker and D.J. Pibleam (eds.) Handbook of Plant Nutrition. Taylor and Francis, New York, USA. Leavitt, S.W., R.F. Follett, and E.A. Paul. 1997. Estimation of slow and fast cycling soil organic carbon pools from 6 N HCl hydrolysis. Radiocarbon 38: 231-239. Lockeretz, W. 1980. Maize yield and soil nutrient level with and without pesticides and standard commercial fertilizers. Agron. J. 72: 65-72. Leinweber, P. and H.R. Schulten. 1998. Nonhydrolyzable organic nitrogen in soil size separates from long-term agricultural experiments. Soil Sci. Soc. Am. J. 62: 383-393. Li, H., H. Gao, H. Wu, W. Li, X. Wang, and J. He. 2007. Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aus. J. Soil Res. 45: 344-350. McBride, M.B. 1981. Forms and distribution of distribution of copper in solid and solution phase of soil. pp.24-45. In J.F. Loneragan, A.D. Robson, and R.D. Graham (eds.) Copper in Soils and Plants. Academic Press, New York, USA. McLauchlan, K.K. and S.E. Hobbie. 2004. Comparison of labile soil organic matter fraction techniques. Soil Sci. Soc. Am. J. 68: 1616-1625. McLean, E.O. 1982. Soil pH and lime requirement. pp. 192-224. In A. L. Page (ed.) Methods of Soil Analysis. Part II. Chemical and Microbiological Properties. Academic Press, New York, USA. Meek, B.D., L.E. Graham, T.J. Donovan, and K.S. Mayberry. 1979. Phosphours availability in a calcareous soil after high loading rates of animal manuare. Soil Sci. Soc. Am. J. 43: 741-743. Mehlich, A. 1985. Mehlich 3 soil test extractant: A modification of Mehilich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409-1416. Miglierna, A.M., J.O. Iglesias, M.R. Landriscini, J.A. Galantini, and R.D. Rodell. 2000. The effects of crop rotation and fertilization on wheat productivity in the Pampean semiarid region of Argentina. Soil Till. Res. 53: 129-144. Murphy, J. and J.P. Riley. 1962. A modified single solution for determination of phosphate in natural waters. Anal. Chem. Acta 27: 31-36. Nagarajah, S. A.M. Ponser, and J.P. Quirk. 1970. Competitive adsorption of phosphate with polygalacutronate and other organic acids on kaolinite and oxide surface. Nature 228: 83-85. Neeselman, B.A., M.M. Wander, G.A. Bollero, C.W. Boast, G.K. Sims, and D.G. Bullock. 1999. Interaction of tillage and soil texture: biologically active soil organic matter in Illionis. Soil Sci. Soc. Am. J. 63: 1326-1334. Nugroho, S.G. and S. Kuwatusuka. 1990. Concurrent observation of several processes of nitrogen metabolism in soil amended with organic materials. I. Effect of different organic materials on ammonification, nitrification, denitrification, and N2 fixation under aerobic and anaerobic conditions. Soil Sci. Plant Nutr. 36: 215-224. Nugroho, S.G., S. Yoshida, and S. Kuwatusuka. 1992. Concurrent observation of several processes of nitrogen metabolism in soil amended with organic materials. V. Effects of long-term application of farmyard manure and nitrogen fertilizer on N cycling processes in upland field soil. Soil Sci. Plant Nutr. 38: 619-629. Oades, J.M., M.A. Kirkman, G.H. Wanger. 1970. The use of gas-liquid chromatography for the determination of sugars extracted from soil by sulfuric acids. Soil Sci. Soc. of Am. P. 34: 230-235. Parson, J.W. 1981. Chemistry and distribution of amino sugars in soils and soil organisms. pp. 205-215. In E.A. Paul and J.N. Ladd (eds.) Soil Biochemistry, vol. 5. Marcel Dekker, New York, USA. Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels on Great Plains grasslands. Soil Sci. Soc. Am. J. 51: 1173-1179. Paul, E.A., D. Harris., M.J. Klug, and R.W. Ruess. 1999. The determination of microbial biomass. pp. 291-317. In G.P. Robertson (ed.) Standard Soil Methods of Long-term Ecological Research. Oxford Univ. Press, New York, USA. Paul, E.A., R.F. Follet, S.W. Leavitt, A. Halvorson, G.A. Peterson, D.J. Lyon. 1997. Radiocarbon dating for determination of organic matter soil pool sizes and dynamics. Soil Sci. Soc. Am. J. 61: 1058-1067. Paul., E.A., S.J. Morris, R.T. Contant, and A.F. Plante. 2006. Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools? Soil Sci. Soc. Am. J. 70: 1023-1035. Purakayastha, T.J. L. Rudrappa, D. Singh, A. Swarup, S. Bhadaray. 2008. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system. Geoderma 144: 370-378. Reddy, D.D., A.S. Rao, and P.N. Takkar. 1999. Effects of repeated manuare and fertilizer phosphorus additions on soil phosphorus dynamics under a soybean wheat rotation. Biol. Fertil. Soils 28: 150-155. Rhoades, J.D. 1982. Soluble salts. pp. 167-178. In Methods of Soil Analysis. Part II. Chemical and Microbiological Properties. A. L. Page (ed.) Academic Press, New York, USA. Rovira, P. and V.R. Vallejo. 2000. Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Commun. Soil Sci. Plant Anal. 31:81-100. Rovira, P. and V.R. Vallejo. 2007. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol. Biochem. 39: 202-215. Sanchez, C.A. 2006. Phosphorus. pp. 53-54. In A.V. Barker and D.J. Pibleam (eds.) Handbook of Plant Nutrition. Taylor and Francis, New York, USA. Sbih, M., A. Ndayegamie, and A. Karam. 2003. Evaluation of carbon and nitrogen mineralization rates in meadow soils from dairy farms under transit to biological cropping systems. Can. J. Soil Sci. 83: 25-33. Schnitzer, M. 1991. Soil organic matter- The next 75 year. Soil Sci. 151: 41-58. Shuman, L.M. 1991. Chemical forms of micronutrients in soils. pp. 113-144. In: J.J. Mortvedt, F.R. Cox, L.M. Shuman, and R.M. Welch (eds.) Micronutrients in Agriculture, 2nd ed. Madison, WI, USA. Six, J., E.T. Elliot, and K. Paustian. 2000. Labile and recalcitrant pools of carbon and nitrogen in organic matter decompising at different depths in soil: An acid hydrolysis approach. Geoderma 107: 109-141. Six, J. E.T. Elliott, K. Paustian, and J.W. Doran. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62: 1367-1377. Sohi, S.P., N. Mahien, J.R.M. Arah, B. Madri, and J.L. Gaunt. 2001. A procedure for isolating soil organic fractions suitable for modeling. Soil Sci. Soc. Am. J. 65: 1121-1128. Sposito, G. 1989. The chemistry of soils. pp. 42-65. Oxford Univ. Press, New York, USA. Stevenson, F., F.L. Walley, and C. van Kessel. 1998. Direct vs. indirect nitrogen-15 approaches to estimate nitrogen contributions from crop residues. Soil Sci. Soc. Am. J. 62: 1327-1334. Stevenson, F.J. 1982. Humus Chemistry. John Wiley & Sons, New York, USA. Stevenson, F.J. 1996. Nitrogen-organic forms. pp. 1185-1200. In D.L. Sparks (ed.) Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI, USA. Stone, A.G., S.J. Traina, and H.A.J. Hoitink. 2001. Particulate organic matter composition and Pythium damping-off of cucumber. Soil Sci. Soc. Am. J. 65: 761-770. Stone, D.L., D.A. Whitney, K.A. Janssen, and J.H. Long. 1991. Soil properties after twenty years of fertilizeration with different nitrogen source. Soil Sci. Soc. Am. J. 55: 1097-1100. Storey, J.B. 2007. Znic. pp. 422-423. In A.V. Barker and D.J. Pibleam (eds.) Handbook of Plant nutrition. Taylor and Francis, New York, USA. Stout, J.D., K.M. Goh, and T.A. Rafter. 1981. pp. 1-73. Chemistry and turnover of naturally occurring resistant organic compounds in soil. In E.A. Paul and J.N. Ladd (eds.), Soil Biochemistry, vol. 5. Marcel Dekker, Inc., New York, USA. Swift, R.S. 1985. Fractionation of soil humic substance in soil. pp. 387-408. In G.R. Aiken (ed.) Humic Substance in Soil, Sediment, and wWater. John Wiley and Sons, New York, USA. Tester, C.F. 1986. Organic amendment affects of physical and chemical properties of a sandy soil. Soil Sci. 66: 601-613. Toor, G.S. and G.S. Bhal. 1997. Effect of solitary and integrated use of poultry manure and fertilizer phosphorus on the dynamics of P availability in different soils. Bioresour. Technol. 62: 25-28. Tzeng, J.S., T.S.C. Wang, and S.W. Li. 1998. Abiotic formation of model humic substance incorporated with indoles and pyrroles. Taiwan Sugar Res. Inst. 121: 7-16. van Kessel, J.S. and J.B. Reeves III. 2002. Nitrogen mineralization potential of dairy manures and its relationship to composition. Biol. Fertil. Soils 36: 118-123. Wander, M.M., S.J. Traina, B.R. Stinner, and S.E. Peters. 1994. Organic and conventional management effects on biologically active soil organic matter pools. Soil Sci. Soc. Am. J. 58: 1130-1139. Wander, M. 2004. Soil organic matter fractions and their relevance to soil function. pp. 67-102. In F. Magdoff and R.R. Weil (eds.) Soil Organic Matter in Sustainable Agriculture. CRC Press, Washington, D.C. West, T.O. and W. Post. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 66: 1930-1946. Willson, T.C., E.A. Paul, and R.R Harwood. 2001. Biologically active soil organic matter fractions in sustainable cropping systems. Appl. Soil. Ecol. 16: 63-76. Works, T.S. and E. Works. 1972. Laboratory Techniques. pp. 359. In Biochemistry and Molecular Biology, vol. 2. North-Holland Publishing Company, New York, USA. Wright, A.L., T.L. Provin, F.M. Hons, D.A. Zuberer, and R.H. White. 2005. Dissolved organic C in soil from compost-anended bermudagrass turf. HortSci. 40: 830-835. Zhang, J., C. Song, and S. Wang. 2007. Dynamics of soil organic carbon and its fractions after abandonment of cultivated wetlands in northeast China. Soil Tillage Res. 96: 350-360. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8918 | - |
| dc.description.abstract | 土壤長期施用不同有機肥料會影響土壤有機質含量與品質,土壤有機質具有影響土壤物理與化學特性、增加通氣程度、養分循環、提供微生物碳源與外源化合物分解等功效。使用有機資材為肥料施入土壤中可增加養分循環與再利用,為永續農業 (sustainable agriculture) 的重要單元,有機資材被分解後將會釋放養分,增加土壤生產力。本研究目的在探討長期施入不同種類之肥料與不同之耕作方式,對於土壤有機質之含量與土壤有機質之易變動庫與難分解庫的濃度分佈的影響。試驗材料分別取自台中霧峰農試所第35號永續農法試驗、高雄改良場旗南分場有機農法試驗與桃園農業改良場溫網室蔬菜試驗等三處試驗田。各別測定土壤基本性質、可溶性有機碳及以酸水解測定土壤有機質中易變動庫含量:包含鹽酸一階段水解,同時測定土壤中有機氮之含量;硫酸二階段水解,第一階段測定土壤醣類含量與總聚酚I,第二階段測定土壤纖維素含量與總聚酚II。研究顯示,在長期施入不同氮肥量與氮肥種類之試驗 (農試所35號試驗田) 土壤,施有機肥料者比單施化學肥料者多2-217%的總碳、硫酸水解之易變動庫多4.4-30.7%的可水解碳,易變動庫則以同時施有機肥料與化學肥料者較高。在不同農耕法的試驗 (旗南分場) 土壤,可知所有輪作均以施入有機肥料者,土壤總碳含量較高。在水旱田輪作下,以有機肥料與化學肥料同時施用者比單施有機肥料或單施化學肥料更提高鹽酸可水解之易變動氮庫含量,而醣與纖維素之濃度均以有施入有機肥料之處理較多。在施用單一種不同有機肥料 (桃園改良場) 的試驗中,可知在相同施氮量下,雞糞堆肥處理與豌豆苗殘體堆肥處理總碳累積較多。施大豆粕使土壤中的氮大部分成為鹽酸可水解氮。在硫酸可水解部分中易被生物利用之碳量大小為:大豆粕處理>豌豆苗殘體堆肥處理>未施肥之對照組>輪施=牛糞堆肥處理=豬糞堆肥處理>雞糞堆肥處理。綜上所述,施用有機資材至土壤中可增加土壤易變動庫與碳與氮之含量。 | zh_TW |
| dc.description.abstract | Different fertilizers applied to the soil affect the soil organic matter content and quality, especially after a long-term application. Soil organic matter affects the soil physical and chemical properties, aeration extent, nutrient cycling, energy supply to soil microorganisms, and detoxification of the anthropogenic chemicals. Application of the organic material as a kind of fertilizer is an important practice of the sustainable agriculture. After the decomposition of the organic material, it supplies the nutrients and increases the productivity of the soil. The aim of this study was to investigate the effects of different fertilization management and different kinds of fertilizers on the soil organic matter concentration and its compisition. Soil samples were taken from a 13-year field experiment (TARI) with seven treatments, a 20-year experiment (KDARES-CBS) with two rotation systems under three fertilization managements, and a 7-year green house experiment (TDARES) with seven treatments, respectively. Some selected soil chemical properties, dissolved organic carbon (C) concentration, C fractions hydrolyzed by HCl solution, C fractions two-step hydrolyzed by H2SO4 solution were to be analyzed. The organic nitrogen (N) in soil also analyzed after hydrolyzing by HCl solution. The polysaccharides (saccharide C), polyphenol (polyphenol I), the cellulose (cellulose C), and polyphenol (polyphenol II) concentrations were to be analyzed after H2SO4 solution two-step hydrolysis respestiviely.
The result of the study of different kinds of N fertilizers and different amounts of N input (TARI) indicated that application of organic fertilizer increased 2-217% of the total C and 4.4-30.7% of labile pool of C concentrations as compared with that of applying only chemical fertilizer. The application of both organic fertilizer and chemical N fertilizer also increased the labile pool C concentration. In the study of different kind of rotation systems (KDARES-CBS), application of organic fertilizer increased total C, saccharide C and cellulose C concentration of the soil. Conbined application of the organic fertilizer and chemical fertilizer increased the labile C and N pool of the soil. In the study of application of different kinds of organic fertilizers for seven years (TDARES), the application of chicken dung compost (PM) and pea seeding residue (PC) accumulated more C in the soil on the basis of application of the same amount of N. The application of soybean meal (SBM) resulted in the most of soil N as labile N. The biologically available C as charactilized by H2SO4 hydrolysis are in the following order: SBM > PC > Contral > sequential application of compost (SA) = cattle dung compost (CD) = hog dung compost (HD) > chicken dung compost (PM). In conclusion, application of the organic fertilizers increase the labile C and N pools of the soil and the extent of their effects depends on the properties of the organic fertilizers applied. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:04:06Z (GMT). No. of bitstreams: 1 ntu-98-R96623013-1.pdf: 1933838 bytes, checksum: 92ef1d617154f7188efe9caae9a40a68 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 前言 1 前人研究 3 材料與方法 10 結果與討論 27 一、 台中農業試驗所第35號試驗田 27 二、 高雄改良場旗南分場之20年試驗田 44 三、 桃園改良場溫網室 62 結論 77 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.title | 不同施肥管理對土壤有機質含量及組成之影響 | zh_TW |
| dc.title | Effects of fertilization management on the soil organic matter content and composition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李達源(Dar-Yuan Lee),陳建德(Chien-Ten Chen),陳仁炫(Jen-Hsuan Chen),黃裕銘(Yu-Ming Hwang) | |
| dc.subject.keyword | 長期試驗,有機肥料,可溶性有機碳,鹽酸水解,硫酸二階段水解, | zh_TW |
| dc.subject.keyword | long term experiment,organic fertilizer,dissolved organic C,HCl hydrolysis,two-step H2SO4 hydrolysis, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 1.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
