請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89183完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖英志 | zh_TW |
| dc.contributor.advisor | Ying-Chih Liao | en |
| dc.contributor.author | 呂宣瑾 | zh_TW |
| dc.contributor.author | Hsuan-Chin Lu | en |
| dc.date.accessioned | 2023-08-30T16:13:47Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-30 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-17 | - |
| dc.identifier.citation | Zang, Y., et al., Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015. 2(2): p. 140-156.
Kim, K.K., et al., A deep-learned skin sensor decoding the epicentral human motions. Nature Communications, 2020. 11(1): p. 1-8. Xie, M., et al., Flexible multifunctional sensors for wearable and robotic applications. Advanced Materials Technologies, 2019. 4(3): p. 1800626. Lee, S.P., et al., Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ digital medicine, 2018. 1(1): p. 1-8. Lu, H.-C. and Y.-C. Liao, Direct Printed Silver Nanowire Strain Sensor for Early Extravasation Detection. Nanomaterials, 2021. 11(10): p. 2583. Zhang, H., et al., Wettability contrast gravure printing. Advanced Materials, 2015. 27(45): p. 7420-7425. Lee, J., et al., Advanced technique for achieving 10-μm-width fine lines in roll-to-roll continuous gravure printing. Precision Engineering, 2021. 69: p. 1-7. Kitsomboonloha, R., et al., Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing. Langmuir, 2012. 28(48): p. 16711-16723. Sung, D., A. de la Fuente Vornbrock, and V. Subramanian, Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics. IEEE Transactions on Components and Packaging Technologies, 2009. 33(1): p. 105-114. Lu, H.-C., J.-L. You, and Y.-C. Liao, Total Liquid Transfer with Enhanced Contact Line Slippage. Langmuir, 2022. 38(46): p. 14238-14248. Grau, G., et al., Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flexible and Printed Electronics, 2016. 1(2): p. 023002. Grau, G., R. Kitsomboonloha, and V. Subramanian. Fabrication of a high-resolution roll for gravure printing of 2µm features. in Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII. 2015. SPIE. Cheng, H.-C., et al., Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing. Journal of Electronic Materials, 2018. 47(3): p. 1832-1846. Dodds, S., M.S. Carvalho, and S. Kumar, The dynamics of three-dimensional liquid bridges with pinned and moving contact lines. Journal of Fluid Mechanics, 2012. 707: p. 521-540. Kumar, S., Liquid transfer in printing processes: liquid bridges with moving contact lines. Annual Review of Fluid Mechanics, 2015. 47: p. 67-94. Dodds, S., M.d.S. Carvalho, and S. Kumar, Stretching and slipping of liquid bridges near plates and cavities. Physics of fluids, 2009. 21(9): p. 092103. Dodds, S., M. Carvalho, and S. Kumar, Stretching liquid bridges with moving contact lines: The role of inertia. Physics of fluids, 2011. 23(9): p. 092101. Chen, H., A. Amirfazli, and T. Tang, Modeling liquid bridge between surfaces with contact angle hysteresis. Langmuir, 2013. 29(10): p. 3310-3319. Chen, H., et al., Viscoelastic liquid bridge breakup and liquid transfer between two surfaces. Journal of Colloid and Interface Science, 2021. 582: p. 1251-1256. Chen, H., T. Tang, and A. Amirfazli, Liquid transfer mechanism between two surfaces and the role of contact angles. Soft Matter, 2014. 10(15): p. 2503-2507. Chen, H., T. Tang, and A. Amirfazli, Fast liquid transfer between surfaces: breakup of stretched liquid bridges. Langmuir, 2015. 31(42): p. 11470-11476. Chen, H., et al., How pinning and contact angle hysteresis govern quasi-static liquid drop transfer. Soft Matter, 2016. 12(7): p. 1998-2008. Wu, J.-T., M.S. Carvalho, and S. Kumar, Effects of shear and extensional rheology on liquid transfer between two flat surfaces. Journal of non-Newtonian fluid mechanics, 2019. 274: p. 104173. Huang, W.-X., et al., Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing. International Journal of Heat and fluid flow, 2008. 29(5): p. 1436-1446. Kim, J.-H., H.P. Kavehpour, and J.P. Rothstein, Dynamic contact angle measurements on superhydrophobic surfaces. Physics of fluids, 2015. 27(3): p. 032107. Sotiri, I., et al., Immobilized liquid layers: a new approach to anti-adhesion surfaces for medical applications. Experimental Biology and Medicine, 2016. 241(9): p. 909-918. Chen, R., et al., Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation. Applied Thermal Engineering, 2018. 144: p. 945-959. Sudeepthi, A., L. Yeo, and A. Sen, Cassie–Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves. Applied Physics Letters, 2020. 116(9): p. 093704. He, X., et al., Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces. Langmuir, 2021. 37(50): p. 14571-14581. Wong, T.-S., et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011. 477(7365): p. 443-447. Smith, J.D., et al., Droplet mobility on lubricant-impregnated surfaces. Soft Matter, 2013. 9(6): p. 1772-1780. Bohn, H.F. and W. Federle, Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences, 2004. 101(39): p. 14138-14143. Peppou-Chapman, S., et al., Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chemical Society Reviews, 2020. 49(11): p. 3688-3715. Wu, C.-J., et al., Contact angle hysteresis on graphene surfaces and hysteresis-free behavior on oil-infused graphite surfaces. Applied Surface Science, 2016. 385: p. 153-161. Barthwal, S., B. Lee, and S.-H. Lim, Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil. Applied Surface Science, 2019. 496: p. 143677. Wang, C. and Z. Guo, A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application. Nanoscale, 2020. 12(44): p. 22398-22424. Eifert, A., et al., Simple fabrication of robust water‐repellent surfaces with low contact‐angle hysteresis based on impregnation. Advanced Materials interfaces, 2014. 1(3): p. 1300138. Zhu, D., S. Handschuh-Wang, and X. Zhou, Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A, 2017. 5(32): p. 16467-16497. Silverstein, M.S., PolyHIPEs: Recent advances in emulsion-templated porous polymers. Progress in Polymer Science, 2014. 39(1): p. 199-234. Pulko, I. and P. Krajnc, High internal phase emulsion templating–a path to hierarchically porous functional polymers. Macromolecular Rapid Communications, 2012. 33(20): p. 1731-1746. Bancroft, W.D., The theory of emulsification, V. The Journal of Physical Chemistry, 2002. 17(6): p. 501-519. Bancroft, W.D., The theory of emulsification, VI. The Journal of Physical Chemistry, 2002. 19(4): p. 275-309. Taylor, G.I., The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 1934. 146(858): p. 501-523. Taylor, G.I., The viscosity of a fluid containing small drops of another fluid. Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 1932. 138(834): p. 41-48. Welch, C.F., et al., Rheology of High Internal Phase Emulsions. Langmuir, 2006. 22(4): p. 1544-1550. Cameron, N.R. and A. Barbetta, The influence of porogen type on the porosity, surface area and morphology of poly(divinylbenzene) PolyHIPE foams. Journal of Materials Chemistry, 2000. 10(11): p. 2466-2471. Williams, J.M., A.J. Gray, and M.H. Wilkerson, Emulsion stability and rigid foams from styrene or divinylbenzene water-in-oil emulsions. Langmuir, 1990. 6(2): p. 437-444. Sherborne, C. and F. Claeyssens, Considerations using additive manufacture of emulsion inks to produce respiratory protective filters against viral respiratory tract infections such as the COVID-19 virus. International Journal of Bioprinting, 2021. 7(1). Zhang, T., et al., Emulsion templating: porous polymers and beyond. Macromolecules, 2019. 52(15): p. 5445-5479. Shah, D.M., et al., Highly filled resins for DLP-based printing of low density, high modulus materials. Additive Manufacturing, 2021. 37: p. 101736. Luo, Y., et al., 3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Biomacromolecules, 2019. 20(4): p. 1699-1708. Mu, Q., et al., Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 2017. 18: p. 74-83. Johnson, D.W., et al., Macrostructuring of emulsion‐templated porous polymers by 3D laser patterning. Advanced Materials, 2013. 25(23): p. 3178-3181. Sušec, M., et al., Hierarchically Porous Materials from Layer-by-Layer Photopolymerization of High Internal Phase Emulsions. Macromolecular Rapid Communications, 2013. 34(11): p. 938-943. Du, S., (2021). Polymer Composite Scaffolds for Bone Tissue Engineering. [Doctoral dissertation, Monash University]. Mooney, M., The viscosity of a concentrated suspension of spherical particles. Journal of colloid science, 1951. 6(2): p. 162-170. Krieger, I.M. and T.J. Dougherty, A mechanism for non‐Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology, 1959. 3(1): p. 137-152. Pal, R., Novel viscosity equations for emulsions of two immiscible liquids. Journal of Rheology, 2001. 45(2): p. 509-520. Pal, R., Emulsions: Pipeline Flow Behavior. Viscosity Equations and Flow Mea, 1987. Pal, R., Rheology of high internal phase ratio emulsions. Food Hydrocolloids, 2006. 20(7): p. 997-1005. Malkin, A.Y. and V.G. Kulichikhin, Structure and rheology of highly concentrated emulsions: a modern look. Russian Chemical Reviews, 2015. 84(8): p. 803-825. Princen, H. and A. Kiss, Rheology of foams and highly concentrated emulsions: III. Static shear modulus. Journal of Colloid and Interface Science, 1986. 112(2): p. 427-437. Princen, H. and A. Kiss, Rheology of foams and highly concentrated emulsions: IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions. Journal of Colloid and Interface Science, 1989. 128(1): p. 176-187. Sharu, B., et al., Development of microstructure and evolution of rheological characteristics of a highly concentrated emulsion during emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 532: p. 342-350. Tripathi, S., et al., Rheological behavior of high internal phase water-in-oil emulsions: Effects of droplet size, phase mass fractions, salt concentration and aging. Chemical Engineering Science, 2017. 174: p. 290-301. Lo, T.H. and S.S. Yu, 3D Printable and Sub‐Micrometer Porous Polymeric Monoliths with Shape Reconfiguration Ability by Miniemulsion Templating. Macromolecular Materials and Engineering, 2022. 307(1): p. 2100615. Sears, N.A., P.S. Dhavalikar, and E.M. Cosgriff‐Hernandez, Emulsion inks for 3D printing of high porosity materials. Macromolecular Rapid Communications, 2016. 37(16): p. 1369-1374. Rezanavaz, R., 3D printing of porous polymeric materials for stationary phases of chromatography columns. 2018. Choi, W.J., et al., Feasible Digital Light Processing Three-Dimensional Printing of a Biodegradable Porous Polymer with a High Internal Phase Emulsion Structure. ACS Applied Polymer Materials, 2022. 4(3): p. 1570-1575. Jacobs, P.F., Rapid prototyping & manufacturing: fundamentals of stereolithography. 1992: Society of Manufacturing Engineers. Zhu, Q., et al., Review on the stability mechanism and application of water‐in‐oil emulsions encapsulating various additives. Comprehensive reviews in food science and food safety, 2019. 18(6): p. 1660-1675. Huang, Q. and Y. Zhu, Gravure printing of water-based silver nanowire ink on plastic substrate for flexible electronics. Scientific reports, 2018. 8(1): p. 1-10. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89183 | - |
| dc.description.abstract | 近年來,可穿戴式的健康與通訊裝置促進了精密印刷技術的發展,而在可撓曲、拉伸的高分子基材上印製導電線路為主要研究重點之一。眾多印刷技術之中,凹版印刷由於其高解析度與高印刷速度而備受重視。凹版印刷過程中,墨水於印刷版與基材之間的墨水轉移率對於印刷品質至關重要,而先前研究中發現可以利用以潤滑油潤濕之表面增加液線邊界的滑動,有效提高墨水轉移率。同時,可以藉由孔洞結構的設計來內含潤滑油以提升表面潤滑層的使用壽命,但尚未有研究呈現出能夠快速形成高解析度之潤滑孔洞結構的方法。製造孔洞結構的方法之中,使用中內相乳化液模板法形成之結構(PolyMIPE)具有較微小的孔徑與高度的孔洞相連性,因此為製造潤滑凹版的理想材料。此方法利用乳化液中高分子連續相固化後,將分散相的水滴移除以形成孔洞材料,但因乳化液通常具有非常高的黏度,限制了客製化製造可以使用的方法,例如3D列印中無法使用DLP進行列印。此研究的目的在於結合MIPE模板法與DLP列印以快速製成客製化之孔洞結構,應用於高解析度凹版的製作。同時使此孔洞結構內含潤滑液體以達到高墨水轉移率。為了找尋MIPE配方中最適用的光固化樹脂,透過壓克力單體比例的調控,發現使用IBOA:2-EHA:HDDA=6:9:5之比例可得到最佳的機械與光固化性質,但液體與樹脂表面強大的吸引力致使水滴的轉移率非常低(12.5%)。透過MIPE中水含量、水添加方式與乳化方式的調控可以有效的控制孔隙度與孔徑分布,而材料選擇的最適化與較大的液滴大小分布(3.2 μm±1.8 μm)可以將乳化液之黏度降低(<10 Pa·s at 0.232 s-1),即可使用一般商業用DLP列印機台進行高解析度結構印製(>300 μm)。乳化液完成印製後,將水相去除並浸入潤滑液形成潤滑表面能夠加速液體邊界滑動,達到50.3%之液體轉移率。最後,使用開發出之材料製造凹版,可以順利在矽膠基材上印製導電線路,展現使用此研究應用於製造可拉伸電子裝置的可行性。 | zh_TW |
| dc.description.abstract | Wearable healthcare and communication devices have driven the development of precise printing technologies to fabricate printed, stretchable electronics and conductive patterns on polymeric substrates. Gravure printing, a technique with high resolution and throughput, depends heavily on high ink transfer ratios to successfully print high-quality features. The transfer ratio can be enhanced by fabricating lubricant-infused, porous surfaces to provide fast contact line slippage, and porous materials can be created by emulsion templating, where the water dispersed phase is removed after the polymer continuous phase is cured with light or heat. However, challenges in high-definition structure fabrication of lubricant-infused, porous structures have yet to be addressed. Polymerized medium internal phase emulsions (PolyMIPEs) are the ideal materials for fabricating lubricated, porous printing plate due to their small pore size and high interconnectivity. However, the high viscosities of emulsions severely limit the methods that can be used for custom fabrication, such as additive manufacturing. In this study, MIPE templating and digital light processing (DLP) 3D printing are combined to enable fast, custom fabrication of high-definition gravure printing plates with porous microstructures, which help retain lubricating oils to facilitate high ink transfer ratios. An acrylate resin blend of IBOA:2-EHA:HDDA=6:9:5 yields the best mechanical and light curing properties for use in MIPE formulations, but strong adhesion to the surface results in low liquid transfer ratios of 12.5%. By varying the water content and emulsifying method, the porosity, pore mean diameter and pore size distribution of the cured polyMIPE can be controlled. Careful consideration of material choices and dispersed droplet size distributions (3.2 μm±1.8 μm) lowers the viscosity of the emulsion (<10 Pa·s at 0.232 s 1), which allows high-definition structures (>300 μm) to be printed with a commercial DLP printer. After water removal and lubricant infusion in the printed structure, liquid contact line slippage is enhanced, and water transfer ratios up to 50.3% can be achieved. Finally, gravure printing plates are fabricated and used to transfer conductive ink onto a silicone substrate, demonstrating the feasibility of conductive patterning for stretchable electronic applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:13:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-30T16:13:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Background and Research Objectives 1 1.2 Thesis Organization 3 1.3 Literature Review 4 1.3.1 Gravure Printing and Ink Transfer 4 1.3.2 Enhanced Transfer Ratio with Lubricant-Infused Surfaces 8 1.3.3 Porous Structure Formation and PolyMIPEs 10 1.3.4 DLP 3D-Printing and Printability of Emulsions 14 Chapter 2 Experimental Procedure 21 2.1 Materials and Instrumentation 21 2.1.1 Materials 21 2.1.2 Instrumentation 22 2.2 Formulation of UV-Curable Material 23 2.2.1 Resin Formulation 23 2.2.2 Emulsion Formulation 24 2.3 DLP Printing 25 2.4 Characterization 26 2.4.1 Morphology, Mechanical and Surface Properties 26 2.4.2 Evaluation of Ink Transfer Characteristics 26 2.5 Gravure Printing of Conductive Patterns 27 Chapter 3 Results and Discussion 28 3.1 Performance of UV-Curable Resins 28 3.1.1 Materials Selection and Light Curing Optimization 28 3.1.2 Mechanical and Surface Properties of Resins 34 3.1.3 Evaluation of Liquid Transfer from Resin Surface 36 3.2 Pore Size Control and DLP Printability of PolyMIPEs 38 3.2.1 PolyMIPE Materials Selection 38 3.2.2 Effects of Mixing Time on Droplet Size and Distribution 39 3.2.3 Effects of Water Addition Rate 42 3.2.4 Effects of Water Addition Ratio 44 3.2.5 Comparison of Cured Pore Sizes with Emulsion Droplet Sizes 51 3.3 DLP Printing and Lubricant Infusion 52 3.3.1 DLP Printing Parameters Optimization 52 3.3.2 Printing Quality Improvement with Light Absorber 56 3.3.3 PolyMIPE Morphology and Lubricant Infusion 59 3.3.4 Liquid Transfer from Lubricant-Infused PolyMIPEs 61 3.4 Gravure Printing of Conductive Patterns 63 Chapter 4 Conclusions 65 Chapter 5 Suggestions and Future Outlook 66 REFERENCE 67 Appendix A Liquid Transfer Analysis 73 A.1 Image Processing 73 A.2 Code Breakdown 73 A.2.1 Basic Information 73 A.2.2 User Input 75 A.2.3 Liquid Bridge Formation to Breakage 77 A.2.4 Liquid Droplets after Bridge Breakage 82 A.2.5 Post Processing and Data Export 85 | - |
| dc.language.iso | en | - |
| dc.subject | 中內相乳化液模板法 | zh_TW |
| dc.subject | DLP | zh_TW |
| dc.subject | 潤滑表面 | zh_TW |
| dc.subject | 凹版印刷 | zh_TW |
| dc.subject | lubricant-infused surface | en |
| dc.subject | gravure printing | en |
| dc.subject | polyMIPE | en |
| dc.subject | DLP | en |
| dc.title | 光固化3D 列印孔洞印刷凹版之開發 | zh_TW |
| dc.title | DLP 3D-Printed PolyMIPE Gravure Printing Plates for Conductive Patterning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳立仁;童世煌;游聲盛 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Jen Chen;Shih-Huang Tung;Sheng-Sheng Yu | en |
| dc.subject.keyword | 中內相乳化液模板法,凹版印刷,潤滑表面,DLP, | zh_TW |
| dc.subject.keyword | polyMIPE,gravure printing,lubricant-infused surface,DLP, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202301344 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2028-07-01 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 16.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
