Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89162
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光zh_TW
dc.contributor.advisorChih-Kung Leeen
dc.contributor.author林真理zh_TW
dc.contributor.authorChen-Li Linen
dc.date.accessioned2023-08-30T16:08:10Z-
dc.date.available2025-07-31-
dc.date.copyright2023-08-30-
dc.date.issued2023-
dc.date.submitted2023-07-17-
dc.identifier.citation[1] 衛生福利部統計處. "110年死因統計結果分析." https://dep.mohw.gov.tw/DOS/cp-5069-70304-113.html (accessed 6 Jun, 2023).
[2] M. R. Nelson, J. Stepanek, M. Cevette, M. Covalciuc, R. T. Hurst, and A. J. Tajik, "Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform?," (in eng), Mayo Clin Proc, vol. 85, no. 5, pp. 460-72, May 2010, doi: 10.4065/mcp.2009.0336.
[3] J. Fortin et al., "Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops," Computers in biology and medicine, vol. 36, no. 9, pp. 941-957, 2006.
[4] P. A. Obrist, K. C. Light, J. A. McCubbin, J. S. Hutcheson, and J. L. Hoffer, "Pulse transit time: Relationship to blood pressure and myocardial performance," Psychophysiology, vol. 16, no. 3, pp. 292-301, 1979.
[5] X. Ding, B. P. Yan, Y.-T. Zhang, J. Liu, N. Zhao, and H. K. Tsang, "Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation," Scientific Reports, vol. 7, no. 1, p. 11554, 2017/09/14 2017, doi: 10.1038/s41598-017-11507-3.
[6] 陳冠融, "以非接觸光學法量測血液流速並估算平均動脈壓," 應用力學研究所, 國立臺灣大學, 2021年, 2021.
[7] D. Chambers, Huang, C., & Matthews, G., "Arterial Pressure Waveforms," in Basic Physiology for Anaesthetists, C. Huang, D. Chambers, and G. Matthews Eds., 2 ed. Cambridge: Cambridge University Press, 2019, pp. 155-157.
[8] J. M. Flack and B. Adekola, "Blood pressure and the new ACC/AHA hypertension guidelines," Trends in Cardiovascular Medicine, vol. 30, no. 3, pp. 160-164, 2020/04/01/ 2020, doi: 10.1016/j.tcm.2019.05.003.
[9] Heart.org. "Understanding Blood Pressure Readings " https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings (accessed 1 May, 2023).
[10] L. Peter, N. Noury, and M. Cerny, "A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?," IRBM, vol. 35, no. 5, pp. 271-282, 2014/10/01/ 2014, doi: 10.1016/j.irbm.2014.07.002.
[11] E. Healthcare. "Clinical Methods for Measuring Systolic and Diastolic Pressures." https://www.euroformhealthcare.biz/medical-physiology/clinical-methods-for-measuring-systolic-and-diastolic-pressures.html (accessed 1 May, 2023).
[12] Omron. "手臂式血壓計HEM-7130." https://www.omronhealthcare.com.tw/product/ins.php?index_prm_id=0&index_id=102 (accessed 1 May, 2023).
[13] P. Salvi, A. Grillo, and G. Parati, "Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry," Hypertension Research, vol. 38, no. 10, pp. 646-648, 2015/10/01 2015, doi: 10.1038/hr.2015.78.
[14] L. Frassanito et al., "Hypotension Prediction Index with non-invasive continuous arterial pressure waveforms (ClearSight): clinical performance in Gynaecologic Oncologic Surgery," Journal of Clinical Monitoring and Computing, vol. 36, pp. 1-8, 10/07 2021, doi: 10.1007/s10877-021-00763-4.
[15] T. Athaya and S. Choi, "A Review of Noninvasive Methodologies to Estimate the Blood Pressure Waveform," Sensors, vol. 22, p. 3953, 05/23 2022, doi: 10.3390/s22103953.
[16] C. Wang et al., "Monitoring of the central blood pressure waveform via a conformal ultrasonic device," Nature biomedical engineering, vol. 2, no. 9, pp. 687-695, 2018.
[17] C. Sideris, H. Kalantarian, E. Nemati, and M. Sarrafzadeh, "Building continuous arterial blood pressure prediction models using recurrent networks," in 2016 IEEE International Conference on Smart Computing (SMARTCOMP), 2016: IEEE, pp. 1-5.
[18] T. Athaya and S. Choi, "An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net architecture-based approach," Sensors, vol. 21, no. 5, p. 1867, 2021.
[19] G. S. Stergiou et al., "A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement," (in eng), J Hypertens, vol. 36, no. 3, pp. 472-478, Mar 2018, doi: 10.1097/hjh.0000000000001634.
[20] 邱時雍, "非接觸式血壓監測之研究-運用三維疊紋干涉術量測手腕表面脈搏振動," 碩士, 應用力學研究所, 國立臺灣大學, 臺北市, 2018.
[21] J. B. Abbiss, T. W. Chubb, and E. R. Pike, "Laser Doppler anemometry," Optics & Laser Technology, vol. 6, no. 6, pp. 249-261, 1974/12/01/ 1974, doi: 10.1016/0030-3992(74)90006-1.
[22] D. Dynamics. "Measurement Principles of LDA." https://www.dantecdynamics.com/solutions/fluid-mechanics/laser-doppler-anemometry-lda/measurement-principles-of-lda/ (accessed 1 May, 2023).
[23] M. Cejnar, H. Kobler, and S. N. Hunyor, "Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter," Journal of Biomedical Engineering, vol. 15, no. 2, pp. 151-154, 1993/03/01/ 1993, doi: 10.1016/0141-5425(93)90047-3.
[24] I. D. T. a. Information. "Bedside measurements of cerebral blood flow (Monitoring and imaging) Part 2." http://what-when-how.com/neuroanaesthesia-and-neurointensive-care/bedside-measurements-of-cerebral-blood-flow-monitoring-and-imaging-part-2/ (accessed 1 May, 2023).
[25] K. Dussik, "On the possibility of using ultrasound waves as a diagnostic aid," Neurol Psychiat, vol. 174, pp. 153-168, 1942.
[26] A. A. Oglat, M. Z. Matjafri, N. Suardi, M. A. Oqlat, M. A. Abdelrahman, and A. A. Oqlat, "A Review of Medical Doppler Ultrasonography of Blood Flow in General and Especially in Common Carotid Artery," (in eng), J Med Ultrasound, vol. 26, no. 1, pp. 3-13, Jan-Mar 2018, doi: 10.4103/jmu.Jmu_11_17.
[27] A. R. Finnerty. "設計更優質的脈動測氧器." https://www.edntaiwan.com/express/analog-2022122197/ (accessed 1 May, 2023).
[28] E. Mejía-Mejía, J. Allen, K. Budidha, C. El-Hajj, P. A. Kyriacou, and P. H. Charlton, "4 - Photoplethysmography signal processing and synthesis," in Photoplethysmography, J. Allen and P. Kyriacou Eds.: Academic Press, 2022, pp. 69-146.
[29] J. Pfitzner, "Poiseuille and his law," (in eng), Anaesthesia, vol. 31, no. 2, pp. 273-5, Mar 1976, doi: 10.1111/j.1365-2044.1976.tb11804.x.
[30] 陳冠融, "以非接觸光學法量測血液流速並估算平均動脈壓," 碩士, 應用力學研究所, 國立臺灣大學, 臺北市, 2021.
[31] 高育晟, "以相異位置PPG訊號間脈衝傳遞時間建立血壓量測模型," 碩士, 應用力學研究所, 國立臺灣大學, 臺北市, 2020.
[32] J. Lenoble, Atmospheric radiative transfer. Hampton, VA: A. Deepak Publishing, 1993.
[33] A. Alkholidi, "Free Space Optical Communications — Theory and Practices," 2014, pp. 159-212.
[34] G. M. Balasubramaniam, B. Wiesel, N. Biton, R. Kumar, J. Kupferman, and S. Arnon, "Tutorial on the Use of Deep Learning in Diffuse Optical Tomography," Electronics, vol. 11, no. 3, p. 305, 2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/3/305.
[35] V. Periyasamy and M. Pramanik, "Advances in Monte Carlo simulation for light propagation in tissue," IEEE reviews in biomedical engineering, vol. 10, pp. 122-135, 2017.
[36] A. Cios et al., "Effect of Different Wavelengths of Laser Irradiation on the Skin Cells," International Journal of Molecular Sciences, vol. 22, no. 5, p. 2437, 2021. [Online]. Available: https://www.mdpi.com/1422-0067/22/5/2437.
[37] Q. Tang, Z. Chen, R. Ward, and M. Elgendi, "Synthetic photoplethysmogram generation using two Gaussian functions," Scientific Reports, vol. 10, no. 1, pp. 1-10, 2020.
[38] M. Elgendi, "Optimal Signal Quality Index for Photoplethysmogram Signals," Bioengineering, vol. 3, no. 4, p. 21, 2016. [Online]. Available: https://www.mdpi.com/2306-5354/3/4/21.
[39] G. Guido, N. Michele, D. Silvano, and B. Thierry, "Laser diode self-mixing technique for sensing applications," Journal of Optics A: Pure and Applied Optics, vol. 4, no. 6, p. S283, 2002/11/04 2002, doi: 10.1088/1464-4258/4/6/371.
[40] A. Luna, F. Bony, and T. Bosch, Progress on Self-mixing Sensors for In-situ Displacement Measurement. 2013, pp. 1-5.
[41] I. Fredriksson, C. Fors, and J. D. Johansson, "Laser Doppler Flowmetry-a Theoretical Framework," 2007.
[42] I. OMEGAWAVE. "Fiber Optic Laser Blood Flowmeter Theory and Measurement example." http://www.omegawave.co.jp/en/products/flo/principle.shtmlhttp://www.omegawave.co.jp/en/products/flo/principle.shtml (accessed 1 May, 2023).
[43] R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Applied Optics, vol. 20, no. 12, pp. 2097-2107, 1981/06/15 1981, doi: 10.1364/AO.20.002097.
[44] T. Tamura, "5.05 - Blood Flow Measurement," in Comprehensive Biomedical Physics, A. Brahme Ed. Oxford: Elsevier, 2014, pp. 91-105.
[45] K. Nishihara et al., "Development of a Wireless Sensor for the Measurement of Chicken Blood Flow Using the Laser Doppler Blood Flow Meter Technique," IEEE Transactions on Biomedical Engineering, vol. 60, no. 6, pp. 1645-1653, 2013, doi: 10.1109/TBME.2013.2241062.
[46] M. Fowler, "Fast Fourier Transform (FFT)," Spectral Analysis Routines for DSP, M. Fowler, Ed., Binghamton University: Mark Fowler.
[47] E. Tutorials. "Passive Low Pass Filter." https://www.electronics-tutorials.ws/filter/filter_2.html (accessed 11 May, 2023).
[48] A. Savitzky and M. J. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Analytical chemistry, vol. 36, no. 8, pp. 1627-1639, 1964.
[49] R. W. Schafer, "What is a Savitzky-Golay filter?[lecture notes]," IEEE Signal processing magazine, vol. 28, no. 4, pp. 111-117, 2011.
[50] K. Pandia, S. Ravindran, R. Cole, G. Kovacs, and L. Giovangrandi, "Motion artifact cancellation to obtain heart sounds from a single chest-worn accelerometer," in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 14-19 March 2010 2010, pp. 590-593, doi: 10.1109/ICASSP.2010.5495553.
[51] D. DeMers and D. Wachs, "Physiology, Mean Arterial Pressure," in StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., 2023.
[52] X. R. Ding, Y. T. Zhang, J. Liu, W. X. Dai, and H. K. Tsang, "Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio," (in eng), IEEE Trans Biomed Eng, vol. 63, no. 5, pp. 964-972, May 2016, doi: 10.1109/tbme.2015.2480679.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89162-
dc.description.abstract心血管疾病其中一普遍指標為血壓數值,現今最為主流血壓量測法是透過非侵入式的壓脈帶之血壓計作為量測,其中包括聽音診斷法和振盪法,然而這兩種方法在量測上有些許缺點,如操作上的不便性或是無法連續即時監控血壓,因此,本研究利用近紅外(Near Infrared, NIR)光波段的光纖雷射都卜勒流速儀(Laser Doppler Flowmetry, LDF)量測手腕橈動脈血管內血流流速變化,且同時架設半導體泵浦固體雷射,將光源針對手腕部位,量測手腕的光體積變化描計圖法(Photoplethysmograph, PPG )訊號,藉以分析人體動脈血管管徑變化及心率,透過上述等生理訊號建立血壓迴歸模型。
本研究藉由手腕橈動脈血管及血流變化的關係來作為估算血壓的重要參考訊號,因此選用不同波段的近紅外光比較不同光源之間訊號的品質,最後選擇1064 nm 波段作為光源進行量測。使用光纖雷射都卜勒流速儀為確保光學系統穩定以及準確性,先以體外進行驗證,以塑膠微粒及管流模擬人體血流實驗,且將搭載探頭於精密位移平台上,為確保訊號穩定性。藉由分析光纖環形器所得干涉訊號,實驗結果證實,平均管流速與所分析訊號有高度正相關。
最後在估算血壓迴歸模型上,本研究量測結果,僅透過少部分的生理訊號及參數,便有很好的預估能力表現,由其是個別受試者舒張壓和平均動脈壓模型,其最好的預測結果RMSE小於5 mmHg,且結果和參考值具有正相關性,研究結果表明對於此光學波段及光學量測方法為有效合理量測生理訊號,且透過此方法進行舒張壓和平均動脈壓的估算。
zh_TW
dc.description.abstractCardiovascular diseases are commonly indicated by blood pressure values, with the most prevalent current method of measurement being non-invasive, it is known that blood pressure monitors utilizing sphygmomanometers include auscultatory and oscillometric methods. However, these two methods present certain drawbacks in their measurements, such as inconvenience in operation or inability to continuously monitor blood pressure in real-time. Therefore, this study employs the use of Near Infrared (NIR) light in the form of a Laser Doppler Flowmetry (LDF) to measure variations in blood flow velocity within the radial artery in the wrist. Simultaneously, a diode-pumped solid-state laser is set up, directing its light source to the wrist area to measure photoplethysmographic (PPG) signals of volumetric changes of light in the wrist, hence analyzing variations in the diameter of human arterial vessels and heart rate. A blood pressure regression model is established through these physiological signals.
In this study, the relationship between the radial artery in the wrist and variations in blood flow was utilized as a crucial reference signal for estimating blood pressure. To achieve a favorable signal-to-noise ratio, different wavelengths of near-infrared (NIR) light were compared, and ultimately, the 1064 nm wavelength was selected as the optimal light source for measurement. A fiber optic laser Doppler flowmetry system was employed to ensure stability and accuracy in the optical system. Validation was initially conducted ex vivo by simulating human blood flow experiments using plastic micro-particles and pipe flow. The probe was mounted on a precision displacement platform to ensure signal stability. By analyzing the interference signals obtained from the fiber optic ring resonator, the experimental results confirmed a strong positive correlation between the average pipe flow speed and the analyzed signal.
Finally, in the estimation of the blood pressure regression model, the measurement results of this study showed that using only a small set of physiological parameters, individual subjects' diastolic and mean arterial pressure models exhibited good predictive performance. The best prediction results yielded an RMSE (root mean square error) of less than 5 mmHg, and the results demonstrated a positive correlation with the reference values. These findings indicate that this optical wavelength and optical measurement method effectively and reasonably measure physiological signals, allowing for the estimation of diastolic and mean arterial pressure through this approach.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:08:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-30T16:08:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表格目錄 x
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 動脈血壓的形成 2
1.2.2 現行血壓量測方法與比較 4
1.2.3 血流速量測方法 11
1.2.4 人體相關生理訊號 15
1.3 研究方法及目標 17
1.4 論文架構 18
第2章 研究原理與方法 19
2.1 光體積描記法(Photoplethysmography, PPG) 19
2.1.1 光散射現象 19
2.1.2 組織中的光子傳播 20
2.1.3 PPG訊號品質 22
2.1.4 PPG強度比 24
2.2 雷射都卜勒流速儀 26
2.2.1 都卜勒效應 26
2.2.2 都卜勒頻移 27
2.2.3 光學干涉 28
2.2.4 訊號處理流程 32
2.3 訊號分析 35
2.3.1 快速傅立葉轉換 35
2.3.2 數位濾波器 38
2.4 血壓迴歸模型與分析 42
第3章 實驗架設與分析 46
3.1 PPG訊號量測 46
3.1.1 多波段光源PPG訊號品質比較 46
3.1.2 PPG訊號處理及特徵提取 48
3.2 雷射都卜勒系統驗證 51
3.2.1 振動位移平台驗證實驗 51
3.2.2 體外管流速實驗 55
第4章 人體實驗結果與討論 63
4.1 人體實驗量測 63
4.2 血壓迴歸模型分析 65
4.2.1 單一受試者血壓迴歸模型分析與討論 66
4.2.2 複數受試者血壓迴歸模型分析與討論 68
第5章 結論與未來展望 71
5.1 結論 71
5.2 未來展望 72
參考文獻 73
-
dc.language.isozh_TW-
dc.subject:心血管疾病zh_TW
dc.subject雷射都卜勒流速儀zh_TW
dc.subject連續血壓監測zh_TW
dc.subject光體積描記訊號zh_TW
dc.subjectcardiovascular diseaseen
dc.subjectphotoplethysmograph signalen
dc.subjectlaser Doppler flowmetryen
dc.subjectcontinuous blood pressure monitoringen
dc.title結合非侵入式光學量測血流速及光體積變化描記圖法以監測連續血壓zh_TW
dc.titleIntegration of Non-invasive Optical Blood Flow Velocity Measurement and Photoplethysmography for Continuous Blood Pressure Monitoringen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃君偉;李舒昇;李翔傑;李佳翰zh_TW
dc.contributor.oralexamcommitteeJiun-Woei Huang;Shu-sheng Lee;Hsiang-Chieh Lee;Jia-Han Lien
dc.subject.keyword:心血管疾病,連續血壓監測,雷射都卜勒流速儀,光體積描記訊號,zh_TW
dc.subject.keywordcardiovascular disease,continuous blood pressure monitoring,laser Doppler flowmetry,photoplethysmograph signal,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202301543-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2028-07-06-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved