Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志軒zh_TW
dc.contributor.advisorChih-Hsuan Chenen
dc.contributor.author邱博暘zh_TW
dc.contributor.authorPo-Yang Chiuen
dc.date.accessioned2023-08-16T17:16:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-05-
dc.identifier.citation1. 陳輝俊, 台灣電力公司 104年度空調運用技術研討會. 2015.
2. DoE, U., Buildings energy data book. Energy Efficiency & Renewable Energy Department, 2011. 286.
3. The importance of energy efficiency in the refrigeration, air-conditioning and heat pump sectors. The Importance of Energy Efficiency in the Refrigeration, Air-conditioning and Heat Pump Sectors, 2018.
4. Goetzler, W., et al., Research & development roadmap for next-generation low global warming potential refrigerants. 2014.
5. Stocker, T., Climate change 2013: the physical science basis: Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. 2014: Cambridge University Press.
6. Mañosa, L. and A. Planes, Materials with giant mechanocaloric effects: Cooling by strength. Advanced Materials (Deerfield Beach, Fla.), 2017. 29(11).
7. W. Goetzler, R.Z., J. Young and C. Johnson, Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies. 2014, EERE Publication and Product Library, Washington, D.C. (United States).
8. Slaughter, J., et al., Compact and efficient elastocaloric heat pumps—Is there a path forward? Journal of Applied Physics, 2020. 127(19): p. 194501.
9. Qian, S., et al., Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems. International Journal of Refrigeration, 2015. 56: p. 65-80.
10. Pataky, G.J., E. Ertekin, and H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Materialia, 2015. 96: p. 420-427.
11. Wu, Y., E. Ertekin, and H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Materialia, 2017. 135: p. 158-176.
12. Ossmer, H., et al., Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Materialia, 2014. 81: p. 9-20.
13. Shuangshuang, Z., et al., Quasi‐linear superelasticity with ultralow modulus in tensile cyclic deformed TiNi strain glass. Advanced Engineering Materials, 2022. 24.
14. Petrini, L. and F. Migliavacca, Biomedical applications of shape memory alloys. Journal of Metallurgy, 2011. 2011: p. 501483.
15. T.W. Duerig, et al., Engineering aspects of shape memory alloys, Butterworth-Heinemann, 1990
16. Bhattacharya, K., et al., Crystal symmetry and the reversibility of martensitic transformations. Nature, 2004. 428(6978): p. 55-59.
17. Michal, G.M. and R. Sinclair, The structure of TiNi martensite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1981. 37: p. 1803-1807.
18. Cui, J., et al., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Materials, 2006. 5(4): p. 286-290.
19. Otsuka, K., T. Sawamura, and K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite. Physica Status Solidi Applied Research, 1971. 5: p. 457-470.
20. Chen, H., et al., Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy. Acta Materialia, 2018. 158: p. 330-339.
21. Ölander, A., An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 1932. 54(10): p. 3819-3833.
22. Greninger, A.B. and V.G. Mooradian, Strain transformation in metastable beta copper-zinc and beta copper-tin alloys. Trans. AIME, 1938. 128: p. 337-368.
23. Vernon, L.B. and H.M. Vernon, Process of manufacturing articles of thermoplastic synthetic resins. 1941, Google Patents.
24. LC, C. and R. TA., Plastic deformation and diffusion-less phase changes in metals — the gold-cadmium beta phase. Trans AIME, 1951. 189: p. 47-52.
25. Buehler, W.J., J.V. Gilfrich, and R. Wiley, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics, 1963. 34(5): p. 1475-1477.
26. Stoeckel, D., Shape memory actuators for automotive applications, in Engineering aspects of shape memory alloys, T.W. Duerig, et al., Editors. 1990, Butterworth-Heinemann. p. 283-294.
27. Bellini, A., M. Colli, and E. Dragoni, Mechatronic design of a shape memory alloy actuator for automotive tumble flaps: A case study. IEEE Transactions on Industrial Electronics, 2009. 56(7): p. 2644-2656.
28. Hartl, D.J. and D.C. Lagoudas, Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007. 221(4): p. 535-552.
29. Fujita, H. and H. Toshiyoshi, Micro actuators and their applications. Microelectronics Journal, 1998. 29(9): p. 637-640.
30. Furuya, Y. and H. Shimada, Shape memory actuators for robotic applications, in Engineering aspects of shape memory alloys, T.W. Duerig, et al., Editors. 1990, Butterworth-Heinemann. p. 338-355.
31. Van Langenhove, L. and C. Hertleer, Smart clothing: a new life. International Journal of Clothing Science and Technology, 2004. 16(1/2): p. 63-72.
32. Barbarino, S., et al., A review on shape memory alloys with applications to morphing aircraft. Smart Materials and Structures, 2014. 23(6): p. 063001.
33. Gerstner, E., Shape-memory alloys. Nature Materials (October 2002), 2002.
34. Cladera, A., et al., Iron-based shape memory alloys for civil engineering structures: An overview. Construction and Building Materials, 2014. 63: p. 281-293.
35. Quarini, J. and A. Prince, Solid state refrigeration: Cooling and refrigeration using crystalline phase changes in metal alloys. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004. 218(10): p. 1175-1179.
36. Chen, J., et al., Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing. Acta Materialia, 2021. 208.
37. Luchetti, T., et al., Electrically actuated antiglare rear-view mirror based on a shape memory alloy actuator. Journal of Materials Engineering and Performance, 2009. 18: p. 717-724.
38. Oehler, S., et al., Design optimization and uncertainty analysis of SMA morphing structures. Smart Materials and Structures, 2012. 21(9): p. 094016.
39. Khanna, S., et al., Growth of titanium dioxide nanorod over shape memory material using chemical vapor deposition for energy conversion application. Materials Today: Proceedings, 2020. 28: p. 475-479.
40. Cui, J., et al., Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Applied Physics Letters, 2012. 101(7): p. 073904.
41. Lin, H., S.-K. Wu, and J. Lin. A study of the martensitic transformation in Ti-rich TiNi alloys. in Proc. Int. Conf. on Martensitic Transformations. 1992.
42. Duerig, T., A. Pelton, and C. Trepanier, Nitinol: The Book. Part 1, Mechanisms and Behavior.
43. Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science, 2005. 50(5): p. 511-678.
44. Sedmák, P., et al., Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Materialia, 2015. 94: p. 257-270.
45. Norfleet, D.M., et al., Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Materialia, 2009. 57(12): p. 3549-3561.
46. Delville, R., et al., Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. International Journal of Plasticity, 2011. 27(2): p. 282-297.
47. Alarcon, E., et al., Fatigue performance of superelastic NiTi near stress-induced martensitic transformation. International Journal of Fatigue, 2017. 95: p. 76-89.
48. Olbricht, J., et al., On the stress-induced formation of R-phase in ultra-fine-grained Ni-rich NiTi shape memory alloys. Metallurgical and Materials Transactions A, 2011. 42(9): p. 2556-2574.
49. Soto-Parra, D., et al., Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔ B19'and B2↔ R structural transitions. Applied Physics Letters, 2016. 108(7): p. 071902.
50. Sehitoglu, H., et al., Deformation of NiTiCu shape memory single crystals in compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001. 32(3): p. 477-489.
51. Miyazaki, S., et al., Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Materials Science and Engineering: A, 1999. 273-275: p. 658-663.
52. Sehitoglu, H., et al., Strain–temperature behavior of NiTiCu shape memory single crystals. Acta Materialia, 2001. 49(17): p. 3621-3634.
53. Zarnetta, R., et al., Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Advanced Functional Materials, 2010. 20(12): p. 1917-1923.
54. Meng, X.L., et al., Thermal cycling stability mechanism of Ti50.5Ni33.5Cu11.5Pd4.5 shape memory alloy with near-zero hysteresis. Scripta Materialia, 2015. 103: p. 30-33.
55. Chluba, C., et al., Ultralow-fatigue shape memory alloy films. Science, 2015. 348(6238): p. 1004-1007.
56. Schmidt, M., A. Schütze, and S. Seelecke, Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. International Journal of Refrigeration, 2015. 54: p. 88-97.
57. Tušek, J., et al., Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling. Acta Materialia, 2018. 150: p. 295-307.
58. Zhang, Y., et al., Hot workability of a NiTiCu shape memory alloy with acicular martensite phase based on processing maps. Intermetallics, 2017. 86: p. 94-103.
59. Nam, T.H., et al., Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Materials Transactions, JIM, 1990. 31(12): p. 1050-1056.
60. Fukuda, T., et al., Mechanism of B2-B19-B19' transformation in shape memory Ti-Ni-Cu alloys. Materials Transactions, JIM, 1995. 36(10): p. 1244-1248.
61. Chen, H., et al., Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti–Ni–Cu shape memory alloy. Acta Materialia, 2019. 177: p. 169-177.
62. Xiao, F., et al., Martensitic transformation and elastocaloric effect of Ti–Ni–Cu–Al microwire. Materialia, 2020. 9: p. 100547.
63. Suryanarayana, C. and F.H. Froes, The current status of titanium rapid solidification. JOM, 1990. 42(3): p. 22-25.
64. Jones, H., Rapid solidification of magnesium alloys-a bibliography 1950-1988. 1989, AB academic publ.
65. Lavernia, E.J., J.D. Ayers, and T.S. Srivatsan, Rapid solidification processing with specific application to aluminium alloys. International Materials Reviews, 1992. 37(1): p. 1-44.
66. Brockway, M.C., et al., Rapid solidification of ceramics: A technology assessment. 1984: Metals and Ceramics Information Center.
67. Budhani, R.C., T.C. Goel, and K.L. Chopra, Melt-spinning technique for preparation of metallic glasses. Bulletin of Materials Science, 1982. 4(5): p. 549-561.
68. Chen, Z.-w., et al., Abnormal precipitation behavior in T6 melt-spun AlMgCu ribbon. Transactions of Nonferrous Metals Society of China, 2014. 24(1): p. 22-27.
69. Izadinia, M. and K. Dehghani, Structure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy produced by melt spinning. Transactions of Nonferrous Metals Society of China, 2011. 21(9): p. 2037-2043.
70. Chen, X., et al., Effects of solidification rate and excessive Fe on phase formation and magnetoclaoric properties of LaFe11.6xSi1.4. Transactions of Nonferrous Metals Society of China, 2017. 27(9): p. 2015-2021.
71. Dehghani, K., et al., Comparing the melt-spun nanostructured aluminum 6061 foils with conventional direct chill ingot. Materials Science and Engineering: A, 2008. 489(1): p. 245-252.
72. Strange, E.H. and C.A. Pim, Process of manufacturing thin sheets, foil, strips, or ribbons of zinc, lead, or other metal or alloy. 1908, Google Patents.
73. Liebermann, H. and C. Graham, Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions. IEEE Transactions on Magnetics, 1976. 12(6): p. 921-923.
74. Decristofaro, N., Amorphous metals in electric-power distribution applications. MRS Bulletin, 1998. 23(5): p. 50-56.
75. Stokłosa, Z., et al., Nanocrystallisation of amorphous alloys based on iron. Materials Science and Engineering: C, 2003. 23(1): p. 49-53.
76. Dutkiewicz, J., T. Czeppe, and J. Morgiel, Effect of titanium on structure and martensic transformation in rapidly solidified Cu–Al–Ni–Mn–Ti alloys. Materials Science and Engineering: A, 1999. 273-275: p. 703-707.
77. Hu, C.T., T. Goryczka, and D. Vokoun, Effects of the spinning wheel velocity on the microstructure of Fe–Pd shape memory melt-spun ribbons. Scripta Materialia, 2004. 50(4): p. 539-542.
78. Shi, J.D., et al. Fabrication of fine grain size shape memory alloys through crystallization of amorphous ribbon. in Materials Research Society Symposium - Proceedings. 1996.
79. Santamarta, R., et al., Crystallization in partially amorphous Ni50Ti32Hf18 melt spun ribbon. Materials Transactions, 2004. 45(6): p. 1811-1818.
80. Öztürk, S., S.E. Sünbül, and K. İcin, Effects of melt spinning process parameters and wheel surface quality on production of 6060 aluminum alloy powders and ribbons. Transactions of Nonferrous Metals Society of China, 2020. 30(5): p. 1169-1182.
81. Steen, P.H. and C. Karcher, Fluid mechanics of spin casting of metals. Annual Review of Fluid Mechanics, 1997. 29(1): p. 373-397.
82. Tkatch, V.I., et al., The effect of the melt-spinning processing parameters on the rate of cooling. Materials Science and Engineering: A, 2002. 323(1): p. 91-96.
83. Nagarajan, R. and K. Chattopadhyay, Intermetallic Ti2Ni/TiNi nanocomposite by rapid solidification. Acta Metallurgica et Materialia, 1994. 42(3): p. 947-958.
84. Chen, C.-H., S.-Y. Cheng, and S.-K. Wu, Nanoindentation studies on precipitation hardening of Ti-rich Ti50.4Ni49.5Si0.1 shape memory ribbons. Intermetallics, 2013. 36: p. 109-117.
85. Chen, C.-H. and S.-K. Wu, Martensitic transformation and pseudoelasticity of aged Ti50.1Ni49.7Si0.2 shape memory ribbon. Materials Science and Engineering: A, 2014. 593: p. 85-91.
86. Nam, T.-H., et al., Microstructures and mechanical properties of Ti–45at.%Ni–5at.%Cu alloy ribbons containing Ti2Ni particles. Materials Science and Engineering: A, 2008. 483-484: p. 460-463.
87. Tong, Y., et al., Effect of precipitation on the shape memory effect of Ti50Ni25Cu25 melt-spun ribbon. Acta Materialia, 2008. 56(8): p. 1721-1732.
88. Rong, C. and B. Shen, Nanocrystalline and nanocomposite permanent magnets by melt spinning technique*. Chinese Physics B, 2018. 27(11): p. 117502.
89. Engelbrecht, K., et al., Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling. APL Materials, 2016. 4(6).
90. Patel, M. and R. Gordon, An investigation of diverse surface finishes on fatigue properties of superelastic nitinol wire. SMST-2006 - Proceedings of the International Conference on Shape Memory and Superelastic Technologies, 2008.
91. Wada, K. and Y. Liu, Shape recovery of NiTi shape memory alloy under various pre-strain and constraint conditions. Smart Materials and Structures, 2005. 14: p. S273.
92. Hamilton, R.F., et al., Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Materialia, 2004. 52(11): p. 3383-3402.
93. Sehitoglu, H. and S. Alkan, Recent progress on modeling slip deformation in shape memory alloys. Shape Memory and Superelasticity, 2018. 4(1): p. 11-25.
94. Atli, K.C., et al., The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Materials Science and Engineering: A, 2013. 560: p. 653-666.
95. Ezaz, T., et al., Plastic deformation of NiTi shape memory alloys. Acta Materialia, 2013. 61(1): p. 67-78.
96. Soto-Parra, D., et al., Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔ B19'and B2↔ R structural transitions. Applied Physics Letters, 2016. 108(7).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89136-
dc.description.abstract本研究使用熔融紡絲製程製備TiNi基形狀記憶合金箔帶,結果顯示轉速及壓差能夠大幅影響噴出箔帶的巨觀樣貌及微觀結構。利用熔融紡絲製程製造出的Ti50Ni44Cu5Al1箔帶被觀察到兩個不同種類的性質,兩者的差異應來自噴鑄時的熔融溫度導致的成分差異。第一類為Ti成分較高者,具有明顯相變態且相變態溫度較高;第二類的Ni及Si含量較高,相變態不明顯且相變態溫度低。第一類箔帶的可以在200MPa應力下產生5.8%可回復應變且殘留應變為0.28%,拉伸至應變3%後快速釋放可產生10.5℃的彈熱溫降,適合作為常溫下固態冷媒應用。第二類箔帶噴鑄狀態能在室溫拉伸達應力650MPa及1%的彈性應變量,形狀記憶效應在450MPa的應力下有5.2%可回復應變與僅為0.21%應變殘留,適合在低溫大應力的環境使用。另外數位影像關係法的結果顯示,對箔帶進行表面研磨能使超彈性以及彈性拉伸的應變分布與各區域應變率均勻化,並使相變態起始時機趨同,顯著改善性能表現。zh_TW
dc.description.abstractIn this study, the melt-spinning technique was employed to fabricate TiNi-based shape memory alloy ribbons. The results demonstrated that the wheel speed and pressure difference significantly influenced the macroscopic appearance and microstructure of the melt-spun ribbons. Two types of Ti50Ni44Cu5Al1 ribbons were fabricated through the melt-spinning process, which were likely attributed to the compositional differences caused by the melting temperature during the melt-spinning process. The first type of ribbon had a higher Ti content, showing a noticeable phase transformation with a higher transformation temperature. On the other hand, the second type had higher Ni and Si contents, with less pronounced phase transformation behavior and a lower transformation temperature. The superelasticity test showed that the first type of ribbon could generate 5.8% recoverable strain under a stress of 200 MPa, with a residual strain of 0.28%. Rapid releasing from 3% strain generated an elastocaloric temperature drop of 10.5℃. It was considered suitable for application as a solid-state refrigerant at room temperature. The second type of ribbon sustained a tensile stress of 650 MPa and an elastic strain of 1% at room temperature. The second type of ribbon showed shape memory effect with 5.2% recoverable strain and only 0.21% residual strain under a stress of 450 MPa, making it suitable for applications in low-temperature and high-stress environments. Furthermore, the results of digital image correlation indicated that surface polishing of the ribbons resulted in a more uniform distribution of strain and strain rate during superelastic deformation. It also led to a synchronization of the phase transformation initiation, significantly improving the performance characteristics.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:16:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:16:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 前言 1
第二章 文獻回顧 2
2-1 形狀記憶合金 2
2-2 麻田散體相變態 2
2-3 形狀記憶效應 5
2-4 超彈性 7
2-5 彈熱效應 7
2-6 TiNi基形狀記憶合金 8
2-6-1 TiNi形狀記憶合金 8
2-6-2 TiNiCu形狀記憶合金 14
2-6-3 TiNiCuAl形狀記憶合金 15
2-7 快速凝固製程 15
2-7-1 快速凝固製程簡介 15
2-7-2 熔融紡絲製程 17
2-7-3 熔融紡絲製程參數影響 18
2-7-4 Si雜質對TiNi基箔帶之影響 23
第三章 實驗方法 24
3-1 合金熔煉 24
3-2 熔融紡絲製程 24
3-3 箔帶表面及邊緣研磨 28
3-4 相變態溫度量測 28
3-5 微結構觀察 29
3-6 晶體結構分析與成分分析 29
3-7 形狀記憶效應實驗 30
3-8 超彈性拉伸實驗 30
3-9 彈熱效應實驗 31
第四章 實驗結果與討論 33
4-1 熔融紡絲製程研究結果 33
4-1-1 主要影響參數 33
4-1-2次要影響參數 41
4-1-3 小結 42
4-2 TNCA Ribbon type I 44
4-2-1 微結構觀察 44
4-2-2 晶體結構與成分分析 44
4-2-3 相變態溫度與比熱量測 46
4-2-4 超彈性實驗 48
4-2-5 形狀記憶效應實驗 51
4-2-6 彈熱效應實驗 55
4-2-7熱循環穩定性 59
4-2-8 應力循環穩定性 60
4-2-9 小結 62
4-3 TNCA Ribbon type II 63
4-3-1 微結構觀察 63
4-3-2 晶體結構與成分分析 64
4-3-3 相變態溫度量測 65
4-3-4 時效處理 66
4-3-4 拉伸實驗 70
4-3-5 形狀記憶效應實驗 70
4-4 Ti50Ni44Cu5Al1箔帶性能之比較與討論 75
4-5 箔帶研磨之性能改善 77
4-5-1 比較一:TNCA ribbon type I 超彈性拉伸性能改善 80
4-5-2 比較二:TNCA ribbon type II彈性拉伸性能改善 91
4-4-4 小結 97
第五章 結論 98
第六章 參考文獻 100
-
dc.language.isozh_TW-
dc.subject形狀記憶合金箔帶zh_TW
dc.subject超彈性zh_TW
dc.subject熔融紡絲製程zh_TW
dc.subject形狀記憶效應zh_TW
dc.subject彈熱效應zh_TW
dc.subjectMelt-spinning processen
dc.subjectSuperelasticityen
dc.subjectShape memory effecten
dc.subjectShape memory alloy ribbonsen
dc.subjectElastocaloric effecten
dc.titleTi50Ni44Cu5Al1形狀記憶合金箔帶之製備與性能研究zh_TW
dc.titleFabrication and Functional Properties of Ti50Ni44Cu5Al1 Shape Memory Alloy Ribbonsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳錫侃;林新智zh_TW
dc.contributor.oralexamcommitteeShyi-Kaan Wu;Hsin-Chih Linen
dc.subject.keyword形狀記憶合金箔帶,熔融紡絲製程,超彈性,形狀記憶效應,彈熱效應,zh_TW
dc.subject.keywordShape memory alloy ribbons,Melt-spinning process,Superelasticity,Shape memory effect,Elastocaloric effect,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202303005-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf7.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved