Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡亞倫zh_TW
dc.contributor.advisorYa-Lun S. Tsaien
dc.contributor.author王品翰zh_TW
dc.contributor.authorPin-Han Wangen
dc.date.accessioned2023-08-16T17:14:39Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationAbdikan, S., Bayik, C., Sanli, F. B., & Ustuner, M. (2019). An Assessment of Urban Area Extraction Using ALOS-2 Data. Paper presented at the 2019 9th International Conference on Recent Advances in Space Technologies (RAST).
Adeyemi, A., Ramoelo, A., Cho, M., & Masemola, C. R. (2021). Spectral index to improve the extraction of built-up area from WorldView-2 imagery. Journal of Applied Remote Sensing, 15(2), 024510.
Blasco, J. M. D., Fitrzyk, M., Patruno, J., Ruiz-Armenteros, A. M., & Marconcini, M. (2020). Effects on the Double Bounce Detection in Urban Areas Based on SAR Polarimetric Characteristics. Remote Sensing, 12(7). doi:10.3390/rs12071187
Bouzekri, S., Lasbet, A. A., & Lachehab, A. (2015). A new spectral index for extraction of built-up area using Landsat-8 data. Journal of the Indian Society of Remote Sensing, 43, 867-873.
Chen, S.-W., Li, Y.-Z., Wang, X.-S., Xiao, S.-P., & Sato, M. (2014). Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Signal Processing Magazine, 31(4), 79-89.
Cloude, S. R. (1985). Target decomposition theorems in radar scattering. Electronics Letters, 21(1), 22-24.
Cloude, S. R., & Pottier, E. (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 68-78.
Cui, M. (2020). Introduction to the k-means clustering algorithm based on the elbow method. Accounting, Auditing and Finance, 1(1), 5-8.
Deng, L., Yan, Y.-n., & Wang, C. (2015). Improved POLSAR image classification by the use of multi-feature combination. Remote Sensing, 7(4), 4157-4177.
Dociu, M., & Dunarintu, A. (2012). The socio-economic impact of urbanization. International Journal of Academic Research in Accounting, Finance and Management Sciences, 2(1), 47-52.
Duan, D. F., & Wang, Y. (2017). An Improved Algorithm to Delineate Urban Targets with Model-Based Decomposition of PolSAR Data. Remote Sensing, 9(10). doi:10.3390/rs9101037
Esch, T., Thiel, M., Schenk, A., Roth, A., Muller, A., & Dech, S. (2009). Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 905-916.
Freeman, A. (2007). Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Transactions on Geoscience and Remote Sensing, 45(8), 2583-2592.
Freeman, A., & Durden, S. L. (1993). Three-component scattering model to describe polarimetric SAR data. Paper presented at the Radar Polarimetry.
Freeman, A., & Durden, S. L. (1998). A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963-973.
Hajnsek, I., & Desnos, Y.-L. (2021). Polarimetric synthetic aperture radar: principles and application (Vol. 25): Springer Nature.
Holm, W. A., & Barnes, R. M. (1988). On radar polarization mixed target state decomposition techniques. Paper presented at the Proceedings of the 1988 IEEE National Radar Conference.
Kajimoto, M., & Susaki, J. (2013). Urban-Area Extraction From Polarimetric SAR Images Using Polarization Orientation Angle. IEEE Geoscience and Remote Sensing Letters, 10(2), 337-341. doi:10.1109/lgrs.2012.2207085
Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528-531.
Kaur, R., & Pandey, P. (2022). A review on spectral indices for built-up area extraction using remote sensing technology. Arabian Journal of Geosciences, 15(5), 391.
Lee, J.-S., & Pottier, E. (2017). Polarimetric radar imaging: from basics to applications: CRC press.
Liu, F., & Deng, Y. (2020). Determine the number of unknown targets in open world based on elbow method. IEEE Transactions on Fuzzy Systems, 29(5), 986-995.
MacQueen, J. (1967). Classification and analysis of multivariate observations. Paper presented at the 5th Berkeley Symp. Math. Statist. Probability.
Moore, M., Gould, P., & Keary, B. S. (2003). Global urbanization and impact on health. Int J Hyg Environ Health, 206(4-5), 269-278. doi:10.1078/1438-4639-00223
OECD. (2019). Built-up area (Publication no. doi:https://doi.org/10.1787/7c06b772-en). https://www.oecd-ilibrary.org/content/data/7c06b772-en
Ottinger, M., & Kuenzer, C. (2020). Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sensing, 12(14), 2228.
Patruno, J., Fitrzyk, M., & Delgado Blasco, J. M. (2019). Monitoring and Detecting Archaeological Features with Multi-Frequency Polarimetric Analysis. Remote Sensing, 12(1), 1. doi:10.3390/rs12010001
Quan, S. N., Xiong, B. L., Xiang, D. L., Zhao, L. J., Zhang, S. Q., & Kuang, G. Y. (2018). Eigenvalue-Based Urban Area Extraction Using Polarimetric SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 458-471. doi:10.1109/jstars.2017.2787591
Sayedain, S. A., Maghsoudi, Y., & Eini-Zinab, S. (2020). Assessing the use of cross-orbit Sentinel-1 images in land cover classification. International Journal of Remote Sensing, 41(20), 7801-7819. doi:10.1080/01431161.2020.1763512
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., & Lucas, R. (2014). New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sensing of Environment, 155, 13-31.
Singh, G., Malik, R., Mohanty, S., Rathore, V. S., Yamada, K., Umemura, M., & Yamaguchi, Y. (2019). Seven-Component Scattering Power Decomposition of POLSAR Coherency Matrix. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 8371-8382. doi:10.1109/tgrs.2019.2920762
Singh, G., & Yamaguchi, Y. (2018). Model-Based Six-Component Scattering Matrix Power Decomposition. IEEE Transactions on Geoscience and Remote Sensing, 56(10), 5687-5704. doi:10.1109/tgrs.2018.2824322
Tsai, Y.-L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sensing, 11(12). doi:10.3390/rs11121456
van Zyl, J. J. (1993). Application of Cloude's target decomposition theorem to polarimetric imaging radar data. Paper presented at the Radar polarimetry.
Van Zyl, J. J., Arii, M., & Kim, Y. (2011). Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3452-3459.
Wang, Y., Yu, W., & Hou, W. (2021). Five-Component Decomposition Methods of Polarimetric SAR and Polarimetric SAR Interferometry Using Coupling Scattering Mechanisms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6662-6676. doi:10.1109/jstars.2021.3071161
Yamaguchi, Y., Moriyama, T., Ishido, M., & Yamada, H. (2005). Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 43(8), 1699-1706.
Ye, C., Cui, P., Pirasteh, S., Li, J., & Li, Y. (2017). Experimental approach for identifying building surface materials based on hyperspectral remote sensing imagery. Journal of Zhejiang University-SCIENCE A, 18(12), 984-990.
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89127-
dc.description.abstract都市人口的急遽增加導致都市的面積快速成長,監測準確的建成區的範圍對於都市規劃等都市分析至關重要。傳統的監測方法,如實地勘查紀錄或人工數化等,所耗費的人力和時間成本高;相較之下,遙感探測(Remote sensing)可以快速獲取大範圍的地表資訊,有助於提升萃取建成區的效率。合成孔徑雷達(Synthetic Aperture Radar,SAR)衛星能夠不受天氣條件因素下進行日夜觀測,而且對於地表的人造結構物也具有高靈敏度。偏極化合成孔徑雷達(Polarimetric SAR,PolSAR)透過記錄電磁波照射地表所產生的不同偏極訊號,與傳統單偏極化的SAR資料相比,可以獲取更多有價值的地表偏極特徵資訊。在都市分析研究中,由於建築物擁有獨特偏極化特徵資訊和散射機制,因此使用PolSAR資料可以有效的萃取建成區。然而,回顧統整過去十年的有關使用遙感探測於都市分析研究相關文獻發現,雖然SAR影像的使用比例較高,但是對於PolSAR資料的應用卻相對較少,而且研究方法多依賴人為決策且具有一定的局限性。
本研究使用日本宇宙航空研究開發機構 (Japan Aerospace Exploration Agency,JAXA)所規劃的ALOS-2/PALSAR-2的L波段SAR衛星的全偏極SAR影像並產製PolSAR資料萃取臺灣北部的建成區,並建立自動化的萃取流程以減少人為決策,並增加方法的泛用性。此外,本研究也將比較使用不同偏極數量、不同偏極化解構法和SAR的不同影像資訊對於萃取成果的影響。
成果顯示使用全偏極SAR影像的偏極特徵資訊在萃取建成區上比起使用雙偏極SAR影像有較佳的成果;且結合模型解構法以及特徵向量和特徵值解構法的偏極特徵資訊與僅使用單一解構法相比,能夠提高成果的準確度,而本研究結合Yamaguchi解構法以及Cloude和Pottier解構法的偏極特徵資訊萃取建成區,成果的準確率為0.88,F-score為0. 87。
本研究的貢獻在於提供可自動化的流程,提高萃取建成區的效率和方法的泛用性,同時,本研究詳細比較了不同條件的PolSAR資料對於萃取成果的影響,並分析了SAR影像與光學影像的萃取成果差異。本研究成果分析可以提供給未來研究者使用PolSAR資料進行都市規劃和分析等領域的應用。
zh_TW
dc.description.abstractRapid urban population growth has led to the speedy expansion of built-up areas. Accurate monitoring of built-up areas is vital for the urban environment and urban planning. Compared to traditional monitoring methods such as field survey, remote sensing provide the advantage of quickly acquiring surface information over large areas, thus improving the efficiency of extracting built-up areas. Synthetic Aperture Radar (SAR) satellites can perform day and night observation and have high sensitivity to artificial structures. Polarimetric SAR (PolSAR) can record the different polarized signals reflected from the surface, providing more valuable polarimetric information compared to single-polarization SAR data. Due to the unique polarimetric characteristics and scattering mechanisms of buildings, PolSAR data can effectively extract built-up areas. However, a review of the literature on remote sensing in urban analysis over the past decade reveals that while SAR imagery is frequently used, the application of PolSAR data is relatively limited, often relying on manual decision-making and having certain limitations. In this study, we utilized the fully polarimetric SAR imagery from the ALOS-2/PALSAR-2 L-band SAR satellite to extract built-up areas in northern Taiwan using PolSAR data. We developed an automated extraction workflow to reduce human decision-making and increase the generalizability of the method. Additionally, we compared the impact of different polarization quantities, polarization decomposition methods, and other SAR image information on the extraction results. The results showed that using the polarimetric characteristics information from fully polarimetric SAR imagery had better results in extracting built-up areas compared to using dual-polarization SAR imagery. Furthermore, combining model-based decomposition and eigenvector & eigenvalue decomposition improved the accuracy of the results. In this study, we use the PolSAR data from Yamaguchi decomposition, and Cloude and Pottier decomposition achieved an accuracy of 0.88 and an F1-score of 0.87 in extracting built-up areas. This study provides an automated workflow that enhances the efficiency and generalizability of built-up area extraction. We also conducted a detailed comparison of results using different conditions of PolSAR data and analyzed the differences in extraction results between SAR imagery and optical imagery. These research findings serve as a comprehensive reference for future researchers seeking to utilize PolSAR data in urban planning and analysis domains.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:14:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:14:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究流程 6
1.3 論文架構 6
第二章 文獻回顧 8
2.1 以光學衛星影像分析都市建成區 8
2.2 合成孔徑雷達衛星的原理和介紹 10
2.3 偏極化合成孔徑雷達的原理 15
2.4 偏極解構法的原理 17
2.5 小結 18
第三章 研究方法 19
3.1 研究資料 19
3.1.1 SAR衛星影像 19
3.1.2 全球森林和非森林地圖 20
3.1.3 光學衛星影像 20
3.2 研究區域 21
3.3 研究方法 21
3.3.1 定義建成區 22
3.3.2 SAR影像處理 23
3.3.3 非監督式分類演算法 25
3.3.4 使用FNF地圖協助分類建成區 28
3.3.5 精度評估 29
3.4 小結 30
第四章 研究成果與分析 31
4.1 以肘部法成果確立分類數量 31
4.2 不同SAR資料對於建成區萃取的影響比較 32
4.2.1 偏極數量對建成區萃取的影響比較 32
4.2.2 偏極解構法對建成區萃取的影響比較 34
4.2.3 使用偏極特徵資訊和回波強度資訊的建成區萃取方法比較 40
4.3 成果驗證 43
4.3.1 質性分析:以人眼判釋PolSAR和光學衛星影像的萃取成果差異 43
4.3.2 量化分析:以分類精度指標評估使用PolSAR資料的萃取成果 49
4.4 小結 49
第六章 結論與建議 51
5.1 結論 51
5.2 未來建議 52
5.2.1 SAR影像處理對於影像解析度的影響 52
5.2.2 模型解構法對於LOB與森林的混淆問題 53
5.2.3 不同面積大小的建築物對於萃取成果的影響 55
5.2.4 驗證資料和方法改進 57
參考文獻 58
-
dc.language.isozh_TW-
dc.subject建成區萃取zh_TW
dc.subject合成孔徑雷達zh_TW
dc.subject偏極化合成孔徑雷達zh_TW
dc.subject都市分析zh_TW
dc.subjectbuilt-up areas extractionen
dc.subjectSynthetic Aperture Radar (SAR)en
dc.subjecturbanen
dc.subjectPolarimetric SAR (PolSAR)en
dc.title使用偏極化合成孔徑雷達資料萃取臺灣建成區zh_TW
dc.titleExtraction Built-up Areas in Taiwan Using Polarimetric SAR Dataen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇文瑞;林偲妘zh_TW
dc.contributor.oralexamcommitteeWen-Ray Su;Szu-Yun Linen
dc.subject.keyword合成孔徑雷達,偏極化合成孔徑雷達,建成區萃取,都市分析,zh_TW
dc.subject.keywordSynthetic Aperture Radar (SAR),Polarimetric SAR (PolSAR),built-up areas extraction,urban,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202303103-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2028-08-07-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
8.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved