Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89122
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林澤zh_TW
dc.contributor.advisorChe Linen
dc.contributor.author魏嘉芯zh_TW
dc.contributor.authorChia-Shin Weien
dc.date.accessioned2023-08-16T17:13:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationP. Dasgupta, C. Henshaw, D. R. Youlden, P. J. Clark, J. F. Aitken, and P. D. Baade, “Global trends in incidence rates of primary adult liver cancers: a systematic review and meta-analysis,” Frontiers in oncology, vol. 10, p. 171, 2020.
F. Kanwal and A. G. Singal, “Surveillance for hepatocellular carcinoma: current best practice and future direction,” Gastroenterology, vol. 157, no. 1, pp. 54–64, 2019.
L. Wan, D.-H. Dong, X.-N. Wu, H.-F. Ding, Q. Lu, Y. Tian, X.-F. Zhang, and W. Li, “Single large nodule (> 5 cm) prognosis in hepatocellular carcinoma: Kinship with barcelona clinic liver cancer (bclc) stage a or b?” Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 26, pp. e926 797–1, 2020.
J. Bruix and M. Sherman, “Management of hepatocellular carcinoma: an update,” Hepatology (Baltimore, Md.), vol. 53, no. 3, p. 1020, 2011.
V. Hemalatha and C. Sundar, “Automatic liver cancer detection in abdominal liver images using soft optimization techniques,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 4765–4774, 2021.
J. M. Llovet, C. Brú, and J. Bruix, “Prognosis of hepatocellular carcinoma: the bclc staging classification,” in Seminars in liver disease, vol. 19, no. 03. © 1999 by Thieme Medical Publishers, Inc., 1999, pp. 329–338.
D. I. Tsilimigras, H. Aziz, and T. M. Pawlik, “Critical analysis of the updated barcelona clinic liver cancer (bclc) group guidelines,” Annals of Surgical Oncology, vol. 29, no. 12, pp. 7231–7234, 2022.
Z. Zhao, Y. Tian, Z. Yuan, P. Zhao, F. Xia, and S. Yu, “A machine learning method for improving liver cancer staging,” Journal of Biomedical Informatics, vol. 137, p. 104266, 2023.
X. Xie, X. Pan, F. Shao, W. Zhang, and J. An, “Mci-net: multi-scale context integrated network for liver ct image segmentation,” Computers and Electrical Engineering, vol. 101, p. 108085, 2022.
B. Kim, D. H. Kim, S. H. Park, J. Kim, J.-G. Lee, and J. C. Ye, “Cyclemorph: cycle consistent unsupervised deformable image registration,” Medical image analysis, vol. 71, p. 102036, 2021.
T. Hennedige and S. K. Venkatesh, “Imaging of hepatocellular carcinoma: diagnosis, staging and treatment monitoring,” Cancer Imaging, vol. 12, no. 3, p. 530, 2012.
T. Estienne, M. Lerousseau, M. Vakalopoulou, E. Alvarez Andres, E. Battistella, A. Carré, S. Chandra, S. Christodoulidis, M. Sahasrabudhe, R. Sun et al., “Deep learning-based concurrent brain registration and tumor segmentation,” Frontiers in computational neuroscience, p. 17, 2020.
I. J. Chetty and M. Rosu-Bubulac, “Deformable registration for dose accumulation,” in Seminars in radiation oncology, vol. 29, no. 3. Elsevier, 2019, pp. 198–208.
H. Boulkhrif, H. M. Luu, T. van Walsum, and A. Moelker, “Accuracy of semi-automated versus manual localisation of liver tumours in ct-guided ablation procedures,” European Radiology, vol. 28, pp. 4978–4984, 2018.
X. Zhang, X. Tan, X. Gao, D. Wu, X. Zhou, and H. Fujita, “Non-rigid registration of multi-phase liver ct data using fully automated landmark detection and tps deformation,” Cluster Computing, vol. 22, pp. 15 305–15 319, 2019.
N. Spahr, S. Thoduka, N. Abolmaali, R. Kikinis, and A. Schenk, “Multimodal image registration for liver radioembolization planning and patient assessment,” International journal of computer assisted radiology and surgery, vol. 14, pp. 215–225, 2019.
A. Krishan and D. Mittal, “Feature based ct image registration of liver cancer,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 236, no. 1, pp. 3–11, 2022.
D. W. Kim, G. Lee, S. Y. Kim, G. Ahn, J.-G. Lee, S. S. Lee, K. W. Kim, S. H. Park, Y. J. Lee, and N. Kim, “Deep learning–based algorithm to detect primary hepatic malignancy in multiphase ct of patients at high risk for hcc,” European Radiology, vol. 31, pp. 7047–7057, 2021.
L. Xu, Y. Zhu, Y. Zhang, and H. Yang, “Liver segmentation based on region growing and level set active contour model with new signed pressure force function,” Optik, vol. 202, p. 163705, 2020.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015, pp. 234–241.
G. Chlebus, A. Schenk, J. H. Moltz, B. van Ginneken, H. K. Hahn, and H. Meine, “Automatic liver tumor segmentation in ct with fully convolutional neural networks and object-based postprocessing,” Scientific reports, vol. 8, no. 1, p. 15497, 2018.
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
K. He, X. Liu, R. Shahzad, R. Reimer, F. Thiele, J. Niehoff, C. Wybranski, A. C. Bunck, H. Zhang, and M. Perkuhn, “Advanced deep learning approach to automatically segment malignant tumors and ablation zone in the liver with contrast-enhanced ct,” Frontiers in Oncology, vol. 11, p. 669437, 2021.
X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, “H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes,” IEEE transactions on medical imaging, vol. 37, no. 12, pp. 2663–2674, 2018.
A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. Van Ginneken, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze et al., “A large annotated medical image dataset for the development and evaluation of segmentation algorithms,” arXiv preprint arXiv:1902.09063, 2019.
M. Antonelli, A. Reinke, S. Bakas, K. Farahani, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze, O. Ronneberger, R. M. Summers et al., “The medical segmentation decathlon,” Nature communications, vol. 13, no. 1, p. 4128, 2022.
F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. F. Jaeger, S. Kohl, J. Wasserthal, G. Koehler, T. Norajitra, S. Wirkert et al., “nnu-net: Self-adapting framework for u-net-based medical image segmentation,” arXiv preprint arXiv:1809.10486, 2018.
F. Isensee, P. F. Jäger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “Automated design of deep learning methods for biomedical image segmentation,” arXiv preprint arXiv:1904.08128, 2019.
F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnu-net: a self-configuring method for deep learning-based biomedical image segmentation,” Nature methods, vol. 18, no. 2, pp. 203–211, 2021.
S.-C. Huang, A. Pareek, S. Seyyedi, I. Banerjee, and M. P. Lungren, “Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines,” NPJ digital medicine, vol. 3, no. 1, p. 136, 2020.
S. A. Azer, “Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review,” World journal of gastrointestinal oncology, vol. 11, no. 12, p. 1218, 2019.
M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification,” Neurocomputing, vol. 321, pp. 321–331, 2018.
K. Yasaka, H. Akai, O. Abe, and S. Kiryu, “Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced ct: a preliminary study,” Radiology, vol. 286, no. 3, pp. 887–896, 2018.
Y. Todoroki, X.-H. Han, Y. Iwamoto, L. Lin, H. Hu, and Y.-W. Chen, “Detection of liver tumor candidates from ct images using deep convolutional neural networks,” in Innovation in Medicine and Healthcare 2017: Proceedings of the 5th KES International Conference on Innovation in Medicine and Healthcare (KES-InMed 2017) 5. Springer, 2018, pp. 140–145.
A. Nayak, E. Baidya Kayal, M. Arya, J. Culli, S. Krishan, S. Agarwal, and A. Mehndiratta, “Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen ct,” International journal of computer assisted radiology and surgery, vol. 14, pp. 1341–1352, 2019.
J. Zhou, W. Wang, B. Lei, W. Ge, Y. Huang, L. Zhang, Y. Yan, D. Zhou, Y. Ding, J. Wu et al., “Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study,” Frontiers in oncology, vol. 10, p. 581210, 2021.
P. Bharti, D. Mittal, and R. Ananthasivan, “Preliminary study of chronic liver classification on ultrasound images using an ensemble model,” Ultrasonic imaging, vol. 40, no. 6, pp. 357–379, 2018.
E. Trivizakis, G. C. Manikis, K. Nikiforaki, K. Drevelegas, M. Constantinides, A. Drevelegas, and K. Marias, “Extending 2-d convolutional neural networks to 3-d for advancing deep learning cancer classification with application to mri liver tumor differentiation,” IEEE journal of biomedical and health informatics, vol. 23, no. 3, pp. 923–930, 2018.
S. Song, Z. Li, L. Niu, X. Zhou, G. Wang, Y. Gao, J. Wang, F. Liu, Q. Sui, L. Jiao et al., “Hypervascular hepatic focal lesions on dynamic contrast-enhanced ct: preliminary data from arterial phase scans texture analysis for classification,” Clinical Radiology, vol. 74, no. 8, pp. 653–e11, 2019.
J. Wang, J. Li, X.-H. Han, L. Lin, H. Hu, Y. Xu, Q. Chen, Y. Iwamoto, and Y.-W. Chen, “Tensor-based sparse representations of multi-phase medical images for classification of focal liver lesions,” Pattern Recognition Letters, vol. 130, pp. 207–215, 2020.
D. Ponnoprat, P. Inkeaw, J. Chaijaruwanich, P. Traisathit, P. Sripan, N. Inmutto, W. Na Chiangmai, D. Pongnikorn, and I. Chitapanarux, “Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on multi-phase ct scans,” Medical & Biological Engineering & Computing, vol. 58, pp. 2497–2515, 2020.
R. Gao, S. Zhao, K. Aishanjiang, H. Cai, T. Wei, Y. Zhang, Z. Liu, J. Zhou, B. Han, J. Wang et al., “Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced ct and clinical data,” Journal of hematology & oncology, vol. 14, no. 1, pp. 1–7, 2021.
S. Li, H. Jiang, and W. Pang, “Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading,” Computers in biology and medicine, vol. 84, pp. 156–167, 2017.
H. Abdelhalim, M. Houseni, M. Elsakhawy, N. Abd Elbary, and O. Elabd, “Role of 18f-fdg pet-ct in initial staging of hepatocellular carcinoma and its impact on changing clinical decision,” Egyptian Liver Journal, vol. 10, no. 1, pp. 1–4, 2020.
M. M. Barakat, E. M. Badran, Y. E. A. H. Allam, Z. A. Alsabbagh, and A. S. Abdelrahman, “The role of triphasic ct imaging and 18f fdg pet ct on detection of extrahepatic metastases and proper staging of hcc: a comparative study,” Egyptian Journal of Radiology and Nuclear Medicine, vol. 53, no. 1, p. 137, 2022.
A. Moawad, D. Fuentes, A. Morshid, A. Khalaf, M. Elmohr, A. Abusaif, J. Hazle, A. Kaseb, M. Hassan, A. Mahvash et al., “Multimodality annotated hcc cases with and without advanced imaging segmentation [data set],” The Cancer Imaging Archive, 2021.
K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, pp. 1045–1057, 2013.
A. W. Moawad, A. Morshid, A. M. Khalaf, M. M. Elmohr, J. D. Hazle, D. Fuentes, M. Badawy, A. O. Kaseb, M. Hassan, A. Mahvash et al., “Multimodality annotated hepatocellular carcinoma data set including pre-and post-tace with imaging segmentation,” Scientific Data, vol. 10, no. 1, p. 33, 2023.
J. Henderson, M. Sherman, A. Tavill, M. Abecassis, G. Chejfec, and T. Gramlich, “Ahpba/ajcc consensus conference on staging of hepatocellular carcinoma: consensus statement,” HPB, vol. 5, no. 4, pp. 243–250, 2003.
L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-component labeling problem: A review of state-of-the-art algorithms,” Pattern Recognition, vol. 70, pp. 25–43, 2017.
K. A. J. Eppenhof, “Supervised deformable image registration using deep neural networks,” 2020.
B. B. Avants, N. Tustison, G. Song et al., “Advanced normalization tools (ants),” Insight j, vol. 2, no. 365, pp. 1–35, 2009.
L. Wang, J. Strehlow, J. Rühaak, F. Weiler, Y. Diez, A. Gubern-Merida, S. Diekmann, H. Laue, and H. K. Hahn, “A fast alignment method for breast mri follow-up studies using automated breast segmentation and current-prior registration,” in Medical Imaging 2015: Image Processing, vol. 9413. SPIE, 2015, pp. 830–837.
M. Temerinac-Ott, “Multiview reconstruction for 3d images from light sheet based fluorescence microscopy,” Ph.D. dissertation, Dissertation, Albert-Ludwigs-Universität Freiburg, 2012, 2012.
K. He, C. Gan, Z. Li, I. Rekik, Z. Yin, W. Ji, Y. Gao, Q. Wang, J. Zhang, and D. Shen, “Transformers in medical image analysis: A review,” Intelligent Medicine, 2022.
F. Shamshad, S. Khan, S. W. Zamir, M. H. Khan, M. Hayat, F. S. Khan, and H. Fu, “Transformers in medical imaging: A survey,” Medical Image Analysis, p. 102802, 2023.
J. Li, J. Chen, Y. Tang, C. Wang, B. A. Landman, and S. K. Zhou, “Transforming medical imaging with transformers? a comparative review of key properties, current progresses, and future perspectives,” Medical image analysis, p. 102762, 2023.
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
C. Jiang, Y. Chen, J. Chang, M. Feng, R. Wang, and J. Yao, “Fusion of medical imaging and electronic health records with attention and multi-head machanisms,” arXiv preprint arXiv:2112.11710, 2021.
Z. Ning, X. Zhang, C. Tu, Q. Feng, and Y. Zhang, “Multiscale context-cascaded ensemble framework (msc 2 ef): application to breast histopathological image,” IEEE Access, vol. 7, pp. 150 910–150 923, 2019.
Z. Ning, W. Pan, Y. Chen, Q. Xiao, X. Zhang, J. Luo, J. Wang, and Y. Zhang, “Integrative analysis of cross-modal features for the prognosis prediction of clear cell renal cell carcinoma,” Bioinformatics, vol. 36, no. 9, pp. 2888–2895, 2020.
Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using rna-seq data,” Computer methods and programs in biomedicine, vol. 166, pp. 99–105, 2018.
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2921–2929.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626.
A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018, pp. 839–847.
K. Gotkowski, C. Gonzalez, A. Bucher, and A. Mukhopadhyay, “M3d-cam: A pytorch library to generate 3d data attention maps for medical deep learning,” 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89122-
dc.description.abstract肝癌為我國十大癌症發生率第五位及死亡率第二位,是重要的醫療問題。肝癌的早期預測可透過電腦斷層影像進行診斷。在注入顯影劑後,腫瘤會明顯呈現於影像中,且會於短時間內照攝多張影像以觀察不同相位腫瘤的型態。醫師會根據腫瘤狀況,初步診斷患有惡性肝細胞癌之患者,並使用近年來臨床醫師常用的分期系統進行分期,以對應不同治療方式,如巴塞隆納臨床肝癌分期(Barcelona Clinic Liver Cancer classification, BCLC)系統。上述流程皆依照醫師經驗進行診斷,缺乏自動性及方便性,診斷過程花費時間,為臨床醫師的一大痛點。為解決上述問題,本研究建立多個模型來改善現階段的診斷過程。主要目標為實現多相位影像融合,包含三種深度學習方法:early fusion、intermediate fusion、late fusion及一種影像處理方法。前處理階段包含使用nnU-Net學習影像中肝臟及肝腫瘤特徵,接著保留肝臟區域以排除其他腹部器官的干擾,再進行不同相位間的融合與分類,最後使用了集成學習來集成不同模型以精準分期,並提供腫瘤大小與顆資訊。最終模型之準確度、精準度、敏感度及特異度分別約為78%、87%、57%及76%;三期之準確度為93.33%、73.33%,及66.67%;腫瘤顆數與大小之平均誤差為0.3與0.4。本研究可有效輔助醫師診斷並加速診療過程,自動化分析也將解決臨床醫師的痛點。zh_TW
dc.description.abstractLiver cancer poses a significant healthcare challenge, ranking as the fifth most common cancer and the second leading cause of death among individuals. Early detection of liver cancer is crucial for successful treatment, and computed tomography (CT) imaging plays a vital role in the diagnosis process. Through administering a contrast agent, tumors are rendered visible in CT scans. These scans are captured in successive phases, enabling a detailed examination of the tumor's morphology. Physicians use these images and staging systems, such as the Barcelona Clinic Liver Cancer (BCLC) classification, to make preliminary diagnoses of hepatocellular carcinoma (HCC) and determine appropriate treatment strategies. However, the current diagnostic process heavily relies on physician expertise, lacks automation, and can be time-consuming, posing challenges for clinical practitioners. To overcome these challenges, this study proposed using deep learning models to enhance the diagnostic process. The primary objective is to achieve multi-phase image fusion, involving three deep learning approaches: early fusion, intermediate fusion, and late fusion, combined with an image processing method. In the preprocessing stage, we employ nnU-Net to extract essential liver and tumor features from the images. The liver region is subsequently isolated to remove interference from other abdominal organs. Following this, fusion and classification among different phases are conducted. Finally, ensemble learning is employed to integrate diverse models for accurate staging, as well as to provide valuable tumor size and count information. Finally, ensemble learning techniques were employed to integrate different models to classify BCLC stages and provide tumor size and count information. The overall accuracy of the final model was approximately 78%, with precision, sensitivity, and specificity values of 87%, 57%, and 76%, respectively. The accuracy for stages A, B, and C was 93.33%, 73.33%, and 66.67%, respectively. The average tumor count and size errors were 0.3 and 0.4, respectively. The proposed method effectively assists physicians in diagnosing, accelerates the diagnostic process, and automates analysis, addressing clinical practitioners' challenges.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:13:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:13:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables x
Abbreviation xii
Chapter 1 Introduction 1
Chapter 2 Datasets 6
2.1 Medical Segmentation Decathlon (MSD) 6
2.2 The Cancer Imaging Archive (TCIA) 8
Chapter 3 Methods and Data Pre-processing 10
3.1 Liver and Tumor Segmentation 10
3.1.1 Data Distribution 11
3.1.2 Data Analysis 13
3.1.3 Data Preparation 13
3.1.4 Segmentation Model 14
3.2 Multi-Phase Fusion and BCLC Classification 16
3.2.1 Data Distribution 16
3.2.2 Data Analysis 17
3.2.3 Data Preprocessing 19
3.2.4 Multi-CTStager: Multi-phase CT to Classifier BCLC Staging Algorithm 19
3.2.4.1 Image Processing 23
3.2.4.2 Early Fusion 24
3.2.4.3 Intermediate Fusion 28
3.2.4.4 Late Fusion 30
3.3 Ensemble Models 30
3.3.1 Performance Metrics 32
3.3.1.1 Segmentation 32
3.3.1.2 Classification Index of The Fusion Model 33
Chapter 4 Experiments 35
4.1 Experiment Settings 35
4.2 Segmentation Performance 35
4.3 Classification Performance 37
4.3.1 Fusion Model Results 37
4.3.2 Weighted-average performance metrics 43
Chapter 5 Discussion 46
5.1 Segmentation Model 46
5.2 Classification Model 48
5.2.1 Single-Phase vs. Multi-Phase Classification 48
5.2.2 Comparisons of Different Staging Methods 49
5.2.3 Prediction Using Only Tumor Size and Numbers 50
5.2.4 Detecting Tumor Size and Number through 2D Slice Images 63
5.2.5 The Tumor, Node, Metastasis (TNM) Staging System 64
5.3 Future Work 69
5.3.1 Survey of More Advanced Models 69
5.3.2 Multi-modality Data 69
5.3.3 Creating Our Own Dataset 70
5.3.4 Generating Attention Maps 72
Chapter 6 Conclusion 73
Bibliography 75
Appendix A — Appendix A 86
A.1 Appendix A 86
-
dc.language.isoen-
dc.subject電腦斷層zh_TW
dc.subject巴塞隆納臨床肝癌分期系統zh_TW
dc.subject肝細胞癌zh_TW
dc.subject多相位影像融合zh_TW
dc.subject集成學習zh_TW
dc.subjecthepatocellular carcinomaen
dc.subjectbarcelona clinic liver cancer classification staging systemen
dc.subjectmulti-phase image fusionen
dc.subjectcomputed tomographyen
dc.subjectensemble learningen
dc.title使用集成學習與多相位腹部電腦斷層影像預測肝細胞癌之BCLC分期系統zh_TW
dc.titleA BCLC staging system for hepatocellular carcinoma using Ensemble Learning and Multi-phase abdominal CTen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王偉仲;張瑞峰;蘇東弘zh_TW
dc.contributor.oralexamcommitteeWeichung Wang;Ruey-Feng Chang;Tung-Hung Suen
dc.subject.keyword電腦斷層,肝細胞癌,巴塞隆納臨床肝癌分期系統,多相位影像融合,集成學習,zh_TW
dc.subject.keywordcomputed tomography,hepatocellular carcinoma,barcelona clinic liver cancer classification staging system,multi-phase image fusion,ensemble learning,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202303111-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved