請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89104完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林璧鳳 | zh_TW |
| dc.contributor.advisor | Bi-Fong Lin | en |
| dc.contributor.author | 何采靜 | zh_TW |
| dc.contributor.author | Tsai-Ching Ho | en |
| dc.date.accessioned | 2023-08-16T17:09:03Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 陳奕綺 (2010)。Lactobacillus casei Shirota對氣喘模式小鼠腸道與過敏免疫反應的影響。國立台灣大學微生物研究所。
劉百嘉 (2018)。Gamma-aminobutyric acid對VHL基因缺失小鼠腸道菌相及腸道免疫之影響。國立台灣大學生化科技學系。 黃薰儀 (2019)。探討gamma-胺基丁酸對Vhlh基因剔除小鼠腎臟病與免疫調節的影響。國立台灣大學生化科技學系。 陳郁婷 (2020)。益生菌Lactobacillus casei Shirota對VHL基因缺失小鼠腎損傷及免疫調節的影響。國立台灣大學生化科技學系。 陳維茵 (2022)。益生菌Lactobacillus casei Shirota對imiquimod誘發乾癬小鼠之免疫調節的影響。國立台灣大學生化科技學系。 袁意雲 (2022)。探討gamma-胺基丁酸對Imiquimod誘發乾癬小鼠之免疫調節之影響。國立台灣大學生化科技學系。 Armstrong, A. W., & Read, C. (2020). Pathophysiology, Clinical presentation, and treatment of psoriasis: A review. The Journal of the American Medical Association, 323(19), 1945–1960. doi: 10.1001/jama.2020.4006 Asadullah, K., Friedrich, M., Hanneken, S., Rohrbach, C., Audring, H., Vergopoulos, A., Ebeling, M., Döcke, W. D., Volk, H. D., & Sterry, W. (2001). Effects of systemic interleukin-10 therapy on psoriatic skin lesions: histologic, immunohistologic, and molecular biology findings. The Journal of Investigative Dermatology, 116(5), 721–727. doi: 0.1046/j.0022-202x.2001. 01317.x Asadullah, K., Sterry, W., & Volk, H. D. (2003). Interleukin-10 therapy--review of a new approach. Pharmacological Reviews, 55(2), 241–269. doi: 10.1124/pr.55.2.4 Badanthadka, M., D'Souza, L., & Salwa, F. (2021). Strain specific response of mice to IMQ-induced psoriasis. Journal of Basic and Clinical Physiology and Pharmacology, 32(5), 959–968. doi: 10.1515/jbcpp-2020-0112 Blair, M. J., Jones, J. D., Woessner, A. E., & Quinn, K. P. (2020). Skin structure-function relationships and the wound healing response to intrinsic aging. Advances in Wound Care, 9(3), 127–143. doi: 10.1089/wound.2019.1021 Buhaș, M. C., Gavrilaș, L. I., Candrea, R., Cătinean, A., Mocan, A., Miere, D., & Tătaru, A. (2022). Gut microbiota in psoriasis. Nutrients, 14(14), 2970. doi: 10.3390/nu14142970 Cai, Y., Xue, F., Quan, C., Qu, M., Liu, N., Zhang, Y., Fleming, C., Hu, X., Zhang, H. G., Weichselbaum, R., Fu, Y. X., Tieri, D., Rouchka, E. C., Zheng, J., & Yan, J. (2019). A Critical role of the IL-1β-IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. The Journal of Investigative Dermatology, 139(1), 146–156. doi: 10.1016/j.jid.2018.07.025 Chen, Y. H., Wu, C. S., Chao, Y. H., Lin, C. C., Tsai, H. Y., Li, Y. R., Chen, Y. Z., Tsai, W. H., & Chen, Y. K. (2017). Lactobacillus pentosus GMNL-77 inhibits skin lesions in imiquimod-induced psoriasis-like mice. Journal of Food and Drug Analysis, 25(3), 559–566. doi: 10.1016/j.jfda.2016.06.003 Chen, L., & Tsai, T. F. (2018). HLA-Cw6 and psoriasis. The British Journal of Dermatology, 178(4), 854–862. doi: 10.1111/bjd.16083 Chiricozzi, A., Guttman-Yassky, E., Suárez-Fariñas, M., Nograles, K. E., Tian, S., Cardinale, I., Chimenti, S., & Krueger, J. G. (2011). Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. The Journal of Investigative Dermatology, 131(3), 677–687. doi: 10.1038/jid.2010.340 Chesler, D. A., & Reiss, C. S. (2002). The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine & Growth Factor Reviews, 13(6), 441–454. doi: 10.1016/s1359-6101(02)00044-8 Costin, G. E., & Hearing, V. J. (2007). Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB journal: Official Publication of The Federation of American Societies for Experimental Biology, 21(4), 976–994. doi: 10.1096/fj.06-6649rev Damiani, G., Bragazzi, N. L., Karimkhani Aksut, C., Wu, D., Alicandro, G., McGonagle, D., Guo, C., Dellavalle, R., Grada, A., Wong, P., La Vecchia, C., Tam, L. S., Cooper, K. D., & Naghavi, M. (2021). The global, regional, and national burden of psoriasis: Results and insights from the global burden of disease 2019 Study. Frontiers in Medicine, 8, 743180. doi.: 10.3389/fmed.2021.743180 De Alcantara, C. C., Reiche, E. M. V., & Simão, A. N. C. (2021). Cytokines in psoriasis. Advances in Clinical Chemistry, 100, 171–204. doi: 10.1016/bs.acc.2020.04.004 Dong, H., Rowland, I., Thomas, L. V., & Yaqoob, P. (2013). Immunomodulatory effects of a probiotic drink containing Lactobacillus casei Shirota in healthy older volunteers. European Journal of Nutrition, 52(8), 1853–1863. doi: 10.1007/s00394-012-0487-1 Dudakov, J. A., Hanash, A. M., & van den Brink, M. R. (2015). Interleukin-22: immunobiology and pathology. Annual Review of Immunology, 33, 747–785. doi: 10.1146/annurev-immunol-032414-112123 Floss, D. M., Klöcker, T., Schröder, J., Lamertz, L., Mrotzek, S., Strobl, B., Hermanns, H., & Scheller, J. (2016). Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases. Molecular Biology of The Cell, 27(14), 2301–2316. doi: 10.1091/mbc. E14-12-1645 Frangaj, A., & Fan, Q. R. (2018). Structural biology of GABAB receptor. Neuropharmacology, 136(Pt A), 68–79. doi: 10.1016/j.neuropharm.2017.10.011 Fredriksson, T., & Pettersson, U. (1978). Severe psoriasis-oral therapy with a new retinoid. Dermatologica, 157(4), 238–244. doi: 10.1159/000250839 Fujimoto, J., Matsuki, T., Sasamoto, M., Tomii, Y., & Watanabe, K. (2008). Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. International Journal of Food Microbiology, 126(1-2), 210–215. doi: 10.1016/j.ijfoodmicro.2008.05.022 GBD 2019 Diseases and Injuries Collaborators (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet (London, England), 396(10258), 1204–1222. doi: 0.1016/S0140-6736(20)30925-9 Ghoreschi, K., Balato, A., Enerbäck, C., & Sabat, R. (2021). Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet (London, England), 397(10275), 754–766. doi: 10.1016/S0140-6736(21)00184-7 Gilliet, M., & Lande, R. (2008). Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Current Opinion in Immunology, 20(4), 401–407. doi: 10.1016/j.coi.2008.06.008 Goodman, W. A., Levine, A. D., Massari, J. V., Sugiyama, H., McCormick, T. S., & Cooper, K. D. (2009). IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. Journal of Immunology (Baltimore, Md.: 1950), 183(5), 3170–3176. doi: 10.4049/jimmunol.0803721 Greb, J. E., Goldminz, A. M., Elder, J. T., Lebwohl, M. G., Gladman, D. D., Wu, J. J., Mehta, N. N., Finlay, A. Y., & Gottlieb, A. B. (2016). Psoriasis. Nature Reviews Disease Primer. 2, 16082. doi: 10.1038/nrdp.2016.82 Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E., & Barker, J. N. W. N. (2021). Psoriasis. Lancet (London, England), 397(10281), 1301–1315. doi: 10.1016/S0140-6736(20)32549-6 Groeger, D., O'Mahony, L., Murphy, E. F., Bourke, J. F., Dinan, T. G., Kiely, B., Shanahan, F., & Quigley, E. M. (2013). Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes, 4(4), 325–339. doi: 10.4161/gmic.25487 Guo, X., Xia, X., Tang, R., Zhou, J., Zhao, H., & Wang, K. (2008). Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology, 47(5), 367–373. doi: 10.1111/j.1472-765X.2008. 02408.x Guo, J., Liu, Y., Guo, X., Meng, Y., Qi, C., Zhao, J., Di, T., Zhang, L., Guo, X., Wang, Y., Wang, Y., & Li, P. (2020). Depressive-like behaviors in mice with Imiquimod-induced psoriasis. International Immunopharmacology, 89(Pt B), 107057. doi: 10.1016/j.intimp.2020.107057 Han, G., Williams, C. A., Salter, K., Garl, P. J., Li, A. G., & Wang, X. J. (2010). A role for TGFbeta signaling in the pathogenesis of psoriasis. The Journal of Investigative Dermatology, 130(2), 371–377. doi: 10.1038/jid.2009.252 Hawkes, J. E., Gudjonsson, J. E., & Ward, N. L. (2017). The snowballing literature on imiquimod-induced skin inflammation in mice: A Critical Appraisal. The Journal of Investigative Dermatology, 137(3), 546–549. doi: 10.1016/j.jid.2016.10.024 Hawkes, J. E., Yan, B. Y., Chan, T. C., & Krueger, J. G. (2018). Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. Journal of Immunology (Baltimore, Md.: 1950), 201(6), 1605–1613. doi: 10.4049/jimmunol.1800013 Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. doi: 10.1038/nrgastro.2014.66 Hu, P., Wang, M., Gao, H., Zheng, A., Li, J., Mu, D., & Tong, J. (2021). The role of helper T cells in psoriasis. Frontiers in Immunology, 12, 788940. doi: 0.3389/fimmu.2021.788940 Husni, M. E., Merola, J. F., & Davin, S. (2017). The psychosocial burden of psoriatic arthritis. Seminars in Arthritis and Rheumatism, 47(3), 351–360. doi: org/10.1016/j.semarthrit.2017.05.010 Ivory, K., Chambers, S. J., Pin, C., Prieto, E., Arqués, J. L., & Nicoletti, C. (2008). Oral delivery of Lactobacillus casei Shirota modifies allergen-induced immune responses in allergic rhinitis. Journal of The British Society for Allergy and Clinical Immunology, 38(8), 1282–1289. doi: 10.1111/j.1365-2222.2008. 03025.x Jia, H. Y., Qiu, H. Y., Zhang, M. D., Hou, J. J., Zhou, M. L., & Wu, Y. (2022). Lenalidomide attenuates IMQ-induced inflammation in a mouse model of psoriasis. Biomedicine & Pharmacotherapy, 156, 113883. doi: 10.1016/j.biopha.2022.113883 Johnston, A., Gudjonsson, J. E., Sigmundsdottir, H., Love, T. J., & Valdimarsson, H. (2004). Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8(+) T cells. Clinical and Experimental Immunology, 138(1), 83–93. doi: 10.1111/j.1365-2249.2004. 00600.x Kailasapathy, K., & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78(1), 80–88. doi: 10.1046/j.1440-1711.2000. 00886.x Kato-Kataoka, A., Nishida, K., Takada, M., Kawai, M., Kikuchi-Hayakawa, H., Suda, K., Ishikawa, H., Gondo, Y., Shimizu, K., Matsuki, T., Kushiro, A., Hoshi, R., Watanabe, O., Igarashi, T., Miyazaki, K., Kuwano, Y., & Rokutan, K. (2016). Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Applied and Environmental Microbiology, 82(12), 3649–3658. doi: 10.1128/AEM.04134-15 Kamiya, K., Kishimoto, M., Sugai, J., Komine, M., & Ohtsuki, M. (2019). Risk factors for the development of psoriasis. International Journal of Molecular Sciences, 20(18), 4347. doi: 10.3390/ijms20184347 Koebnick, C., Wagner, I., Leitzmann, P., Stern, U., & Zunft, H. J. (2003). Probiotic beverage containing Lactobacillus casei Shirota improves gastrointestinal symptoms in patients with chronic constipation. Canadian Journal of Gastroenterology, 17(11), 655–659. doi: 10.1155/2003/654907 Kopp, T., Riedl, E., Bangert, C., Bowman, E. P., Greisenegger, E., Horowitz, A., Kittler, H., Blumenschein, W. M., McClanahan, T. K., Marbury, T., Zachariae, C., Xu, D., Hou, X. S., Mehta, A., Zandvliet, A. S., Montgomery, D., van Aarle, F., & Khalilieh, S. (2015). Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature, 521(7551), 222–226. doi: 10.1038/nature14175 La Fata, G., Weber, P., & Mohajeri, M. H. (2018). Probiotics and the gut immune system: Indirect regulation. Probiotics and Antimicrobial Proteins, 10(1), 11–21. doi: 10.1007/s12602-017-9322-6 Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., & Sayler, G. (2006). Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Applied and Environmental Microbiology, 72(6), 4214–4224. doi: 10.1128/AEM.01036-05 Le, Q. V., & Howard, A. (2013). Dexamethasone iontophoresis for the treatment of nail psoriasis. The Australasian Journal of Dermatology, 54(2), 115–119. doi: 10.1111/ajd.12029 Lejeune, D., Dumoutier, L., Constantinescu, S., Kruijer, W., Schuringa, J. J., & Renauld, J. C. (2002). Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. The Journal of Biological Chemistry, 277(37), 33676–33682. doi: 10.1074/jbc.M204204200 Lelouard, H., Fallet, M., de Bovis, B., Méresse, S., & Gorvel, J. P. (2012). Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology, 142(3), 592–601.e3. doi: 10.1053/j.gastro.2011.11.039 Macpherson, A. J., & Smith, K. (2006). Mesenteric lymph nodes at the center of immune anatomy. The Journal of Experimental Medicine, 203(3), 497–500. doi: 10.1084/jem.20060227 Matiushenko, V., Kutasevych, Y., & Jafferany, M. (2020). Neurotransmitter imbalance in serum of psoriatic patients in exacerbation stage with comorbid psychoemotional disorders. Dermatologic Therapy, 33(3), e13337. doi: 10.1111/dth.13337 Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T., & Tanaka, R. (2004). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Applied and Environmental Microbiology, 70(12), 7220–7228. doi: 10.1128/AEM.70.12.7220-7228.2004 Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., & Rotondo, J. C. (2023). Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells, 12(1), 184. doi: 10.3390/cells12010184 Menon G. K. (2002). New insights into skin structure: Scratching the surface. Advanced Drug Delivery Reviews, 54 Suppl 1, S3–S17. doi: 10.1016/s0169-409x (02)00121-7 Miller, L. S., & Modlin, R. L. (2007). Human keratinocyte Toll-like receptors promote distinct immune responses. The Journal of Investigative Dermatology, 127(2), 262–263. doi: 10.1038/sj.jid.5700559 Moszak, M., Szulińska, M., & Bogdański, P. (2020). You are what you eat-The relationship between diet, microbiota, and metabolic disorders-A review. Nutrients, 12(4), 1096. doi: 10.3390/nu12041096 Mowat, A. M., & Agace, W. W. (2014). Regional specialization within the intestinal immune system. Nature Reviews Immunology, 14(10), 667–685. doi: 10.1038/nri3738 Myers, J. F., Nutt, D. J., & Lingford-Hughes, A. R. (2016). Gamma-aminobutyric acid as a metabolite: Interpreting magnetic resonance spectroscopy experiments. Journal of Psychopharmacology (Oxford, England), 30(5), 422–427. doi.org/10.1177/0269881116639298 Myers, B., Brownstone, N., Reddy, V., Chan, S., Thibodeaux, Q., Truong, A., Bhutani, T., Chang, H. W., & Liao, W. (2019). The gut microbiome in psoriasis and psoriatic arthritis. Best Practice & Research Clinical Rheumatology, 33(6), 101494. doi: 10.1016/j.berh.2020.101494 Nadkarni, M. A., Martin, F. E., Jacques, N. A., & Hunter, N. (2002). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology (Reading, England), 148(Pt 1), 257–266. doi: 10.1099/00221287-148-1-257 Navarini, A. A., Burden, A. D., Capon, F., Mrowietz, U., Puig, L., Köks, S., Kingo, K., Smith, C., Barker, J. N., & ERASPEN Network (2017). European consensus statement on phenotypes of pustular psoriasis. Journal of the European Academy of Dermatology and Venereology, 31(11), 1792–1799. doi: 10.1111/jdv.14386 Nestle, F. O., Di Meglio, P., Qin, J. Z., & Nickoloff, B. J. (2009). Skin immune sentinels in health and disease. Nature Reviews Immunology, 9(10), 679–691. doi: 10.1038/nri2622 Oketch-Rabah, H. A., Madden, E. F., Roe, A. L., & Betz, J. M. (2021). United States Pharmacopeia (USP) Safety review of gamma-aminobutyric acid (GABA). Nutrients, 13(8), 2742. doi: 10.3390/nu13082742 Ouyang W. (2010). Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine & Growth Factor Reviews, 21(6), 435–441. doi: 10.1016/j.cytogfr.2010.10.007 Parisi, R., Symmons, D. P., Griffiths, C. E., Ashcroft, D. M., & Identification and Management of psoriasis and associated comorbidity (IMPACT) project team (2013). Global epidemiology of psoriasis: A systematic review of incidence and prevalence. The Journal of Investigative Dermatology, 133(2), 377–385. doi: 10.1038/jid.2012.339 Park K. (2015). Role of micronutrients in skin health and function. Biomolecules & Therapeutics, 23(3), 207–217. doi: 10.4062/biomolther.2015.003 Perez-Lopez, A., Behnsen, J., Nuccio, S. P., & Raffatellu, M. (2016). Mucosal immunity to pathogenic intestinal bacteria. Nature reviews. Immunology, 16(3), 135–148. doi: 10.1038/nri.2015.17 Quaresma J. A. S. (2019). Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clinical Microbiology Reviews, 32(4), e00034-18. doi: 10.1128/CMR.00034-18 Rahmati, M., Blaker, J. J., Lyngstadaas, S. P., Mano, J. F., & Haugen, H. J. (2020). Designing multigradient biomaterials for skin regeneration. Materials Today Advances, 5, 100051. doi: 10.1016/j.mtadv.2019.100051 Rendon, A., & Schäkel, K. (2019). Psoriasis pathogenesis and treatment. International Journal of Molecular Sciences, 20(6), 1475. doi: 10.3390/ijms20061475 Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), 14. doi: 10.3390/microorganisms7010014 Sabat, R., Wolk, K., Loyal, L., Döcke, W. D., & Ghoreschi, K. (2019). T cell pathology in skin inflammation. Seminars in Immunopathology, 41(3), 359–377. doi: 10.1007/s00281-019-00742-7 Sasaki, S., Tohda, C., Kim, M., & Yokozawa, T. (2007). Gamma-aminobutyric acid specifically inhibits progression of tubular fibrosis and atrophy in nephrectomized rats. Biological & Pharmaceutical Bulletin, 30(4), 687–691. doi: 10.1248/bpb.30.687 Schön, M. P., Manzke, V., & Erpenbeck, L. (2021). Animal models of psoriasis-highlights and drawbacks. The Journal of Allergy and Clinical Immunology, 147(2), 439–455. doi: 10.1016/j.jaci.2020.04.034 Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821–832. doi: 10.1016/j.cell.2010.01.040 Shida, K., & Nanno, M. (2008). Probiotics and immunology: Separating the wheat from the chaff. Trends in Immunology, 29(11), 565–573. doi: 10.1016/j.it.2008.07.011 Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABA(A) receptors. The Journal of Biological Chemistry, 287(48), 40224–40231. doi: 10.1074/jbc. R112.386664 Spanhaak, S., Havenaar, R., & Schaafsma, G. (1998). The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. European Journal of Clinical Nutrition, 52(12), 899–907. doi: 10.1038/sj.ejcn.1600663 Srinivasan, R., Meyer, R., Padmanabhan, R., & Britto, J. (2006). Clinical safety of Lactobacillus casei Shirota as a probiotic in critically ill children. Journal of Pediatric Gastroenterology and Nutrition, 42(2), 171–173. doi: 10.1097/01.mpg.0000189335. 62397.cf Swindell, W. R., Michaels, K. A., Sutter, A. J., Diaconu, D., Fritz, Y., Xing, X., Sarkar, M. K., Liang, Y., Tsoi, A., Gudjonsson, J. E., & Ward, N. L. (2017). Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Medicine, 9(1), 24. doi: 10.1186/s13073-017-0415-3 Takeda, K., Suzuki, T., Shimada, S. I., Shida, K., Nanno, M., & Okumura, K. (2006). Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clinical and Experimental Immunology, 146(1), 109–115. doi: 10.1111/j.1365-2249.2006. 03165.x Takada, M., Nishida, K., Kataoka-Kato, A., Gondo, Y., Ishikawa, H., Suda, K., Kawai, M., Hoshi, R., Watanabe, O., Igarashi, T., Kuwano, Y., Miyazaki, K., & Rokutan, K. (2016). Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. The Official Journal of The European Gastrointestinal Motility Society, 28(7), 1027–1036. doi: 10.1111/nmo.12804 Tang, L., Yang, X., Liang, Y., Xie, H., Dai, Z., & Zheng, G. (2018). Transcription factor retinoid-related orphan receptor γt: A promising target for the treatment of psoriasis. Frontiers in Immunology, 9, 1210. doi: 10.3389/fimmu.2018.01210 Tuohy, K. M., Pinart-Gilberga, M., Jones, M., Hoyles, L., McCartney, A. L., & Gibson, G. R. (2007). Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora. Journal of Applied Microbiology, 102(4), 1026–1032. doi: 10.1111/j.1365-2672.2006. 03154.x Uva, L., Miguel, D., Pinheiro, C., Antunes, J., Cruz, D., Ferreira, J., & Filipe, P. (2012). Mechanisms of action of topical corticosteroids in psoriasis. International Journal of Endocrinology, 2012, 561018. doi: 10.1155/2012/561018 Van der Fits, L., Mourits, S., Voerman, J. S., Kant, M., Boon, L., Laman, J. D., Cornelissen, F., Mus, A. M., Florencia, E., Prens, E. P., & Lubberts, E. (2009). Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. Journal of Immunology (Baltimore, Md.: 1950), 182(9), 5836–5845. doi: 10.4049/jimmunol.0802999 Walter, J., Hertel, C., Tannock, G. W., Lis, C. M., Munro, K., & Hammes, W. P. (2001). Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 67(6), 2578–2585. doi: 10.1128/AEM.67.6.2578-2585.2001 Walter, A., Schäfer, M., Cecconi, V., Matter, C., Urosevic-Maiwald, M., Belloni, B., Schönewolf, N., Dummer, R., Bloch, W., Werner, S., Beer, H. D., Knuth, A., & van den Broek, M. (2013). Aldara activates TLR7-independent immune defence. Nature Communications, 4, 1560. doi: 10.1038/ncomms2566 Wang, Y. J., Han, D. Y., Tabib, T., Yates, J. R., 3rd, & Mu, T. W. (2013). Identification of GABA(C) receptor protein homeostasis network components from three tandem mass spectrometry proteomics approaches. Journal of Proteome Research, 12(12), 5570–5586. doi: 10.1021/pr400535z Wenzel, J., Uerlich, M., Haller, O., Bieber, T., & Tueting, T. (2005). Enhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimod. Journal of Cutaneous Pathology, 32(4), 257–262. doi: 10.1111/j.0303-6987.2005. 00297.x Wu, D. H., Zhang, M. M., Li, N., Li, X., Cai, Q. W., Yu, W. L., Liu, L. P., Zhu, W., & Lu, C. J. (2019). PSORI-CM02 alleviates IMQ-induced mouse dermatitis via differentially regulating pro- and anti-inflammatory cytokines targeting of Th2 specific transcript factor GATA3. Biomedicine & Pharmacotherapy, 110, 265–274. doi: 10.1016/j.biopha.2018.11.092 Zhang, Y. J., Li, S., Gan, R. Y., Zhou, T., Xu, D. P., & Li, H. B. (2015). Impacts of gut bacteria on human health and diseases. International Journal of Molecular Sciences, 16(4), 7493–7519. doi: 10.3390/ijms16047493 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89104 | - |
| dc.description.abstract | 乾癬為一種免疫失調所引發的皮膚發炎疾病,全球約有2-3 % 的人罹患此疾病。已知gamma-aminobutyric acid (GABA) 為抑制性神經傳遞物質,且具抗發炎作用。本研究室先前研究以imiquimod (IMQ) 誘發乾癬小鼠模式,分別測得補充GABA可降低小鼠皮膚IL-17量,改善皮膚表皮層增厚,以及補充代田菌Lactobacillus casei Shirota (LcS) 減少乾癬小鼠脾臟細胞IL-17分泌,降低小鼠皮膚IL-22、IL-6量,改善小鼠皮屑的產生。因此,本研究欲探討同時補充LcS和GABA是否能改善乾癬小鼠皮膚的病徵。實驗方法為將C57BL/6小鼠分為控制組 (Ctrl)、IMQ誘發組 (IMQ)、補充代田菌和GABA組 (LcS+GABA/IMQ)、及類固醇藥物dexamethasone的正控制組 (IMQ/Dex)。餵飼LcS+GABA/IMQ組小鼠含GABA的飼料並每天管餵LcS,4週後進行連續5天塗抹IMQ誘發乾癬,Ctrl組塗抹凡士林,於第6天犧牲取皮膚和脾臟等組織分析。結果顯示補充LcS和GABA組乾癬小鼠的皮膚紅斑及厚度和皮膚表皮層厚度顯著低於IMQ組,皮膚促發炎細胞激素IL-17、IL-22、TNF-α、IL-6、IL-1β、IFN-γ分泌量、脾臟IL-17分泌量顯著低於IMQ組。LcS+GABA/IMQ組MLN細胞TNF-α、IL-6分泌量顯著低於IMQ組。以上結果顯示,補充LcS及GABA能有效減緩乾癬皮膚病徵及改善發炎現象,具有減緩病情發展的潛力。 | zh_TW |
| dc.description.abstract | Psoriasis is a chronic autoimmune skin disorder that affects approximately 2-3% of the global population. Our previous study has shown that gamma-aminobutyric acid (GABA) and Lactobacillus casei Shirota (LcS) have immunomodulating effects. Therefore, this study aims to investigate whether supplementing with both GABA and LcS might have a more effective outcome on skin symptoms and inflammation in an imiquimod (IMQ)-induced psoriasis-like murine model. The experimental procedures were to divide C57BL/6 mice into a control group (Ctrl), an IMQ-induced group (IMQ), a combined LcS and GABA supplemented group (LcS+GABA/IMQ), and a dexamethasone (Dex)-treated positive control group (IMQ/Dex). The LcS+GABA/IMQ group fed a diet containing GABA and daily tube-feeding with LcS for 4 weeks before IMQ induction. Then, mice were treated with IMQ or vaseline (Ctrl) for 5 consecutive days, and all groups were sacrificed on the 6th day. The results demonstrated that the LcS+GABA/IMQ group showed significantly decreased erythema and skin thickness compared to the IMQ group in IMQ-induced psoriasis mice. Furthermore, the LcS+GABA/IMQ group showed significantly lower secretion of IL-17, IL-22, TNF-α, IL-6, IL-1β and IFN-γ in the skin and IL-17 in the spleen, compared to the IMQ group. Additionally, the LcS+GABA/IMQ group showed significantly lower secretion of TNF-α and IL-6 in MLN cells compared to the IMQ group. These results demonstrated that supplementation with LcS and GABA alleviated psoriatic-like skin symptoms and inflammation, suggesting its potential effect for alleviating the severity of psoriasis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:09:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T17:09:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝誌 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 x 縮寫對照表 xi 第一章 序論 1 第一節 文獻回顧 1 一、皮膚構造與免疫系統 1 二、乾癬 4 (一)乾癬機轉與成因 4 (二)乾癬相關的細胞激素 6 (三)乾癬分類 8 (四)乾癬治療 10 三、乾癬動物模式 11 四、腸道共生菌與免疫系統 12 (一)腸道免疫系統 12 (二)腸道共生菌 13 (三)腸道菌與乾癬 14 五、益生菌 15 (一)益生菌免疫調控 15 (二)代田菌 (Lactobacillus casei Shirota, LcS) 16 六、Gamma-aminobutyric acid 17 (一)生化合成與代謝 17 (二)GABA相關研究 18 第二節 研究動機與目的 19 第二章 實驗設計與材料方法 20 第一節 實驗設計與流程 20 第二節 動物飼養 21 一、建立乾癬小鼠動物模式 21 第三節 代田菌培養與定量 23 一、代田菌分離與培養 23 二、代田菌解凍與保存 23 三、代田菌gDNA萃取與菌數定量 24 第四節 乾癬指標分析 26 一、Psoriasis Area and Severity Index (PASI) score 26 二、皮膚組織切片染色與量化 27 三、皮膚組織分析 27 (一)皮膚組織均質 27 (二)皮膚組織的蛋白質含量測定 28 (三)GABA含量分析 28 第五節 免疫指標分析 30 一、淋巴細胞分離與培養 30 (一)腸繫膜淋巴結細胞分離 30 (二)脾臟細胞分離 31 二、細胞激素含量分析 32 三、免疫細胞表型分析 34 第六節 腸道菌群分析 36 一、樣品g-DNA萃取 36 二、Real-time PCR分析腸道菌群 37 三、計算基因表現量 38 第七節 統計分析 38 第三章 實驗結果 39 ㄧ、代田菌定殖確認 39 二、IMQ誘發乾癬小鼠生長結果 40 (一)攝食量 40 (二)體重變化 41 (三)組織器官重 42 三、IMQ誘發乾癬小鼠皮膚病徵 43 (一)PASI評分 43 (二)皮膚厚度之變化 45 (三)皮膚表皮層增厚之影響 46 四、IMQ誘發乾癬小鼠器官免疫指標 47 (一)皮膚細胞激素含量 47 (二)IMQ誘發乾癬小鼠器官的GABA含量 49 (三)MLN細胞激素含量 51 (四)脾臟細胞激素含量 52 (五)脾臟調節型T細胞 54 五、IMQ誘發乾癬小鼠腸道菌群之影響 55 第四章 討論與結論 56 第一節 討論 56 一、IMQ誘發乾癬小鼠皮膚病徵與細胞激素之影響 56 二、補充LcS和GABA對IMQ誘發乾癬小鼠體內GABA含量之影響 59 三、補充LcS和GABA對IMQ誘發乾癬小鼠腸道免疫之影響 59 四、補充LcS和GABA對IMQ誘發乾癬小鼠脾臟免疫之影響 62 第二節 結論 64 參考文獻 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 代田菌 | zh_TW |
| dc.subject | 乾癬 | zh_TW |
| dc.subject | gamma-胺基丁酸 | zh_TW |
| dc.subject | Imiquimod | zh_TW |
| dc.subject | Imiquimod | en |
| dc.subject | psoriasis | en |
| dc.subject | Lactobacillus casei Shirota | en |
| dc.subject | gamma-aminobutyric acid | en |
| dc.title | 益生菌Lactobacillus casei Shirota合併gamma-胺基丁酸對乾癬小鼠之影響 | zh_TW |
| dc.title | Effects of Lactobacillus casei Shirota combined with gamma-aminobutyric acid in psoriasis mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江伯倫;江孟燦;何佳安;陳俊任 | zh_TW |
| dc.contributor.oralexamcommittee | Bor-Luen Chiang;Meng-Tsan Chiang;Ja-An Ho;Chun-Jen Chen | en |
| dc.subject.keyword | 乾癬,Imiquimod,代田菌,gamma-胺基丁酸, | zh_TW |
| dc.subject.keyword | psoriasis,Imiquimod,Lactobacillus casei Shirota,gamma-aminobutyric acid, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202303765 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 69.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
