Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89099
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵zh_TW
dc.contributor.advisorChun-Han Koen
dc.contributor.author姚青瑋zh_TW
dc.contributor.authorChing-Wei Yaoen
dc.date.accessioned2023-08-16T17:07:51Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAbobatta, W. (2018). Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. Open Access, 1(2), 59-64.
Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research, 6(2), 105-121.
Akhtar, M. F., M. Hanif and N. M. Ranjha (2016) Methods of synthesis of hydrogels, A review. Saudi Pharmaceutical Journal 24(5):554-559.
Awasthi, M. K., Sindhu, R., Sirohi, R., Kumar, V., Ahluwalia, V., Binod, P., ... & Taherzadeh, M. J. (2022). Agricultural waste biorefinery development towards circular bioeconomy. Renewable and Sustainable Energy Reviews, 158, 112122.
Baethgen, W. E., & Alley, M. M. (1989). A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Communications in Soil Science and Plant Analysis, 20(9-10), 961-969.
Buchtová, N., & Budtova, T. (2016). Cellulose aero-, cryo-and xerogels: Towards understanding of morphology control. Cellulose, 23, 2585-2595.
Chen, Y. C., & Chen, Y. H. (2019). Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertilizer. Science of the Total Environment, 655, 958-967.
Devi, S., Gupta, C., Jat, S. L., & Parmar, M. S. (2017). Crop residue recycling for economic and environmental sustainability: The case of India. Open Agriculture, 2(1), 486-494.
Dexter, A. R. (2004). Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3-4), 201-214.
Eichhorn, S. J. (2011). Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter, 7(2), 303-315.
El‐Rehim, H. A., Hegazy, E. S. A., & El‐Mohdy, H. A. (2004). Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. Journal of applied polymer science, 93(3), 1360-1371.
Farooq, U., Teuwen, J., & Dransfeld, C. (2020). Toughening of epoxy systems with interpenetrating polymer network (IPN): A review. Polymers, 12(9), 1908.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., ... & Sutton, M. A. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889-892.
Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., & Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164, 4423-4434.
Gauthier, B. M., Bakrania, S. D., Anderson, A. M., & Carroll, M. K. (2004). A fast supercritical extraction technique for aerogel fabrication. Journal of non-crystalline solids, 350, 238-243.
Ghafoor, I., Habib-ur-Rahman, M., Ali, M., Afzal, M., Ahmed, W., Gaiser, T., & Ghaffar, A. (2021). Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28(32), 43528-43543.
Gharekhani, H., Olad, A., & Hosseinzadeh, F. (2018). Iron/NPK agrochemical formulation from superabsorbent nanocomposite based on maize bran and montmorillonite with functions of water uptake and slow-release fertilizer. New Journal of Chemistry, 42(16), 13899-13914.
Ghobashy, M. M. (2020). The application of natural polymer-based hydrogels for agriculture. In Hydrogels based on natural polymers (pp. 329-356). Elsevier.
Godiya, C. B., Cheng, X., Li, D., Chen, Z., & Lu, X. (2019). Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. Journal of hazardous materials, 364, 28-38.
Han, Y. G., Yang, P. L., Luo, Y. P., Ren, S. M., Zhang, L. X., & Xu, L. (2010). Porosity change model for watered super absorbent polymer-treated soil. Environmental Earth Sciences, 61, 1197-1205.
Huber, T., Müssig, J., Curnow, O., Pang, S., Bickerton, S., & Staiger, M. P. (2012). A critical review of all-cellulose composites. Journal of Materials Science, 47, 1171-1186.
Jamnongkan, T., & Kaewpirom, S. (2010). Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. Journal of Polymers and the Environment, 18, 413-421.
Kanikireddy, V., Varaprasad, K., Jayaramudu, T., Karthikeyan, C., & Sadiku, R. (2020). Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules, 164, 963-975.
Klein, M., & Poverenov, E. (2020). Natural biopolymer‐based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture, 100(6), 2337-2347.
Lal, R. (2008). Soils and sustainable agriculture. A review. Agronomy for Sustainable Development, 28, 57-64.
Lee, P., & Rogers, M. A. (2012). Effect of calcium source and exposure-time on basic
Li, X., Li, Q., Xu, X., Su, Y., Yue, Q., & Gao, B. (2016). Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. Journal of the Taiwan Institute of Chemical Engineers, 60, 564-572.
Li, Y., Wang, C., Luan, Y., Liu, W., Chen, T., Liu, P., & Liu, Z. (2022). Preparation of pH‐responsive cellulose nanofibril/sodium alginate based hydrogels for drug release. Journal of Applied Polymer Science, 139(7), 51647.
Liu, X., J. Liu and S. Lin (2020) Hydrogel machines. Materials Today 36:102-124.
Liu, Y. and M. B. Chan-Park (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30(2):196-207.
Lopez, C. G., Rogers, S. E., Colby, R. H., Graham, P., & Cabral, J. T. (2015). Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study. Journal of Polymer Science Part B: Polymer Physics, 53(7), 492-501.
Ma, Q., Qian, Y., Yu, Q., Cao, Y., Tao, R., Zhu, M., ... & Zhu, X. (2023). Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agriculture, Ecosystems & Environment, 349, 108445.
Mathur, A. M., S. K. Moorjani, and A. B. Scranton (1996) Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science, Part C: Polymer Reviews 36(2):405-430.
Mohammadi‐Khoo, S., Moghadam, P. N., Fareghi, A. R., & Movagharnezhad, N. (2016). Synthesis of a cellulose‐based hydrogel network: Characterization and study of urea fertilizer slow release. Journal of Applied Polymer Science, 133(5).
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.
Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F., Knoltsch, A., ... & Richter, A. (2014). Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature communications, 5(1), 3694.
Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25.
O'sullivan, A. C. (1997). Cellulose: the structure slowly unravels. Cellulose, 4(3), 173-207.
Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose-and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110, 663-673.
Peidayesh, H., Ahmadi, Z., Khonakdar, H. A., Abdouss, M., & Chodák, I. (2020). Baked hydrogel from corn starch and chitosan blends cross‐linked by citric acid: Preparation and properties. Polymers for Advanced Technologies, 31(6), 1256-1269.
Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32-43.
Rahman, M. S., Hasan, M. S., Nitai, A. S., Nam, S., Karmakar, A. K., Ahsan, M. S., ... & Ahmed, M. B. (2021). Recent developments of carboxymethyl cellulose. Polymers, 13(8), 1345.
Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., & Luo, C. (2016). Efficient Pb (II) removal using sodium alginate–carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate polymers, 137, 402-409.
Sannino, A. (2008). Application of superabsorbent hydrogels for the optimization of water resources in agriculture. In The 3rd International Conference on Water Resources and Arid Environments and the 1st Arab Water Forum.
Sannino, A., Demitri, C., & Madaghiele, M. (2009). Biodegradable cellulose-based hydrogels: design and applications. Materials, 2(2), 353-373.
Santamaría Vanegas, J., Rozo Torres, G., & Barreto Campos, B. (2019). Characterization of a κ-Carrageenan Hydrogel and its Evaluation as a Coating Material for Fertilizers. Journal of Polymers and the Environment, 27(4), 774-783.
Shaviv, A. (2001). Advances in controlled-release fertilizers.
Sheu, H. R., M. S. El‐Aasser and J. W. Vanderhoff (1990) Phase separation in polystyrene latex interpenetrating polymer networks. Journal of Polymer Science Part A: Polymer Chemistry 28(3):629-651.
Shi, X., Zheng, Y., Wang, G., Lin, Q., & Fan, J. (2014). pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC advances, 4(87), 47056-47065.
Silverstein, M. S. (2020). Interpenetrating polymer networks: So happy together? Polymer 207:122929.
Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17, 459-494.
Song, B., Liang, H., Sun, R., Peng, P., Jiang, Y., & She, D. (2020). Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. International Journal of Biological Macromolecules, 144, 219-230.
Sperling, L. H. (1994). Interpenetrating polymer networks: an overview. Advances in Chemistry 239:3-38.
Thakur, S., Sharma, B., Verma, A., Chaudhary, J., Tamulevicius, S., & Thakur, V. K. (2018). Recent progress in sodium alginate based sustainable hydrogels for environmental applications. Journal of cleaner production, 198, 143-159.
Van Grinsven, H. J., Holland, M., Jacobsen, B. H., Klimont, Z., Sutton, M. A., & Jaap Willems, W. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental science & technology, 47(8), 3571-3579.
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., ... & Zhang, F. S. (2009). Nutrient imbalances in agricultural development. Science, 324(5934), 1519-1520.
Wang, W., & Wang, A. (2009). Synthesis, swelling behaviors, and slow‐release characteristics of a guar gum‐g‐poly (sodium acrylate)/sodium humate superabsorbent. Journal of Applied polymer science, 112(4), 2102-2111.
Xia, L., Ti, C., Li, B., Xia, Y., & Yan, X. (2016). Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Science of the Total Environment, 556, 116-125.
Yang, C., & Suo, Z. (2018). Hydrogel ionotronics. Nature Reviews Materials, 3(6), 125-142.
Yang, J. S., Xie, Y. J., & He, W. (2011). Research progress on chemical modification of alginate: A review. Carbohydrate polymers, 84(1), 33-39.
Yang, X., & Cranston, E. D. (2014). Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chemistry of Materials, 26(20), 6016-6025.
Zhang, X. Z., Wu, D. Q., & Chu, C. C. (2004). Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials, 25(17), 3793-3805.
Zhong, D., Liu, Z., Xie, S., Zhang, W., Zhang, Y., & Xue, W. (2013). Study on poly (D, L‐lactic) microspheres embedded in calcium alginate hydrogel beads as dual drug delivery systems. Journal of applied polymer science, 129(2), 767-772.
Zoratto, N., & Matricardi, P. (2018). Semi-IPNs and IPN-based hydrogels. Polymeric gels, 91-124.
Zou, Z., Zhang, B., Nie, X., Cheng, Y., Hu, Z., Liao, M., & Li, S. (2020). A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC advances, 10(65), 39722-39730.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89099-
dc.description.abstract本實驗主要以海藻酸鈉作為基材,添加羧甲基纖維素作為增強材料,目的是研發一種天然物聚合水凝膠,以提高肥料的緩釋效果和土壤的保水性能。在實驗過程中,探討了兩種合成變因:一是調整海藻酸鈉與纖維素的比例,包括2:1、1:1和1:2三種比例,以探討原材料量對產物性能的影響;二是固定海藻酸鈉的份量,調整羧甲基纖維素的比例,以研究纖維素對於產物性能的改變,包含1:0到1:5。
在肥料緩釋效果方面,測定了氮肥和磷肥的含量的釋放量。比較不同合成條件下水凝膠的緩釋效果,包括在水中的釋放和在土壤中的釋放。同時,還對水凝膠的保水性能進行了測試,以評估其對土壤吸水能力的影響。
結果表明,使用水凝膠可以有效地緩慢釋放肥料,氮肥和磷肥的趨勢相同,纖維素在本實驗作為吸收與釋放的關鍵材料,在閾值前都呈現越多越好的趨勢。此外,保水性試驗也證實了水凝膠對土壤吸水能力的提升作用,同樣在樣品破裂前都能具有最好的保水效果。綜上所述,本研究提出的天然物聚合水凝膠具有應用潛力,可作為一種綠色肥料緩釋劑和土壤改良劑,對於推廣可持續農業具有重要的意義。
zh_TW
dc.description.abstractObjective of this study is to develop a natural-based polymer hydrogel using sodium alginate as the base material and incorporating carboxymethyl cellulose as a reinforcing agent. The goal is to enhance the controlled-release ability for fertilizers and to improve soil water retention capacity. Two parameters were investigated: the first is to adjust the ratio of sodium alginate to carboxymethyl cellulose, with three ratios of 2:1, 1:1, and 1:2; the second is to change the amount of carboxymethyl cellulose, ranging from 1:0 to 1:5 with constant amount of sodium alginate.
The results indicate that the hydrogel effectively reduce the release rate of nitrogen and phosphorus fertilizers. Carboxymethyl cellulose, a key material for absorption and release in this study, demonstrated a positive correlation with the amount of hydrogel. Furthermore, the water retention test also confirmed the hydrogel's ability to enhance soil water absorption. The synthesized hydrogel was able to maintain excellent water retention until the point of rupture. In conclusion, the natural-based hydrogel synthesized in this study demonstrated great potential as a green controlled-release agent for fertilizer and soil conditioner. It could contribute significantly for sustainable agriculture.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:07:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:07:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 III
Abstract IV
Figure index VII
Table index X
Chapter 1 Introduction 1
Chapter 2 Literature review 4
2.1 Cellulose 4
2.2 Sodium Alginate, SA 12
2.3 Interpenetrating polymer networks, IPN 16
2.4 Hydrogel 23
2.5 Agricultural slow-release/control-release agent 31
Chapter 3 Material and method 37
3.1 Study design 37
3.2 Materials 38
3.3 Equipment 38
3.4 Methods 38
3.4.1 Hydrogel synthesis 38
3.4.2 Stability/Swelling capacity of hydrogels 39
3.4.3 Air Water Retention Test 41
3.4.4 Water phase test 41
3.4.5 Soil testing 43
Chapter 4 Result and discussion 47
4.1 Hydrogel synthesis 47
4.1.1 Synthesis try and error 47
4.1.2 Hydrogel drying 51
4.2 Hydrogel stability and water absorption capacity 56
4.3 Water retention test for hydrogel in air 68
4.3.1 30°C 60% 68
4.3.2 30°C 75% 71
4.4 Water phase test 74
4.4.1 Conductivity calibration curve 74
4.4.2 Fertilizer controlled-release in water 77
4.5 Soil test 88
4.5.1 Soil select 88
4.5.2 Xerogel soil water retention test 92
4.5.3 Hydrogel soil water retention test 101
4.5.4 Fertilizer controlled-release in soil 106
4.5.5 Pesticide controlled-release in soil 114
Chapter 5 Conclusion 118
Chapter 6 Reference 120
-
dc.language.isoen-
dc.subject海藻酸鈉水凝膠zh_TW
dc.subject控制釋放zh_TW
dc.subject纖維素水凝膠zh_TW
dc.subject農業緩釋zh_TW
dc.subject土壤保水性zh_TW
dc.subjectCellulose hydrogelen
dc.subjectControlled-releaseen
dc.subjectAgricultural slow-releaseen
dc.subjectSodium alginate hydrogelen
dc.subjectSoil water retentionen
dc.title海藻酸鈉合成纖維素水凝膠之控釋應用zh_TW
dc.titleControlled-Release Application of Sodium Alginate Based Cellulose Hydrogelen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee簡士濠;鄒裕民;王尚禮zh_TW
dc.contributor.oralexamcommitteeShih-Hao Jien;Yu-Min Tzou;Shan-Li Wangen
dc.subject.keyword海藻酸鈉水凝膠,纖維素水凝膠,控制釋放,農業緩釋,土壤保水性,zh_TW
dc.subject.keywordSodium alginate hydrogel,Cellulose hydrogel,Controlled-release,Agricultural slow-release,Soil water retention,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202303118-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved