請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89094完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏 | zh_TW |
| dc.contributor.advisor | Jyh-Horng Chen | en |
| dc.contributor.author | 阮宜勁 | zh_TW |
| dc.contributor.author | Yi-Jing Juan | en |
| dc.date.accessioned | 2023-08-16T17:06:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] Y. Y. Chen, H. Y. Lai, S. H. Lin, C. W. Cho, W. H. Chao, C. H. Liaod, S. Tsang, Y. F. Chen, and S. Y. Lin, “Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic lesion in rat brain,” Journal of Neuroscience Methods, vol. 182, p. 6–16, 05 2009.
[2] N. Todd, Y. Zhang, M. Arcaro, L. Becerra, D. Borsook, M. Livingstone, and N. McDannold, “Focused ultrasound induced opening of the blood-brain barrier disrupts inter-hemispheric resting state functional connectivity in the rat brain,” NeuroImage, vol. 414-422, 09 2018. [3] Z. Haneef, A. Lenartowicz, H. J. Yeh, H. S. Levin, J. E. Jr., and J. M. Stern, “Functional connectivity of hippocampal networks in temporal lobe epilepsy,” Epilepsia, vol. 55, no. 1, p. 137–145, 04 2014. [4] C. Y. Chien, Y. H. Yang, Y. Gong, Y. M. Yue, and H. Chen, “Blood-brain barrier opening by individualized closed-loop feedback control of focused ultrasound,”BME Frontiers, vol. 2022, p. 9867230, 04 2022. [5] L. S. Vidyaratne and K. M. Iftekharuddin, “Real-time epileptic seizure detection using eeg,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp. 2146–2156, 01 2017. [6] R. S. Fisher, W. van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. E. Jr.,“Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe),” Epilepsia, vol. 46, no. 4, pp. 470–472, 03 2005. [7] P. Kwan and M. J. Brodie, “Refractory epilepsy: mechanisms and solutions,” Expert Review of Neurotherapeutics, vol. 6, no. 3, pp. 397–406, 01 2014. [8] S. Abramovich and A. Bagić, “Epidemiology of epilepsy,” Neuroepidemiology, vol. 138, pp. 159–171, 2016. [9] K. M. Fiest, K. M. Sauro, S. Wiebe, S. B. Patten, C.-S. Kwon, J. Dykeman, T. Pringsheim, D. L. Lorenzetti, and N. Jetté, “Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies,” Neurology, vol. 88, no. 3, pp. 296–303, 01 2017. [10] R. S. Fisher, J. H. Cross, J. A. French, N. Higurashi, E. Hirsch, F. E. Jansen, L. Lagae, S. L. Moshé, J. Peltola, E. R. Perez, I. E. Scheffer, and S. M. Zuberi, “Operational classification of seizure types by the international league against epilepsy: Position paper of the ilae commission for classification and terminology,” Epilepsia, vol. 58, no. 4, pp. 522–530, 03 2017. [11] R. Guerrini, C. Marini, and C. Barba, “Generalized epilepsies,” Handbook of Clinical Neurology, vol. 161, pp. 3–15, 07 2019. [12] T. A. F. Jr, E. H. Middlebrooks, W. H. Tzu, M. R. Neto, and V. M. Holanda, “Postmortem dissections of the papez circuit and nonmotor targets for functional neurosurgery,” World Neurosurgery, vol. 144, pp. e866–e875, 11 2020. [13] A. K. Sharma, R. Y. Reams, W. H. Jordan, M. A. Miller, H. L. Thacker, and P. W. Snyder, “Mesial temporal lobe epilepsy: Pathogenesis, induced rodent models and lesions,” Toxicologic Pathology, vol. 35, p. 984–999, 07 2007. [14] K. L. Dell, M. J. Cook, and M. I. Maturana, “Deep brain stimulation for epilepsy: Biomarkers for optimization,” Curr Treat Options Neurol, vol. 21, p. 47–63, 09 2019. [15] J. E. Jr, “Introduction to temporal lobe epilepsy,” Epilepsy Research, vol. 26, no. 1, pp. 141–150, 12 1996. [16] M. Wong, “A critical review of mtor inhibitors and epilepsy: from basic science to clinical trials,” Expert Review of Neurotherapeutics, vol. 13, no. 6, pp. 657–669, 01 2014. [17] J. E. Jr, “What can we do for people with drug-resistant epilepsy?” Neurology, vol. 87, no. 23, pp. 2483–2489, 01 2016. [18] B. C. Jobs and G. D. Cascin, “Resective epilepsy surgery for drug-resistant focal epilepsy: A review,” JAMA, vol. 313, no. 3, pp. 285–293, 01 2015. [19] M. S. Markert and R. S. Fisher, “Neuromodulation - science and practice in epilepsy: Vagus nerve stimulation, thalamic deep brain stimulation, and responsive neurostimulation,” Expert Review of Neurotherapeutics, vol. 19, no. 1, pp. 17–29, 04 2018. [20] T. A. M. B. van der Vlis, O. E. M. G. Schijns, F. L. W. V. J. Schaper, G. Hoogland, P. Kubben, L. Wagner, R. Rouhl, Y. Temel, and L. Ackermans, “Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy,” Neurosurgical Review, vol. 42, pp. 287–296, 01 2019. [21] N. R. Williams, K. D. Sudheimer, B. S. Bentzley, J. Pannu, K. H. Stimpson, D. Duvio, K. Cherian, J. Hawkins, K. H. Scherrer, B. Vyssoki, D. DeSouza, K. S. Raj, J. Keller, and A. F. Schatzberg, “High-dose spaced theta-burst tms as a rapid-acting antidepressant in highly refractory depression,” Brain, vol. 141, no. 3, pp. e18–e18, 02 2018. [22] R. Schulz, C. Gerloff, and F. C. Hummel, “Non-invasive brain stimulation in neurological diseases,” Neuropharmacology, vol. 64, pp. 579–587, 01 2013. [23] C. C. Lee, C. C. Chou, F. J. Hsiao, Y. H. Chen, C. F. Lin, C. J. Chen, S. J. Peng, H. L. Liu, and H. Y. Yu, “Pilot study of focused ultrasound for drug-resistant epilepsy,” epilepsia, vol. 63, pp. 162–175, 10 2022. [24] S. G. Chen, C. H. Tsai, C. J. Lin, L. C. Chiac, H. Y. Yu, T. H. Hsieh, and H. L. Liu, “Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo,” Brain Stimulation, vol. 13, pp. 35–46, 09 2020. [25] P. C. Chu, H. Y. Yu, C. C. Lee, R. Fisher, and H. L. Liu, “Pulsed‑focused ultrasound provides long‑term suppression of epileptiform bursts in the kainic acid‑induced epilepsy rat model,” Neurotherapeutics, vol. 19, no. 1, p. 1368–1380, 05 2022. [26] B. K. Min, A. Bystritsky, K. I. Jung, K. Fischer, Y. Zhang, L. S. M. andSang In Park, Y. A. Chung, F. A. Jolesz1, and S. S. Yoo, “Focused ultrasound-mediated suppression of chemically-induced acute epileptic eeg activity,” BMC Neuroscience, vol. 123, no. 23, 03 2011. [27] G. Darmani, T. O. Bergmann, K. B. Pauly, C. F. Caskey, L. de Lecea, A. Fomenko, E. Fouragnan, W. Legon, K. R. Murphy, T. Nandi , M. A. Phipps, G. Pinton, H. Ramezanpour, J. Sallet, S. N. Yaakub, S. S. Yoo, and R. Chen, “Non-invasive transcranial ultrasound stimulation for neuromodulation,” Clinical Neurophysiology, vol. 135, pp. 51–73, 03 2022. [28] S. S. Yoo, A. Bystritsky, J. H. Lee, Y. Zhang, K. Fischer, B. K. Min, N. J. McDannold, A. P. Leone, and F. A. Jolesz, “Focused ultrasound modulates region-specific brain activity,” NeuroImage, vol. 56, no. 1, p. 1267–1275, 02 2011. [29] M. L. Prieto, K. Firouzi, B. T. Khuri-Yakub, D. V. Madison, and M. Maduke, “Spike frequency–dependent inhibition and excitation of neural activity by high-frequency ultrasound,” J. Gen. Physiol., vol. 152, no. 11, p. e202012672, 03 2020. [30] E. N. Petersen, H. W. Chung, A. Nayebosadri, and S. B. Hansen, “Kinetic disruption of lipid rafts is a mechanosensor for phospholipase d,” Nature Communications, vol. 13873, no. 7, 12 2016. [31] Y. Tufail, . A. Matyushov, N. Baldwin, M. L. Tauchmann, J. Georges, A. Yoshihiro, S. I. H. Tillery, , and W. J. Tyler, “Transcranial pulsed ultrasound stimulates intact brain circuits,” Neurotechnique, vol. 66, no. 1, p. 681–694, 06 2010. [32] M. Zhang, B. Li, X. Lv, S. Liu, Y. Liu, R. Tang, Y. Lang, Q. Huang, and J. He, “Low-intensity focused ultrasound-mediated attenuation of acute seizure activity based on eeg brain functional connectivity,” Brain science, vol. 11, p. 711, 05 2021. [33] T. Kim, T. KIM, J. Joo, I. Ryu, S. Lee, E. Park, and Y. Shon, “Modulation of eeg frequency characteristics by low-intensity focused ultrasound stimulation in a pentylenetetrazol-induced epilepsy model,” IEEE Access, vol. 9, no. 1, pp. 59 900 – 59 909, 04 2021. [34] E. Bubrick, P. J. White, T. Mariano, J. Orozco, M. Purandare, and N. McDannold,“Transcranial focused ultrasound for epilepsy,” Brain Stimulation, vol. 14, no. 6, p. 1747, 11 2021. [35] L. Ai, J. K. Mueller, A. Grant, Y. Eryaman, and W. Legon, “Transcranial focused ultrasound for bold fmri signal modulation in humans,” 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1758–1761, 2016. [36] L. Ai, P. Bansal, J. K. Mueller, and W. Legon, “Effects of transcranial focused ultrasound onhuman primary motor cortex using 7t fmri: a pilot study,” BMC Neuroscience, vol. 19, no. 56, 09 2018. [37] X. M. Chen, D. H. Huang, Z. R. Chen, W. Ye, Z. X. Lv, and J. O. Zheng, “Temporal lobe epilepsy: Decreased thalamic resting-state functional connectivity and their relationships with alertness performance,” Epilepsy Behavior, vol. 44, p. 47–54, 01 2015. [38] A. Vetkas, J. Germann, G. Elias, A. Loh, A. Boutet, K. Yamamoto, C. Sarica, N. Samuel, V. Milano, A. Fomenko, B. Santyr, J. Tasserie, D. Gwun, H. H. Jung, T. Valiante, G. M. Ibrahim, R. Wennberg, S. K. Kalia, , and A. M. Lozano, “Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs,” BRAIN COMMUNICATIONS, vol. 4, pp. 1–15, 04 2022. [39] E. H. Middlebrooks, S. S. Grewal, M. Stead, B. N. Lundstrom, G. A. Worrell, , and J. J. V. Gompel, “Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes,” Neurosurg Focus, vol. 45, pp. E7–E16, 08 2018. [40] K. Borges, M. Gearing, D. L. McDermott, A. B. Smith, A. G. Almonte, B. H. Wainer, and R. Dingledine, “Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model,” Experimental Neurology, vol. 182, p. 21–34, 02 2003. [41] A. C. Ciltas, E. Ozdemir, E. Gumus, A. S. Taskiran, H. Gunes, and G. Arslan,“The anticonvulsant effects of alpha‑2 adrenoceptor agonist dexmedetomidine on pentylenetetrazole‑induced seizures in rats,” Neurochemical Research, vol. 47, p. 305–314, 01 2022. [42] J. Paasonen, P. Stenroos, R. A. Salo, V. Kiviniemi, and O. Grohn, “Functional connectivity under six anesthesia protocols and the awake condition in rat brain,” NeuroImage, vol. 172, p. 9–20, 01 2018. [43] B. P. Keogh, D. Cordes, L. Stanberry, B. D. Figler, C. A. Robins, B. L. Tempel, C. Green, A. Emmi, K. Maravilla, and P. A. Schwartzkroin, “Bold-fmri of ptz-induced seizures in rats,” Epilepsy Research, vol. 66, p. 75–90, 07 2005. [44] G. Lu, X. Qian, J. Castillo, R. Li, L. Jiang, H. Lu, K. K. Shung, M. S. Humayun, B. B. Thomas, and Q. Zhou, “Transcranial focused ultrasound for noninvasive neuromodulation of the visual cortex,” IEEE TRANSACTIONS ON ULTRASONICS, vol. 18, no. 1, pp. 21–28, 01 2021. [45] G. K. Elbel, R. Kalisch, M. Czisch, R. Hipp, and D. Auer, “Design and importance of a continuous physiologic monitoring for fmri in rats at 7t and first results with the novel anesthetic sevoflurane,” Proc ISMRM 8th Scientific Meeting, vol. 928, 01 2000. [46] P. Piwowarczyk, E. Rypulak, J. S. Sławecka, D. Nieoczym, K. Socała, A. Wlaz, P. Wlaz, W. Turski, M. Czuczwar, and M. Borys, “Propofol and sevoflurane anesthesia in early childhood do not influence seizure threshold in adult rats,” International Journal of Environmental Research and Public Health, vol. 18, p. 12367, 11 2021. [47] N. Todd, Y. Zhang, M. Livingstone, D. Borsook, and N. McDannold, “The neurovascular response is attenuated by focused ultrasound-mediated disruption of the blood-brain barrier,” NeuroImage, vol. 201, p. 116010, 07 2019. [48] P. L. Yi, S. B. Jou, Y. J. Wu, and F. C. Chang, “Manipulation of epileptiform electrocorticograms (ecogs) and sleep in rats and mice by acupuncture,” Journal of Visualized Experiments, vol. 118, pp. 1–8, 12 2016. [49] M. N. DeSalvo, U. Schridde, A. M. Mishra, J. E. Motelow, M. J. Purcaro, N. Danielson, X. Bai, F. Hyder, and H. Blumenfeld, “Focal bold fmri changes in bicuculline-induced tonic–clonic seizures in the rat,” NeuroImage, vol. 50, p. 902–909, 01 2010. [50] J. Luckl, J. Keating, , and J. H. Greenberg, “Alpha-chloralose is a suitable anesthetic for chronic focal cerebral ischemia studies in the rat: A comparative study,” NIH ublic Access, vol. 1191, p. 157–167, 01 2008. [51] E. Cagetti, G. Pinna, A. Guidotti, K. Baicy, and R. W. Olsen, “Chronic intermittent thanol (cie) administration in rats decreases levels of neurosteroids in hippocampus, ccompanied by altered behavioral responses to neurosteroids and memory function,” Neuropharmacology, vol. 46, p. 570–579, 01 2004. [52] J. D. Kenny, M. B. Westover, S. Ching, E. N. Brown, and K. Solt, “Propofol and evoflurane induce distinct burst suppression patterns in rats,” Frontiers in Systems euroscience, vol. 8, pp. 237–250, 12 2014. [53] Paxinos, George, Watson, and Charles, The rat brain in stereotaxic coordinates: hard cover edition. Elsevier, 2006. [54] M. A. O'REILLY, A. MULLER, and K. HYNYNEN, “Ultrasound insertion loss of rat parietal bone appears to be proportional to animal mass at submegahertz frequencies,” Ultrasound in Med. Biol., vol. 37, no. 11, p. 1930–1937, 07 2011. [55] P. A. Valdés-Hernández, A. Sumiyoshi, H. Nonaka, R. Haga, EduardoAubert-Vásquez, T. Ogawa, Y. Iturria-Medina, J. J. Riera, and R. Kawashima, “An in vivo mri template set for morphometry, tissue segmentation, and fmri localization in rats,” Frontiers in Neuroinformatics, vol. 5, no. 26, pp. 24–33, 11 2011. [56] O. Collignon, M. Davare, E. Olivier, and A. G. D. Volder, “Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. a transcranial magnetic stimulation study,” Brain Topography, vol. 23, pp. 232–240, 01 2009. [57] G. Liu, N. Slater, and A. Perkins, “Epilepsy: Treatment options,” Am Fam Physician, vol. 96, no. 2, pp. 87–96, 07 2017. [58] M. S. Markert and R. S. Fisher, “Neuromodulation - science and practice in epilepsy: Vagus nerve stimulation, thalamic deep brain stimulation, and responsive neurostimulation,” Expert Review of Neurotherapeutics, vol. 115, no. 1, pp. 17–29, 19 2019. [59] R. S. Fisher and A. L. Velasco, “Electrical brain stimulation for epilepsy,” NEUROLOGY, vol. 10, pp. 261–270, 05 2014. [60] D. J. Englot, E. F. Chang, and K. I. August, “Vagus nerve stimulation for epilepsy: a meta analysis of efficacy and predictors of response,” J Neurosurg, vol. 115, pp. 1248–1256, 12 2011. [61] C. N. Heck, D. King-Stephens, A. D. Massey, D. R. Nair, B. C. Jobst, G. L. Barkley, V. Salanova, A. J. Cole, M. C. Smith, R. P. Gwinn, C. Skidmore, P. C. V. Ness, G. K. Bergey, Y. D. Park, I. Miller, E. Geller, P. A. Rutecki, R. Zimmerman, D. C. Spencer, A. Goldman, J. C. Edwards, J. W. Leiphart, R. E. Wharen, J. Fessler, N. B. Fountain, G. A. Worrell, R. E. Gross, S. Eisenschenk, R. B. Duckrow, L. J. Hirsch, C. Bazil, C. A. O'Donovan, F. T. Sun, T. A. Courtney, C. G. Seale, and M. J. Morrell, “Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: Final results of the rns system pivotal trial,” Epilepsia, vol. 55, no. 3, p. 432–441, 08 2014. [62] G. K. Bergey, M. J. Morrell, E. M. Mizrahi, A. Goldman, D. King-Stephens, D. Nair, S. Srinivasan, B. Jobst, R. E. Gross, D. C. Shields, G. Barkley, V. Salanova, P. Olejniczak, A. Cole, S. S. Cash, K. Noe, R. Wharen, G. Worrell, A. M. Murro, J. Edwards, M. Duchowny, D. Spencer, M. Smith, E. Geller, R. Gwinn, C. Skidmore, S. Eisenschenk, M. Berg, C. Heck, P. V. Ness, N. Fountain, P. Rutecki, A. Massey, C. O'Donovan, D. Labar, R. B. Duckrow, L. J. Hirsch, T. Courtney, F. T. Sun, and C. G. Seale, “Long-term treatment with responsive brain stimulation in adults with refractory partial seizures,” American Academy of Neurology, vol. 84, pp. 810–818, 02 2015. [63] H. Hakimova, S. Kim, K. Chu, S. K. Lee, B. Jeong, and D. Jeon, “Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy,” Epilepsy Behavior, vol. 49, pp. 26–32, 05 2015. [64] J. Zou, L. Meng, Z. Lin, Y. Qiao, C. Tie, Y. Wang, X. Huang, T. Yuan, Y. Chi, W. Meng, L. Niu, Y. Guo, and H. Zheng, “Ultrasound neuromodulation inhibits seizures in acute epileptic monkeys,” iScience, vol. 23, p. 101066, 05 2020. [65] Z. Lin, L. Meng, J. Zou, W. Zhou, X. Huang, S. Xue, T. Bian, T. Yuan, L. Niu, Y. Guo, and H. Zheng, “Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy,” Theranostics, vol. 10, no. 12, pp. 5514–5526, 01 2020. [66] T. J. Manuel, J. Kusunose, X. Zhan, X. Lv, E. Kang, A. Yang, Z. Xiang, and charles f. caskey, “Ultrasound neuromodulation depends on pulse repetition frequency and can modulate inhibitory effects of ttx,” Scientific RepoRtS, vol. 10, p. 15347, 01 2020. [67] R. S. Fisher, “Deep brain stimulation of thalamus for epilepsy,” Neurobiology of Disease, vol. 179, p. 106045, 02 2023. [68] A. Cukiert, C. M. Cukiert, J. A. Burattini, and P. P. Mariani, “Seizure outcome during bilateral, continuous, thalamic centromedian nuclei deep brain stimulation in patients with generalized epilepsy: a prospective, open-label study,” Seizure: European Journal of Epilepsy, vol. 81, p. 304–309, 08 2020. [69] P. F. Yang, M. A. Phipps, S. Jonathan, A. T. Newton, N. Byun, J. C. Gore, W. A. Grissom, C. F. Caskey, and L. M. Chen, “Bidirectional and state-dependent modulation of brain activity by transcranial focused ultrasound in non-human primates,” Brain Stimulation, vol. 14, pp. 261–271, 01 2021. [70] C. Sarica, K. Yamamoto, A. Loh, G. J. Elias, A. Boutet, R. Madhavan, J. Germann, A. Zemmar, D. Gwun, J. Tasserie, D. M. Andrade, M. Hodaie, S. K. Kalia, R. A. Wennberg, and A. M. Lozano, “Blood oxygen level-dependent (bold) response patterns with thalamic deep brain stimulation in patients with medically refractory epilepsy,” Epilepsy Behavior, vol. 122, p. 108153, 06 2021. [71] C. V. T. Diaz, G. González‑Escamilla, D. Ciolac, M. N. García, P. P. Rivas, R. G. Sola, A. Barbosa, J. Pastor, L. Vega‑Zelaya, and S. Groppa, “Network substrates of centromedian nucleus deep brain stimulation in generalized pharmacoresistant epilepsy,” Neurotherapeutics, vol. 18, p. 1665–1677, 04 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89094 | - |
| dc.description.abstract | 癲癇是一種神經系統疾病,其特點是不正常的神經放電。目前已有多種治療癲癇的方法,包括迷走神經刺激、深部腦刺激和反應性神經刺激。作為一種替代性神經調控療法,聚焦式超音波(Focused Ultrasound, FUS)被發現具有調控局部大腦興奮性的潛力,並且最近研究表明脈衝式(burst-mode)超音波刺激具有抑制癲癇的效果。在本研究中,我們嘗試使用靜息態功能性磁振造影(resting-state functional MRI, rs-fMRI)和腦電訊號(Electroencephalography, EEG),來研究藥物誘發癲癇的小動物模型中,聚焦式超音波脈動引起的抗癲癇效應的可行性。
本研究結果展示了在同一癲癇動物模型中,成功整合長期的rs-fMRI監測和EEG記錄,以評估藥物注射後誘發的癲癇信號。EEG結果顯示,不正常放電所引起的尖波(spike),注射藥物後10分鐘內spike數量由17.5上升至118.8,後續60分鐘內隨時間降低至75.8;fMRI結果顯示功能性連接相關係數(Correlation Coefficient, C.C.)由0.19上升至0.65,後續60分鐘內隨時間降低至0.29。該模型也可觀察FUS對癲癇的抑制效果,在10分鐘的FUS施打後,最高可抑制52.9\%的spike數量;超音波誘導的神經調控引起了腦區與腦區間的功能性連結的變化,rs-fMRI結果顯示在FUS施打後,巴貝茲迴路(Papez circuit)相關腦區,功能性連結C.C.相較於僅有藥物誘發癲癇,最高下降了61.8\%,使原本興奮的腦區趨於靜息態。藥物誘發癲癇可從功能性連結觀察到全腦興奮的現象,而聚焦式超音波誘發的神經調控使得腦區與腦區間的功能性連結發生變化,分析結果在癲癇模型中EEG的spike與fMRI的C.C.呈現高度相關性,根據本研究可得出全腦C.C.平均數高於0.36代表腦呈現癲癇狀態,而FUS治療後C.C.若低於0.31代表癲癇已一定程度被抑制。 綜上所述,本研究建置的模型可藉由rs-fMRI和EEG探究藥物誘發癲癇的生理訊號改變,也可觀察超音波施於癲癇模型的神經調控效應。然而,為了理解利用超音波干預癲癇的機制與背後的聯繫,對於FUS參數的優化、施打腦區的選擇、以及未來可用蛋白染色探討FUS神經調控機制等,尚需更多研究與實驗。 | zh_TW |
| dc.description.abstract | Epilepsy is a neurological disorder characterized by abnormal neuronal discharges. A number of modalities have been developed to interfere with epilepsy, including vagus nerve stimulation, deep brain stimulation, and responsive neurostimulation. As an alternative neuromodulation therapy, focused ultrasound (FUS) has been found to have the potential to modulate regional brain excitability, and recently burst-mode ultrasound stimulation has been shown to have an epileptic suppressing effect. In this study, we investigate the feasibility of utilizing resting-state functional MRI(rs-fMRI) and Electroencephalography(EEG) to investigate the anti-epileptic effect induced by focused ultrasound pulsations in a drug-induced epileptic small-animal model.
The results of this study demonstrate the successful integration of longitudinal rs-fMRI monitoring and EEG recordings in the same epilepsy animal model to assess drug-induced epileptic signals. The EEG results showed that the number of spikes caused by abnormal discharges increased from 17.5 to 118.8 within 10 minutes after drug injection and then decreased to 75.8 within the following 60 minutes. The fMRI results showed that the functional connectivity correlation coefficient (C.C.) increased from 0.19 to 0.65 within 10 minutes after drug injection and then decreased to 0.29 within the following 60 minutes. The model also observed the inhibitory effect of FUS on epilepsy, with a maximum suppression of 52.9\% of spike numbers after 10 minutes FUS. FUS-induced neuromodulation resulted in changes in brain region-to-region functional connectivity. The rs-fMRI results showed that after FUS, the C.C. of the Papez circuit-related brain regions decreased by up to 61.8\% compared to drug-induced epilepsy alone, indicating a shift towards a resting state in originally excitable brain regions. Drug-induced epilepsy was observed in functional connectivity as increased brain excitability, while FUS-induced neuromodulation led to changes in brain region-to-region functional connectivity. The analysis showed a high correlation between EEG spikes and fMRI C.C. in the epilepsy model, and based on this study, a C.C. average higher than 0.36 indicated an epileptic state, while a C.C. lower than 0.31 after FUS treatment suggested epilepsy suppression. In summary, the model established in this study can be utilized to explore the biosignal changes caused by drug-induced epilepsy using rs-fMRI and EEG and observe the neuromodulation effects of FUS in the epilepsy model. However, to better understand the mechanism and underlying connections of using FUS intervention for epilepsy, further research and experiments are required to optimize FUS parameters, determine optimal stimulation site, and explore FUS neuromodulation mechanisms using protein staining. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:06:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T17:06:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract iv 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1 癲癇疾病現況 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 癲癇治療方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 聚焦式超音波治療癲癇 . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 聚焦式超音波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 超音波神經調控治療癲癇 . . . . . . . . . . . . . . . . . . . . . . 9 1.4 評估治療效果:功能性磁振造影與腦電訊號 . . . . . . . . . . . . . 13 1.4.1 功能性磁振造影 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.2 腦電訊號 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 研究目的與貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第二章 方法與理論 20 2.1 實驗架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 動物模型準備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 癲癇藥物 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 麻醉藥物 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.3 電極植入手術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 聚焦式超音波刺激系統 . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 硬體配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2 聲場量測與強度換算 . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 刺激參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 EEG 量測實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 MRI 掃瞄實驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 資料分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6.1 fMRI 資料後處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6.2 EEG 資料後處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.7 統計分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 第三章 實驗結果 46 3.1 藥物誘發癲癇動物 EEG 結果 . . . . . . . . . . . . . . . . . . . . . . 46 3.2 超音波治療後藥物誘發癲癇動物 EEG 結果 . . . . . . . . . . . . . . 48 3.3 藥物誘發癲癇動物 fMRI 結果 . . . . . . . . . . . . . . . . . . . . . . 49 3.4 超音波治療後藥物誘發癲癇動物 fMRI 結果 . . . . . . . . . . . . . . 58 3.5 統計分析結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.1 EEG 組分析結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 fMRI 組分析結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 第四章 討論 75 4.1 神經調控抑制癲癇文獻比較 . . . . . . . . . . . . . . . . . . . . . . 75 4.2 超音波抑制癲癇文獻比較 . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 神經調控刺激視丘文獻比較 . . . . . . . . . . . . . . . . . . . . . . 78 4.4 fMRI 功能性連結探討癲癇 . . . . . . . . . . . . . . . . . . . . . . . 79 4.5 研究限制與優勢 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 第五章 結論與未來展望 86 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.1 機轉探討 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.2 封閉迴路超音波控制系統 . . . . . . . . . . . . . . . . . . . . . . 91 參考文獻 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 神經調控 | zh_TW |
| dc.subject | 癲癇 | zh_TW |
| dc.subject | 聚焦式超音波 | zh_TW |
| dc.subject | 腦電訊號 | zh_TW |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | Epilepsy | en |
| dc.subject | Focused Ultrasound | en |
| dc.subject | Neuromodulation | en |
| dc.subject | Functional MRI | en |
| dc.subject | Electroencephalography | en |
| dc.title | 以功能性磁振造影及腦電訊號觀察超音波施於癲癇模型之神經調控效應 | zh_TW |
| dc.title | Focused Ultrasound Neuromodulation Combined with Resting-State Functional MRI and Electroencephalography to Investigate and Intervene Drug-Induced Epilepsy Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 劉浩澧 | zh_TW |
| dc.contributor.coadvisor | Hao-Li Liu | en |
| dc.contributor.oralexamcommittee | 邱銘章;林慶波;陳右穎;葉秩光 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Jang Chiu;Ching-Po Lin;You-Yin Chen;Chih-Kuang Yeh | en |
| dc.subject.keyword | 功能性磁振造影,腦電訊號,聚焦式超音波,癲癇,神經調控, | zh_TW |
| dc.subject.keyword | Functional MRI,Electroencephalography,Focused Ultrasound,Epilepsy,Neuromodulation, | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU202303308 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 16.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
