請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林志民 | zh_TW |
| dc.contributor.advisor | Jim Jr-Min Lin | en |
| dc.contributor.author | 吳彥儒 | zh_TW |
| dc.contributor.author | Yen-Ju Wu | en |
| dc.date.accessioned | 2023-08-16T17:04:06Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | A. M. Thompson, Science, 1992, 256, 1157-1165.
J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fischer, L. Ganzeveld, H. Harder, M. G. Lawrence, M. Martinez, D. Taraborrelli and J. Williams, Nature, 2008, 452, 737-740. Y. Matsumi, F. J. Comes, G. Hancock, A. Hofzumahaus, A. J. Hynes, M. Kawasaki and A. R. Ravishankara, Journal of Geophysical Research: Atmospheres, 2002, 107, ACH 1-1-ACH 1-12. R. M. Harrison, J. Yin, R. M. Tilling, X. Cai, P. W. Seakins, J. R. Hopkins, D. L. Lansley, A. C. Lewis, M. C. Hunter, D. E. Heard, L. J. Carpenter, D. J. Creasey, J. D. Lee, M. J. Pilling, N. Carslaw, K. M. Emmerson, A. Redington, R. G. Derwent, D. Ryall, G. Mills and S. A. Penkett, Science of The Total Environment, 2006, 360, 5-25. N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto and J. H. Kroll, Physical Chemistry Chemical Physics, 2011, 13, 10848-10857. S. E. Paulson and J. J. Orlando, Geophysical Research Letters, 1996, 23, 3727-3730. K. S. Docherty and P. J. Ziemann, Aerosol Science and Technology, 2003, 37, 877-891. L. Yao, X. Fan, C. Yan, T. Kurtén, K. R. Daellenbach, C. Li, Y. Wang, Y. Guo, L. Dada, M. P. Rissanen, J. Cai, Y. J. Tham, Q. Zha, S. Zhang, W. Du, M. Yu, F. Zheng, Y. Zhou, J. Kontkanen, T. Chan, J. Shen, J. T. Kujansuu, J. Kangasluoma, J. Jiang, L. Wang, D. R. Worsnop, T. Petäjä, V.-M. Kerminen, Y. Liu, B. Chu, H. He, M. Kulmala and F. Bianchi, Environmental Science & Technology Letters, 2020, 7, 809-818. 10. R. L. Mauldin III, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V. M. Kerminen and M. Kulmala, Nature, 2012, 488, 193-196. Y.-P. Lee, The Journal of Chemical Physics, 2015, 143, 020901. M. C. Smith, W. Chao, K. Takahashi, K. A. Boering and J. J.-M. Lin, The Journal of Physical Chemistry A, 2016, 120, 4789-4798. L. Sheps, A. M. Scully and K. Au, Physical Chemistry Chemical Physics, 2014, 16, 26701-26706. W. Chao, J.-T. Hsieh, C.-H. Chang and J. J.-M. Lin, Science, 2015, 347, 751-754. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok and e. al., Science, 2013, 340, 177-180. M. A. H. Khan, C. J. Percival, R. L. Caravan, C. A. Taatjes and D. E. Shallcross, Environmental Science: Processes & Impacts, 2018, 20, 437-453. D. Stone, M. Blitz, L. Daubney, N. U. M. Howes and P. Seakins, Physical Chemistry Chemical Physics, 2014, 16, 1139-1149. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Science, 2012, 335, 204-207. J.-N. Yang, K. Takahashi and J. J.-M. Lin, The Journal of Physical Chemistry A, 2022, 126, 6160-6170. T. Berndt, H. Herrmann and T. Kurtén, Journal of the American Chemical Society, 2017, 139, 13387-13392. T. D. Sharkey, A. E. Wiberley and A. R. Donohue, Annals of Botany, 2007, 101, 5-18. K. C. Wells, D. B. Millet, V. H. Payne, M. J. Deventer, K. H. Bates, J. A. de Gouw, M. Graus, C. Warneke, A. Wisthaler and J. D. Fuentes, Nature, 2020, 585, 225-233. M. Rosenkranz, Y. Chen, P. Zhu and A. C. Vlot, The Plant Journal, 2021, 108, 617-631. M. R. Papiez, M. J. Potosnak, W. S. Goliff, A. B. Guenther, S. N. Matsunaga and W. R. Stockwell, Atmospheric Environment, 2009, 43, 4109-4123. K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J. F. Müller, U. Kuhn, P. Stefani and W. Knorr, Atmos. Chem. Phys., 2014, 14, 9317-9341. T. B. Nguyen, G. S. Tyndall, J. D. Crounse, A. P. Teng, K. H. Bates, R. H. Schwantes, M. M. Coggon, L. Zhang, P. Feiner, D. O. Milller, K. M. Skog, J. C. Rivera-Rios, M. Dorris, K. F. Olson, A. Koss, R. J. Wild, S. S. Brown, A. H. Goldstein, J. A. de Gouw, W. H. Brune, F. N. Keutsch, J. H. Seinfeld and P. O. Wennberg, Physical Chemistry Chemical Physics, 2016, 18, 10241-10254. Y.-H. Lin, C. Yin, K. Takahashi and J. J.-M. Lin, Communications Chemistry, 2021, 4, 12. D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams and J. Xu, Atmos. Chem. Phys., 2015, 15, 6283-6304. G. M. Wolfe, J. Kaiser, T. F. Hanisco, F. N. Keutsch, J. A. de Gouw, J. B. Gilman, M. Graus, C. D. Hatch, J. Holloway, L. W. Horowitz, B. H. Lee, B. M. Lerner, F. Lopez-Hilifiker, J. Mao, M. R. Marvin, J. Peischl, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. A. Thornton, P. R. Veres and C. Warneke, Atmos Chem Phys, 2016, 16, 2597-2610. R. Criegee and G. Wenner, Justus Liebigs Annalen der Chemie, 1949, 564, 9-15. J. J.-M. Lin and W. Chao, Chemical Society Reviews, 2017, 46, 7483-7497. T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin Iii, M. Sipilä, M. Kulmala and H. Herrmann, Physical Chemistry Chemical Physics, 2014, 16, 19130-19136. T. Berndt, R. Kaethner, J. Voigtländer, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipilä, M. Kulmala and M. Olzmann, Physical Chemistry Chemical Physics, 2015, 17, 19862-19873. Y.-P. Chang, H.-H. Chang and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2018, 20, 97-102. Z. S. Mir, T. R. Lewis, L. Onel, M. A. Blitz, P. W. Seakins and D. Stone, Physical Chemistry Chemical Physics, 2020, 22, 9448-9459. Z. J. Buras, R. M. I. Elsamra, A. Jalan, J. E. Middaugh and W. H. Green, The Journal of Physical Chemistry A, 2014, 118, 1997-2006. B. Ruscic, The Journal of Physical Chemistry A, 2013, 117, 11940-11953. C. A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival and D. E. Shallcross, Journal of the American Chemical Society, 2008, 130, 11883-11885. P. Millard, J.-C. Portais and P. Mendes, BMC Systems Biology, 2015, 9, 64. C. F. Stratton, M. B. Poulin, Q. Du and V. L. Schramm, ACS Chemical Biology, 2017, 12, 342-346. M. J. Knapp, K. Rickert and J. P. Klinman, Journal of the American Chemical Society, 2002, 124, 3865-3874. A. Matsugi, K. Suma and A. Miyoshi, Physical Chemistry Chemical Physics, 2011, 13, 4022-4031. A. M. Green, V. P. Barber, Y. Fang, S. J. Klippenstein and M. I. Lester, Proceedings of the National Academy of Sciences, 2017, 114, 12372-12377. A. Kohen, Progress in Reaction Kinetics and Mechanism, 2003, 28, 119-156. M. Wolfsberg, Accounts of Chemical Research, 1972, 5, 225-233. R. E. Weston, Tetrahedron, 1959, 6, 31-35. H. E. Baumgarten, Mechanism and Theory in Organic Chemistry, Third Edition (Lowry, Thomas H.; Richardson, Kathleen Schuller), HARPER & ROW, 1989. P. A. Nielsen, S. S. Glad and F. Jensen, Journal of the American Chemical Society, 1996, 118, 10577-10583. K. B. Wiberg, Chemical Reviews, 1955, 55, 713-743. J. Bigeleisen, Science, 1965, 147, 463-471. C. Schmuck, Angewandte Chemie International Edition, 2006, 45, 1019-1020. T. Hama, H. Ueta, A. Kouchi and N. Watanabe, Proceedings of the National Academy of Sciences, 2015, 112, 7438-7443. M. Gómez-Gallego and M. A. Sierra, Chemical Reviews, 2011, 111, 4857-4963. A. Streitwieser, Jr., R. H. Jagow, R. C. Fahey and S. Suzuki, Journal of the American Chemical Society, 1958, 80, 2326-2332. J. M. Garver, Y.-r. Fang, N. Eyet, S. M. Villano, V. M. Bierbaum and K. C. Westaway, Journal of the American Chemical Society, 2010, 132, 3808-3814. R. P. Bell, The tunnel effect in chemistry / R.P. Bell, Chapman and Hall, London ;, 1980. Z. D. Nagel and J. P. Klinman, Chem Rev, 2010, 110, Pr41-67. J. H. Skone, A. V. Soudackov and S. Hammes-Schiffer, Journal of the American Chemical Society, 2006, 128, 16655-16663. Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy and M. I. Lester, The Journal of Chemical Physics, 2016, 145, 234308. C. Yin and K. Takahashi, Physical Chemistry Chemical Physics, 2018, 20, 20217-20227. L. Sheps, The Journal of Physical Chemistry Letters, 2013, 4, 4201-4205. W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2014, 16, 10438-10443. P. Spietz, J. C. Gómez Martín and J. P. Burrows, Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 50-67. S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat and e. al., Journal, 2009, DOI: hdl:2014/41649. C.-Y. Chung, E. P. Chew, B.-M. Cheng, M. Bahou and Y.-P. Lee, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1572-1576. O. C. Bridgeman and E. W. Aldrich, Journal of Heat Transfer, 1964, 86, 279-286. F. T. Miles and A. W. C. Menzies, Journal of the American Chemical Society, 1936, 58, 1067-1069. M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering and J. J.-M. Lin, The Journal of Physical Chemistry Letters, 2015, 6, 2708-2713. W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee and J. J.-M. Lin, The Journal of Chemical Physics, 2014, 141, 104308. Y.-H. Huang, L.-W. Chen and Y.-P. Lee, The Journal of Physical Chemistry Letters, 2015, 6, 4610-4615. R. Wang, M. Wen, S. Liu, Y. Lu, L. Makroni, B. Muthiah, T. Zhang, Z. Wang and Z. Wang, Physical Chemistry Chemical Physics, 2021, 23, 12749-12760. A. B. Ryzhkov and P. A. Ariya, Chemical Physics Letters, 2006, 419, 479-485. L.-C. Lin, W. Chao, C.-H. Chang, K. Takahashi and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2016, 18, 28189-28197. L. Sheps, B. Rotavera, A. J. Eskola, D. L. Osborn, C. A. Taatjes, K. Au, D. E. Shallcross, M. A. H. Khan and C. J. Percival, Physical Chemistry Chemical Physics, 2017, 19, 21970-21979. L. Chen, W. Wang, L. Zhou, W. Wang, F. Liu, C. Li and J. Lü, Theoretical Chemistry Accounts, 2016, 135, 252. W. Chao, C. Yin, K. Takahashi and J. J.-M. Lin, The Journal of Physical Chemistry A, 2019, 123, 8336-8348. T. R. Lewis, M. A. Blitz, D. E. Heard and P. W. Seakins, Physical Chemistry Chemical Physics, 2015, 17, 4859-4863. Y. Scribano, N. Goldman, R. J. Saykally and C. Leforestier, The Journal of Physical Chemistry A, 2006, 110, 5411-5419. Y. Liu, F. Liu, S. Liu, D. Dai, W. Dong and X. Yang, Physical Chemistry Chemical Physics, 2017, 19, 20786-20794. L.-C. Lin, H.-T. Chang, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. Jr-Min Lin and K. Takahashi, Physical Chemistry Chemical Physics, 2016, 18, 4557-4568. W. Chao, Y.-H. Lin, C. Yin, W.-H. Lin, K. Takahashi and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2019, 21, 13633-13640. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89085 | - |
| dc.description.abstract | 此實驗在壓力300 Torr和600 Torr以及溫度為298.9 K下以紫外線吸收光譜法測量最簡單克里奇中間體(CH2OO)與水蒸氣反應之動力學同位素效應(kinetic isotope effect, KIE, kH/kD),另外還有觀察到CH2OO + 3H2O的反應途徑。此實驗結果給出未解析反應級數之KIE = 1.6 ± 0.2,若分成不同反應途徑作分析KIE會得到KIE(k1) = 1.47 ± 0.68、KIE(k2) = 2.23 ± 0.57和KIE(k3) = 1.01 ± 0.16。(CH2OO + n(H2O), kn)。KIE(k1)和KIE(k2)符合理論計算文獻的結果[DOI: 10.1039/C8CP02064G],主要是由於氘化之後零點修正障壁能量較高造成此KIE數值,氫原子穿隧的貢獻很小;然而其並未計算KIE(k3)。由於此實驗提高了水濃度之精確度因此觀察到CH2OO與水蒸氣反應有微小的壓力效應,反應速率常數比k600torr/k300torr約為1.06 ± 0.04。 | zh_TW |
| dc.description.abstract | In this work, we measured the kinetic isotope effect (KIE = kH/kD) of the reaction between the simplest Criegee intermediate (CH2OO) and water vapor using UV absorption spectroscopy at pressures of 300 Torr and 600 Torr and temperatures of 298.9 K. Additionally, we observed a distinct reaction pathway of CH2OO + 3H2O. The results yield a reaction-order-unresolved KIE of 1.6 ± 0.2. When analyzing KIEs separately for different reaction pathways, we obtained KIE(k1) = 1.47 ± 0.68, KIE(k2) = 2.23 ± 0.57, and KIE(k3) = 1.01 ± 0.16 for (CH2OO + n(H2O), kn). The KIE(k1) and KIE(k2) results are consistent with those reported in a theoretical paper, [DOI: 10.1039/C8CP02064G] primarily attributed to the higher zero point corrected barrier energy upon deuteration, with a minimal contribution from hydrogen atom tunneling. However, KIE(k3) was not calculated in that paper. By improving the precision of water vapor concentration in our experiment, we observed a minor pressure effect in the reaction between CH2OO and water vapor, with the ratio of reaction rate constants k600torr/k300torr being approximately 1.06 ± 0.04. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:04:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T17:04:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 ii
Abstract iii 第一章 介紹 1 1.1 克里奇中間體 1 1.2 動力學同位素效應 4 1.3 CH2OO和水蒸氣反應之動力學同位素效應 7 第二章 實驗部分 9 2.1 CH2OO的合成 9 2.2 氣流裝置 10 2.2.1 水蒸氣之氣流 10 2.2.2 前驅物和氧氣之氣流 11 2.2.3 光解反應器和下游吸收槽 11 2.3 光學裝置 12 2.4 數據採集 14 2.5 實驗條件 15 2.5.1 總流量 15 2.5.2 水蒸氣濃度的定量 16 2.5.3 前驅物定量 21 2.6 液體質量流量控制器的校正 21 第三章 結果與討論 23 3.1 數據分析 23 3.1.1 基線修正 23 3.1.2 時間軌跡擬合 25 3.1.3 基線修正時間軌跡擬合之誤差 26 3.2 CH2OO和水蒸氣的反應 31 3.2.1 模型A 32 3.2.2 模型B 33 3.3 不同前驅物濃度 35 3.4 同位素效應與壓力效應 36 3.4.1 觀察到CH2OO + 3H2O反應 42 3.4.2 動力學同位素效應 45 3.4.3 壓力效應 48 3.5 誤差分析 51 3.5.1 水蒸氣濃度誤差 51 3.5.2 kobs誤差 52 3.6 以kobs對[water]作圖擬合 54 3.6.1 以模型A擬合實驗 54 3.6.2 以模型B擬合實驗 59 3.6.3 先前文獻實驗與理論值之比較 69 3.7 氫原子穿隧 75 第四章 結論 78 參考資料 79 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓力效應 | zh_TW |
| dc.subject | 克里奇中間體 | zh_TW |
| dc.subject | 反應動力學 | zh_TW |
| dc.subject | 紫外光譜法 | zh_TW |
| dc.subject | 動力學同位素效應 | zh_TW |
| dc.subject | Criegee intermediates | en |
| dc.subject | UV absorption spectroscopy | en |
| dc.subject | pressure dependence | en |
| dc.subject | kinetic isotope effect | en |
| dc.subject | reaction kinetics | en |
| dc.title | 最簡單克里奇中間體與水蒸氣反應之動力學同位素效應 | zh_TW |
| dc.title | Kinetic isotope effect of the simplest Criegee intermediate reaction with water vapor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭原忠;朱立岡;張元賓 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chung Cheng;Li-Kang Chu;Yuan-Pin Chang | en |
| dc.subject.keyword | 反應動力學,克里奇中間體,紫外光譜法,動力學同位素效應,壓力效應, | zh_TW |
| dc.subject.keyword | reaction kinetics,Criegee intermediates,UV absorption spectroscopy,pressure dependence,kinetic isotope effect, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202303554 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
