Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林志民zh_TW
dc.contributor.advisorJim Jr-Min Linen
dc.contributor.author吳彥儒zh_TW
dc.contributor.authorYen-Ju Wuen
dc.date.accessioned2023-08-16T17:04:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationA. M. Thompson, Science, 1992, 256, 1157-1165.
J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fischer, L. Ganzeveld, H. Harder, M. G. Lawrence, M. Martinez, D. Taraborrelli and J. Williams, Nature, 2008, 452, 737-740.
Y. Matsumi, F. J. Comes, G. Hancock, A. Hofzumahaus, A. J. Hynes, M. Kawasaki and A. R. Ravishankara, Journal of Geophysical Research: Atmospheres, 2002, 107, ACH 1-1-ACH 1-12.
R. M. Harrison, J. Yin, R. M. Tilling, X. Cai, P. W. Seakins, J. R. Hopkins, D. L. Lansley, A. C. Lewis, M. C. Hunter, D. E. Heard, L. J. Carpenter, D. J. Creasey, J. D. Lee, M. J. Pilling, N. Carslaw, K. M. Emmerson, A. Redington, R. G. Derwent, D. Ryall, G. Mills and S. A. Penkett, Science of The Total Environment, 2006, 360, 5-25.
N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto and J. H. Kroll, Physical Chemistry Chemical Physics, 2011, 13, 10848-10857.
S. E. Paulson and J. J. Orlando, Geophysical Research Letters, 1996, 23, 3727-3730.
K. S. Docherty and P. J. Ziemann, Aerosol Science and Technology, 2003, 37, 877-891.
L. Yao, X. Fan, C. Yan, T. Kurtén, K. R. Daellenbach, C. Li, Y. Wang, Y. Guo, L. Dada, M. P. Rissanen, J. Cai, Y. J. Tham, Q. Zha, S. Zhang, W. Du, M. Yu, F. Zheng, Y. Zhou, J. Kontkanen, T. Chan, J. Shen, J. T. Kujansuu, J. Kangasluoma, J. Jiang, L. Wang, D. R. Worsnop, T. Petäjä, V.-M. Kerminen, Y. Liu, B. Chu, H. He, M. Kulmala and F. Bianchi, Environmental Science & Technology Letters, 2020, 7, 809-818.
10. R. L. Mauldin III, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V. M. Kerminen and M. Kulmala, Nature, 2012, 488, 193-196.
Y.-P. Lee, The Journal of Chemical Physics, 2015, 143, 020901.
M. C. Smith, W. Chao, K. Takahashi, K. A. Boering and J. J.-M. Lin, The Journal of Physical Chemistry A, 2016, 120, 4789-4798.
L. Sheps, A. M. Scully and K. Au, Physical Chemistry Chemical Physics, 2014, 16, 26701-26706.
W. Chao, J.-T. Hsieh, C.-H. Chang and J. J.-M. Lin, Science, 2015, 347, 751-754.
C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok and e. al., Science, 2013, 340, 177-180.
M. A. H. Khan, C. J. Percival, R. L. Caravan, C. A. Taatjes and D. E. Shallcross, Environmental Science: Processes & Impacts, 2018, 20, 437-453.
D. Stone, M. Blitz, L. Daubney, N. U. M. Howes and P. Seakins, Physical Chemistry Chemical Physics, 2014, 16, 1139-1149.
O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Science, 2012, 335, 204-207.
J.-N. Yang, K. Takahashi and J. J.-M. Lin, The Journal of Physical Chemistry A, 2022, 126, 6160-6170.
T. Berndt, H. Herrmann and T. Kurtén, Journal of the American Chemical Society, 2017, 139, 13387-13392.
T. D. Sharkey, A. E. Wiberley and A. R. Donohue, Annals of Botany, 2007, 101, 5-18.
K. C. Wells, D. B. Millet, V. H. Payne, M. J. Deventer, K. H. Bates, J. A. de Gouw, M. Graus, C. Warneke, A. Wisthaler and J. D. Fuentes, Nature, 2020, 585, 225-233.
M. Rosenkranz, Y. Chen, P. Zhu and A. C. Vlot, The Plant Journal, 2021, 108, 617-631.
M. R. Papiez, M. J. Potosnak, W. S. Goliff, A. B. Guenther, S. N. Matsunaga and W. R. Stockwell, Atmospheric Environment, 2009, 43, 4109-4123.
K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J. F. Müller, U. Kuhn, P. Stefani and W. Knorr, Atmos. Chem. Phys., 2014, 14, 9317-9341.
T. B. Nguyen, G. S. Tyndall, J. D. Crounse, A. P. Teng, K. H. Bates, R. H. Schwantes, M. M. Coggon, L. Zhang, P. Feiner, D. O. Milller, K. M. Skog, J. C. Rivera-Rios, M. Dorris, K. F. Olson, A. Koss, R. J. Wild, S. S. Brown, A. H. Goldstein, J. A. de Gouw, W. H. Brune, F. N. Keutsch, J. H. Seinfeld and P. O. Wennberg, Physical Chemistry Chemical Physics, 2016, 18, 10241-10254.
Y.-H. Lin, C. Yin, K. Takahashi and J. J.-M. Lin, Communications Chemistry, 2021, 4, 12.
D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams and J. Xu, Atmos. Chem. Phys., 2015, 15, 6283-6304.
G. M. Wolfe, J. Kaiser, T. F. Hanisco, F. N. Keutsch, J. A. de Gouw, J. B. Gilman, M. Graus, C. D. Hatch, J. Holloway, L. W. Horowitz, B. H. Lee, B. M. Lerner, F. Lopez-Hilifiker, J. Mao, M. R. Marvin, J. Peischl, I. B. Pollack, J. M. Roberts, T. B. Ryerson, J. A. Thornton, P. R. Veres and C. Warneke, Atmos Chem Phys, 2016, 16, 2597-2610.
R. Criegee and G. Wenner, Justus Liebigs Annalen der Chemie, 1949, 564, 9-15.
J. J.-M. Lin and W. Chao, Chemical Society Reviews, 2017, 46, 7483-7497.
T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin Iii, M. Sipilä, M. Kulmala and H. Herrmann, Physical Chemistry Chemical Physics, 2014, 16, 19130-19136.
T. Berndt, R. Kaethner, J. Voigtländer, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipilä, M. Kulmala and M. Olzmann, Physical Chemistry Chemical Physics, 2015, 17, 19862-19873.
Y.-P. Chang, H.-H. Chang and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2018, 20, 97-102.
Z. S. Mir, T. R. Lewis, L. Onel, M. A. Blitz, P. W. Seakins and D. Stone, Physical Chemistry Chemical Physics, 2020, 22, 9448-9459.
Z. J. Buras, R. M. I. Elsamra, A. Jalan, J. E. Middaugh and W. H. Green, The Journal of Physical Chemistry A, 2014, 118, 1997-2006.
B. Ruscic, The Journal of Physical Chemistry A, 2013, 117, 11940-11953.
C. A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival and D. E. Shallcross, Journal of the American Chemical Society, 2008, 130, 11883-11885.
P. Millard, J.-C. Portais and P. Mendes, BMC Systems Biology, 2015, 9, 64.
C. F. Stratton, M. B. Poulin, Q. Du and V. L. Schramm, ACS Chemical Biology, 2017, 12, 342-346.
M. J. Knapp, K. Rickert and J. P. Klinman, Journal of the American Chemical Society, 2002, 124, 3865-3874.
A. Matsugi, K. Suma and A. Miyoshi, Physical Chemistry Chemical Physics, 2011, 13, 4022-4031.
A. M. Green, V. P. Barber, Y. Fang, S. J. Klippenstein and M. I. Lester, Proceedings of the National Academy of Sciences, 2017, 114, 12372-12377.
A. Kohen, Progress in Reaction Kinetics and Mechanism, 2003, 28, 119-156.
M. Wolfsberg, Accounts of Chemical Research, 1972, 5, 225-233.
R. E. Weston, Tetrahedron, 1959, 6, 31-35.
H. E. Baumgarten, Mechanism and Theory in Organic Chemistry, Third Edition (Lowry, Thomas H.; Richardson, Kathleen Schuller), HARPER & ROW, 1989.
P. A. Nielsen, S. S. Glad and F. Jensen, Journal of the American Chemical Society, 1996, 118, 10577-10583.
K. B. Wiberg, Chemical Reviews, 1955, 55, 713-743.
J. Bigeleisen, Science, 1965, 147, 463-471.
C. Schmuck, Angewandte Chemie International Edition, 2006, 45, 1019-1020.
T. Hama, H. Ueta, A. Kouchi and N. Watanabe, Proceedings of the National Academy of Sciences, 2015, 112, 7438-7443.
M. Gómez-Gallego and M. A. Sierra, Chemical Reviews, 2011, 111, 4857-4963.
A. Streitwieser, Jr., R. H. Jagow, R. C. Fahey and S. Suzuki, Journal of the American Chemical Society, 1958, 80, 2326-2332.
J. M. Garver, Y.-r. Fang, N. Eyet, S. M. Villano, V. M. Bierbaum and K. C. Westaway, Journal of the American Chemical Society, 2010, 132, 3808-3814.
R. P. Bell, The tunnel effect in chemistry / R.P. Bell, Chapman and Hall, London ;, 1980.
Z. D. Nagel and J. P. Klinman, Chem Rev, 2010, 110, Pr41-67.
J. H. Skone, A. V. Soudackov and S. Hammes-Schiffer, Journal of the American Chemical Society, 2006, 128, 16655-16663.
Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy and M. I. Lester, The Journal of Chemical Physics, 2016, 145, 234308.
C. Yin and K. Takahashi, Physical Chemistry Chemical Physics, 2018, 20, 20217-20227.
L. Sheps, The Journal of Physical Chemistry Letters, 2013, 4, 4201-4205.
W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2014, 16, 10438-10443.
P. Spietz, J. C. Gómez Martín and J. P. Burrows, Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 50-67.
S. P. Sander, R. R. Friedl, J. R. Barker, D. M. Golden, M. J. Kurylo, P. H. Wine, J. Abbatt, J. B. Burkholder, C. E. Kolb, G. K. Moortgat and e. al., Journal, 2009, DOI: hdl:2014/41649.
C.-Y. Chung, E. P. Chew, B.-M. Cheng, M. Bahou and Y.-P. Lee, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1572-1576.
O. C. Bridgeman and E. W. Aldrich, Journal of Heat Transfer, 1964, 86, 279-286.
F. T. Miles and A. W. C. Menzies, Journal of the American Chemical Society, 1936, 58, 1067-1069.
M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering and J. J.-M. Lin, The Journal of Physical Chemistry Letters, 2015, 6, 2708-2713.
W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee and J. J.-M. Lin, The Journal of Chemical Physics, 2014, 141, 104308.
Y.-H. Huang, L.-W. Chen and Y.-P. Lee, The Journal of Physical Chemistry Letters, 2015, 6, 4610-4615.
R. Wang, M. Wen, S. Liu, Y. Lu, L. Makroni, B. Muthiah, T. Zhang, Z. Wang and Z. Wang, Physical Chemistry Chemical Physics, 2021, 23, 12749-12760.
A. B. Ryzhkov and P. A. Ariya, Chemical Physics Letters, 2006, 419, 479-485.
L.-C. Lin, W. Chao, C.-H. Chang, K. Takahashi and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2016, 18, 28189-28197.
L. Sheps, B. Rotavera, A. J. Eskola, D. L. Osborn, C. A. Taatjes, K. Au, D. E. Shallcross, M. A. H. Khan and C. J. Percival, Physical Chemistry Chemical Physics, 2017, 19, 21970-21979.
L. Chen, W. Wang, L. Zhou, W. Wang, F. Liu, C. Li and J. Lü, Theoretical Chemistry Accounts, 2016, 135, 252.
W. Chao, C. Yin, K. Takahashi and J. J.-M. Lin, The Journal of Physical Chemistry A, 2019, 123, 8336-8348.
T. R. Lewis, M. A. Blitz, D. E. Heard and P. W. Seakins, Physical Chemistry Chemical Physics, 2015, 17, 4859-4863.
Y. Scribano, N. Goldman, R. J. Saykally and C. Leforestier, The Journal of Physical Chemistry A, 2006, 110, 5411-5419.
Y. Liu, F. Liu, S. Liu, D. Dai, W. Dong and X. Yang, Physical Chemistry Chemical Physics, 2017, 19, 20786-20794.
L.-C. Lin, H.-T. Chang, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. Jr-Min Lin and K. Takahashi, Physical Chemistry Chemical Physics, 2016, 18, 4557-4568.
W. Chao, Y.-H. Lin, C. Yin, W.-H. Lin, K. Takahashi and J. J.-M. Lin, Physical Chemistry Chemical Physics, 2019, 21, 13633-13640.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89085-
dc.description.abstract此實驗在壓力300 Torr和600 Torr以及溫度為298.9 K下以紫外線吸收光譜法測量最簡單克里奇中間體(CH2OO)與水蒸氣反應之動力學同位素效應(kinetic isotope effect, KIE, kH/kD),另外還有觀察到CH2OO + 3H2O的反應途徑。此實驗結果給出未解析反應級數之KIE = 1.6 ± 0.2,若分成不同反應途徑作分析KIE會得到KIE(k1) = 1.47 ± 0.68、KIE(k2) = 2.23 ± 0.57和KIE(k3) = 1.01 ± 0.16。(CH2OO + n(H2O), kn)。KIE(k1)和KIE(k2)符合理論計算文獻的結果[DOI: 10.1039/C8CP02064G],主要是由於氘化之後零點修正障壁能量較高造成此KIE數值,氫原子穿隧的貢獻很小;然而其並未計算KIE(k3)。由於此實驗提高了水濃度之精確度因此觀察到CH2OO與水蒸氣反應有微小的壓力效應,反應速率常數比k600torr/k300torr約為1.06 ± 0.04。zh_TW
dc.description.abstractIn this work, we measured the kinetic isotope effect (KIE = kH/kD) of the reaction between the simplest Criegee intermediate (CH2OO) and water vapor using UV absorption spectroscopy at pressures of 300 Torr and 600 Torr and temperatures of 298.9 K. Additionally, we observed a distinct reaction pathway of CH2OO + 3H2O. The results yield a reaction-order-unresolved KIE of 1.6 ± 0.2. When analyzing KIEs separately for different reaction pathways, we obtained KIE(k1) = 1.47 ± 0.68, KIE(k2) = 2.23 ± 0.57, and KIE(k3) = 1.01 ± 0.16 for (CH2OO + n(H2O), kn). The KIE(k1) and KIE(k2) results are consistent with those reported in a theoretical paper, [DOI: 10.1039/C8CP02064G] primarily attributed to the higher zero point corrected barrier energy upon deuteration, with a minimal contribution from hydrogen atom tunneling. However, KIE(k3) was not calculated in that paper. By improving the precision of water vapor concentration in our experiment, we observed a minor pressure effect in the reaction between CH2OO and water vapor, with the ratio of reaction rate constants k600torr/k300torr being approximately 1.06 ± 0.04.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:04:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:04:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 ii
Abstract iii
第一章 介紹 1
1.1 克里奇中間體 1
1.2 動力學同位素效應 4
1.3 CH2OO和水蒸氣反應之動力學同位素效應 7
第二章 實驗部分 9
2.1 CH2OO的合成 9
2.2 氣流裝置 10
2.2.1 水蒸氣之氣流 10
2.2.2 前驅物和氧氣之氣流 11
2.2.3 光解反應器和下游吸收槽 11
2.3 光學裝置 12
2.4 數據採集 14
2.5 實驗條件 15
2.5.1 總流量 15
2.5.2 水蒸氣濃度的定量 16
2.5.3 前驅物定量 21
2.6 液體質量流量控制器的校正 21
第三章 結果與討論 23
3.1 數據分析 23
3.1.1 基線修正 23
3.1.2 時間軌跡擬合 25
3.1.3 基線修正時間軌跡擬合之誤差 26
3.2 CH2OO和水蒸氣的反應 31
3.2.1 模型A 32
3.2.2 模型B 33
3.3 不同前驅物濃度 35
3.4 同位素效應與壓力效應 36
3.4.1 觀察到CH2OO + 3H2O反應 42
3.4.2 動力學同位素效應 45
3.4.3 壓力效應 48
3.5 誤差分析 51
3.5.1 水蒸氣濃度誤差 51
3.5.2 kobs誤差 52
3.6 以kobs對[water]作圖擬合 54
3.6.1 以模型A擬合實驗 54
3.6.2 以模型B擬合實驗 59
3.6.3 先前文獻實驗與理論值之比較 69
3.7 氫原子穿隧 75
第四章 結論 78
參考資料 79
-
dc.language.isozh_TW-
dc.subject壓力效應zh_TW
dc.subject克里奇中間體zh_TW
dc.subject反應動力學zh_TW
dc.subject紫外光譜法zh_TW
dc.subject動力學同位素效應zh_TW
dc.subjectCriegee intermediatesen
dc.subjectUV absorption spectroscopyen
dc.subjectpressure dependenceen
dc.subjectkinetic isotope effecten
dc.subjectreaction kineticsen
dc.title最簡單克里奇中間體與水蒸氣反應之動力學同位素效應zh_TW
dc.titleKinetic isotope effect of the simplest Criegee intermediate reaction with water vaporen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭原忠;朱立岡;張元賓zh_TW
dc.contributor.oralexamcommitteeYuan-Chung Cheng;Li-Kang Chu;Yuan-Pin Changen
dc.subject.keyword反應動力學,克里奇中間體,紫外光譜法,動力學同位素效應,壓力效應,zh_TW
dc.subject.keywordreaction kinetics,Criegee intermediates,UV absorption spectroscopy,pressure dependence,kinetic isotope effect,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202303554-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved