請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89082完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳健銘 | zh_TW |
| dc.contributor.advisor | Chien-Ming Wu | en |
| dc.contributor.author | 黃懷逸 | zh_TW |
| dc.contributor.author | Huai-Yi Huang | en |
| dc.date.accessioned | 2023-08-16T17:03:22Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419(6903), 224-232. https://doi.org/10.1038/nature01092
Bi, D., Dix, M., Marsland, S., O’farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I., Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah, C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., & Heerdegen, A. (2020). Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and earth system simulator coupled model. Journal of Southern Hemisphere Earth Systems Science, 70(1), 225-251. https://doi.org/10.1071/ES19040 Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, L. E., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., & Vuichard, N. (2020). Presentation and evaluation of the IPSL‐CM6A‐LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010 Chang, C.-W., Chen, W.-T., & Chen, Y.-C. (2021). Susceptibility of East Asian Marine Warm Clouds to Aerosols in Winter and Spring from Co-Located A-Train Satellite Observations. Remote Sensing, 13(24), 5179. https://doi.org/10.3390/rs13245179 Chang, Y.-H., Chen, W.-T., Wu, C.-M., Moseley, C., & Wu, C.-C. (2021). Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan. Atmospheric Chemistry and Physics, 21(22), 16709-16725. https://doi.org/10.5194/acp-21-16709-2021 Chen, C. S., & Chen, Y. L. (2003). The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), 1323-1341. https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2 Chen, C.-S., & Huang, J.-M. (1999). A numerical study of precipitation characteristics over Taiwan Island during the winter season. Meteorology and Atmospheric Physics, 70, 167-183. https://doi.org/10.1007/s007030050032 Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly weather review, 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M., Betts, A. (1996). Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research: Atmospheres, 101(D3), 7251-7268. https://doi.org/10.1029/95JD02165 Chen, G. T.-J., Lee, C.-W., Liu, K-Y. (1980). A preliminary study of abnormal rainfall over northern Taiwan under the northeast monsoon influence in winter season. Atmospheric Sciences. 7(1), 73-85 (in Chinese) Chen, J.-P., Tsai, I.-C., & Lin, Y.-C. (2013). A statistical–numerical aerosol parameterization scheme. Atmospheric Chemistry and Physics, 13(20), 10483-10504. https://doi.org/10.5194/acp-13-10483-2013 Chien, M.-H., & Wu, C.-M. (2016). Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (VVM). Journal of Advances in Modeling Earth Systems, 8(1), 212-223. https://doi.org/10.1002/2015MS000514 Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickleson, S., Moore, J. K., Nienhouse, W., Polvani, L., Rasch, P. J., & Strand, W. G. (2020). The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001916. https://doi.org/10.1029/2019MS001916 Deardorff, J. W. (1972). Parameterization of the planetary boundary layer for use in general circulation models. Monthly Weather Review, 100(2), 93-106. https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2 Deardorff, J. W. (1980). Cloud top entrainment instability. Journal of the Atmospheric Sciences, 37(1), 131-147. https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2 de Roode, S. R., Sandu, I., Van Der Dussen, J. J., Ackerman, A. S., Blossey, P., Jarecka, D., Lock, A., Siebesma, A. P. & Stevens, B. (2016). Large-eddy simulations of EUCLIPSE–GASS Lagrangian stratocumulus-to-cumulus transitions: Mean state, turbulence, and decoupling. Journal of the Atmospheric Sciences, 73(6), 2485-2508. https://doi.org/10.1175/JAS-D-15-0215.1 Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., & Zhang, Q. (2021). The EC-earth3 Earth system model for the climate model intercomparison project 6. Geoscientific Model Development Discussions, 2021, 1-90. https://doi.org/10.5194/gmd-15-2973-2022 Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y., & Zhao, M. (2020). The GFDL Earth System Model version 4.1 (GFDL‐ESM 4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, 12(11), e2019MS002015. https://doi.org/10.1029/2019MS002015 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016 He, B., Bao, Q., Wang, X., Zhou, L., Wu, X., Liu, Y., Wu, G., Chen, K., He, S., Hu, W., Li, J., Li, J., Nian, G., Wang, L., Yang, J., Zhang, M., & Zhang, X. (2019). CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Advances in Atmospheric Sciences, 36, 771-778. https://doi.org/10.1007/s00376-019-9027-8 Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting, J., Shecliakova, E., Winton, M., Zhao, M., Bushuk, M., Wittenberg, A. T., Wyman, B., Xiang, B., Zhang, R., Anderson, W., Balaji, V., Donner, L., Dunne, K., Durachta, J., Gauthier, P. P. G., Ginoux, P., Golaz, J.-C., Griffies, S. M., Hallberg, R., Harris, L., Harrison, M., Hurlin, W., John, J., Lin, P., Lin, S.-J., Malyshev, S., Menzel, R., Milly, P. C. D., Ming, Y., Naik, V., Paynter, D., Paulot, F., Ramaswamy, V., Reichl, B., Robinson, T., Rosati, A., Seman, C., Silvers, L. G., Underwood, S., & Zadeh, N. (2019). Structure and performance of GFDL's CM4. 0 climate model. Journal of Advances in Modeling Earth Systems, 11(11), 3691-3727. https://doi.org/10.1029/2019MS001829 Henny, L., Thorncroft, C. D., Hsu, H.-H., & Bosart, L. F. (2021). Extreme rainfall in Taiwan: Seasonal statistics and trends. Journal of Climate, 34(12), 4711-4731. https://doi.org/10.1175/JCLI-D-20-0999.1 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaus, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N. & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803 Houze R. A. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics, 50(1). https://doi.org/10.1029/2011RG000365 Hsieh, M.-K., Wu, C.-M., & Lin, P.-H. (2019). Effects of orographically induced low-level moisture convergence and inversion strength on upslope fog: a case study at Xitou. Master's thesis, Department of Atmospheric Sciences, National Taiwan University, Taiwan, 10. https://doi.org/10.6342/NTU201900872 Hsu, H.-H., & Chen, C.-T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79, 87-104. https://doi.org/10.1007/s703-002-8230-x Hung, C.-W., Lin, H.-J., & Hsu, H.-H. (2014). Madden–Julian oscillation and the winter rainfall in Taiwan. Journal of climate, 27(12), 4521-4530. https://doi.org/10.1175/JCLI-D-13-00435.1 Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrance, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Nwalw, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., & Marshall, S. (2013). The community earth system model: a framework for collaborative research. Bulletin of the American Meteorological Society, 94(9), 1339-1360. https://doi.org/10.1175/BAMS-D-12-00121.1 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13). https://doi.org/10.1029/2008JD009944 Jung, J.-H., & Arakawa, A. (2008). A three-dimensional anelastic model based on the vorticity equation. Monthly weather review, 136(1), 276-294. https://doi.org/10.1175/2007MWR2095.1 Kazil, J., Feingold, G., Wang, H., & Yamaguchi, T. (2014). On the interaction between marine boundary layer cellular cloudiness and surface heat fluxes. Atmospheric Chemistry and Physics, 14(1), 61-79. https://doi.org/10.5194/acp-14-61-2014 Kabasawa, M. (1950) Orographic precipitation of second kind: a case study. Journal of Meteorological Research, 2(3), 1– 5 (in Japanese). Koike, M., Asano, N., Nakamura, H., Sakai, S., Nagao, T. M., & Nakajima, T. Y. (2016). Modulations of aerosol impacts on cloud microphysics induced by the warm Kuroshio Current under the East Asian winter monsoon. Journal of Geophysical Research: Atmospheres, 121(20), 12-282. https://doi.org/10.1002/2016JD025375 Kretschmer, M., Coumou, D., Agel, L., Barlow, M., Tziperman, E., & Cohen, J. (2018). More-persistent weak stratospheric polar vortex states linked to cold extremes. Bulletin of the American Meteorological Society, 99(1), 49-60. https://doi.org/10.1175/BAMS-D-16-0259.1 Krueger, S. K. (1988). Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. Journal of Atmospheric Sciences, 45(16), 2221-2250. https://doi.org/10.1175/1520-0469(1988)045<2221:NSOTCC>2.0.CO;2 Lee, W.-L., Liou, K.-N., & Wang, C.-C. (2013). Impact of 3-D topography on surface radiation budget over the Tibetan Plateau. Theoretical and applied climatology, 113, 95-103. https://doi.org/10.1007/s00704-012-0767-y Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I.-C., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., & Hsu, H.-H. (2020). Taiwan Earth System Model Version 1: description and evaluation of mean state. Geoscientific Model Development, 13(9), 3887-3904. https://doi.org/10.5194/gmd-13-3887-2020 Li, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L., Zhou, T., Liu, L., Wang, L., Pu, Y., Chen, X., Chen, L., Xie, Z., Liu, H., Zhang, L., Huang, X., Feng, T., Zheng, W., Xia, K., Liu, H., Liu, J., Wamg, Y., Wang, L., Jia, B., Xie, F., Wang, B., Zhao, S., Yu, Z., Zhao, B., & Wei, J. (2020). The flexible global ocean‐atmosphere‐land system model grid‐point version 3 (FGOALS‐g3): description and evaluation. Journal of Advances in Modeling Earth Systems, 12(9), e2019MS002012. https://doi.org/10.1029/2019MS002012 Lin, C.-Y., Chua, Y.-J., Sheng, Y.-F., Hsu, H.-H., Cheng, C.-T., & Lin, Y.-Y. (2015). Altitudinal and latitudinal dependence of future warming in Taiwan simulated by WRF nested with ECHAM5/MPIOM. International Journal of Climatology, 35(8), 1800-1809. https://doi.org/10.1002/joc.4118 Liu, B., Tan, X., Gan, T. Y., Chen, X., Lin, K., Lu, M., & Liu, Z. (2020). Global atmospheric moisture transport associated with precipitation extremes: Mechanisms and climate change impacts. Wiley Interdisciplinary Reviews: Water, 7(2), e1412. https://doi.org/10.1002/wat2.1412 Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., & Roeckner, E. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. Journal of Advances in Modeling Earth Systems, 11(4), 998-1038. https://doi.org/10.1029/2018MS001400 Morrison, H., & Milbrandt, J. A. (2015). Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. Journal of the Atmospheric Sciences, 72(1), 287-311. https://doi.org/10.1175/JAS-D-14-0065.1 Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F., & Marotzke, J. (2018). A higher‐resolution version of the max planck institute earth system model (MPI‐ESM1. 2‐HR). Journal of Advances in Modeling Earth Systems, 10(7), 1383-1413. https://doi.org/10.1029/2017MS001217 Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., & Dettinger, M. D. (2008). Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology, 9(1), 22-47. https://doi.org/10.1175/2007JHM855.1 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482. https://doi.org/10.5194/gmd-9-3461-2016 Qu, X., Hall, A., Klein, S. A., & Caldwell, P. M. (2014). On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate dynamics, 42, 2603-2626. https://doi.org/10.1007/s00382-013-1945-z Ramos, M. C. (2001). Divisive and hierarchical clustering techniques to analyse variability of rainfall distribution patterns in a Mediterranean region. Atmospheric Research, 57(2), 123-138. https://doi.org/10.1016/S0169-8095(01)00065-5 Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D. & Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological society, 85(3), 381-394. https://doi.org/10.1175/BAMS-85-3-381 Sandu, I., & Stevens, B. (2011). On the factors modulating the stratocumulus to cumulus transitions. Journal of the Atmospheric Sciences, 68(9), 1865-1881. https://doi.org/10.1175/2011JAS3614.1 Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., & Schulz, M. (2020). Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geoscientific Model Development, 13(12), 6165-6200. https://doi.org/10.5194/gmd-13-6165-2020 Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., & Zenghelis, D. A. (2018). Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic change, 151, 555-571. https://doi.org/10.1007/s10584-018-2317-9 Shiu, C.-J., Wang, Y.-C., Hsu, H.-H., Chen, W.-T., Pan, H.-L., Sun, R., Chen, Y.-H., & Chen, C. A. (2021). GTS v1. 0: a macrophysics scheme for climate models based on a probability density function. Geoscientific Model Development, 14(1), 177-204. https://doi.org/10.5194/gmd-14-177-2021 Shutts, G. J., & Gray, M. E. B. (1994). A numerical modelling study of the geostrophic adjustment process following deep convection. Quarterly Journal of the Royal Meteorological Society, 120(519), 1145-1178. https://doi.org/10.1002/qj.49712051903 Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Goessling, H. F., Handorf, D., Harid, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D. V., & Wang, Q. (2015). Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Climate Dynamics, 44, 757-780. https://doi.org/10.1007/s00382-014-2290-6 Su, S.-H., Kuo, H.-C., Hsu, L.-H., & Yang, Y.-T. (2012). Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. Journal of the Meteorological Society of Japan. Ser. II, 90(5), 721-736. https://doi.org/10.2151/jmsj.2012-510 Su, S.-H., Chu, J.-L., Yo, T.-S., & Lin, L.-Y. (2018). Identification of synoptic weather types over Taiwan area with multiple classifiers. Atmospheric Science Letters, 19(12), e861. https://doi.org/10.1002/asl.861 Su, S.-H., Chang, C.-W., Tsai, I.-C., Chu, J.-L., Chen, Y.-L., & Yo, T.-S. (2022). Taiwan Atmospheric Event Database. https://doi.org/10.17605/OSF.IO/4ZUTJ Su, S.-H., Chang, Y.-H., Liu, C.-H., Chen, W.-T., Chang, W.-Y., Chen, J.-P., Chen, W.-N., Chung, K.-S., Hou, J.-P., Hsieh, M.-K., Jang, Y.-S., Kuo, H.-C., Lee, Y.-C., Lin, P.-L., Lin, P.-Y., Lin, P.-H., Lo, M.-H., Wang, S.-H., Wu, C.-M., Yang, J.-H., & Yang, M.-J. (2022). Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Quarterly Journal of the Royal Meteorological Society, 148(745), 1663-1682. https://doi.org/10.1002/qj.4271 Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., & Winter, B. (2019). The Canadian earth system model version 5 (CanESM5. 0.3). Geoscientific Model Development, 12(11), 4823-4873. https://doi.org/10.5194/gmd-12-4823-2019 Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., & Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12(7), 2727-2765. https://doi.org/10.5194/gmd-12-2727-2019 Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., & Lohmann, U. (2019). The global aerosol–climate model ECHAM6. 3–HAM2. 3–Part 1: Aerosol evaluation. Geoscientific Model Development, 12(4), 1643-1677. https://doi.org/10.5194/gmd-12-1643-2019 Tsuang, B. J., Tu, C. Y., Tsai, J. L., Dracup, J. A., Arpe, K., & Meyers, T. (2009). A more accurate scheme for calculating Earth’s skin temperature. Climate dynamics, 32, 251-272. https://doi.org/10.1007/s00382-008-0479-2 Tung, Y.-S., Chen, C.-T., Min, S.-K., & Lin, L.-Y. (2016). Evaluating extreme rainfall changes over Taiwan using a standardized index. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(5), 7. https://doi.org/10.3319/TAO.2016.06.13.03 van der Dussen, J. J., de Roode, S. R., & Siebesma, A. P. (2016). How large-scale subsidence affects stratocumulus transitions. Atmospheric Chemistry and Physics, 16(2), 691-701. https://doi.org/10.5194/acp-16-691-2016 Volodin, E. M., Diansky, N. A., & Gusev, A. V. (2013). Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system. Izvestiya, Atmospheric and Oceanic Physics, 49, 347-366. https://doi.org/10.1134/S0001433813040105 Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykosov, V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., & Yakovlev, N. G. (2017). Simulation of modern climate with the new version of the INM RAS climate model. Izvestiya, Atmospheric and Oceanic Physics, 53, 142-155. https://doi.org/10.1134/S0001433817020128 Wang, Q., Zhang, S.-P., Xie, S.-P., Norris, J. R., Sun, J.-X., & Jiang, Y.-X. (2019). Observed variations of the atmospheric boundary layer and stratocumulus over a warm eddy in the Kuroshio Extension. Monthly Weather Review, 147(5), 1581-1591. https://doi.org/10.1175/MWR-D-18-0381.1 Wang, Y.-C., Pan, H. L., & Hsu, H. H. (2015). Impacts of the triggering function of cumulus parameterization on warm‐season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site. Journal of Geophysical Research: Atmospheres, 120(20), 10-681. https://doi.org/10.1002/2015JD023337 Wang, Y.-C., Hsu, H.-H., Chen, C.-A., Tseng, W.-L., Hsu, P.-C., Lin, C.-W., Chen, Y.-L., Jiang, L.-C., Lee, Y.-C., Liang, H.-C., Chang, W.-M., Lee, W.-L., & Shiu, C.-J. (2021). Performance of the Taiwan earth system model in simulating climate variability compared with observations and CMIP6 model simulations. Journal of Advances in Modeling Earth Systems, 13(7), e2020MS002353. https://doi.org/10.1029/2020MS002353 Ward, J. H., Jr (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244. https://doi.org/10.1080/01621459.1963.10500845 Wilby, R. L., & Dessai, S. (2010). Robust adaptation to climate change. Weather, 65(7), 180-185. https://doi.org/10.1002/wea.543 Weng, S.-P., & Yang, C.-T. (2012). The Construction of Monthly Rainfall and Temperature Datasets with 1km Gridded Resolution over Taiwan Area (1960-2009) and Its Application to Climate Projection in the Near Future (2015-2039), Atmospheric Sciences, 40(4), 349-369 (in Chinese) Wood, R., & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropospheric stability. Journal of Climate, 19(24), 6425-6432. https://doi.org/10.1175/JCLI3988.1 Wood, R. (2012). Stratocumulus clouds. Monthly Weather Review, 140(8), 2373-2423. https://doi.org/10.1175/MWR-D-11-00121.1 Wu, C.-M., & Arakawa, A. (2011). Inclusion of surface topography into the vector vorticity equation model (VVM). Journal of Advances in Modeling Earth Systems, 3(2). https://doi.org/10.1029/2011MS000061 Wu, C. M., Lin, H. C., Cheng, F. Y., & Chien, M. H. (2019). Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55, 701-717. https://doi.org/10.1007/s13143-019-00116-x Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., Li, L., Yan, J., Liu, X., Lu, X., Tan, H., Zhang, L., Wang, J., & Hu, A. (2020). Beijing Climate Center Earth System Model version 1 (BCC-ESM1): model description and evaluation of aerosol simulations. Geoscientific Model Development, 13(3), 977-1005. https://doi.org/10.5194/gmd-13-977-2020 Wyant, M. C., Bretherton, C. S., Rand, H. A., & Stevens, D. E. (1997). Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. Journal of the atmospheric sciences, 54(1), 168-192. https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2 Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., & Ishii, M. (2019). The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan. Ser. II, 97(5), 931-965. https://doi.org/10.2151/jmsj.2019-051 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89082 | - |
| dc.description.abstract | 在北台灣,冬季東北季風與地形的交互作用之下,有出現致災性的極端降水事件之可能性。然而,氣候模式面臨解析局地氣候變遷的困難性,尤其是在複雜的地形之下,局地環流的特徵及降水的機制在氣候模式之下不容易掌握,也導致了在過去區域氣候研究上的不確定性增加。在這篇研究當中,我們使用了氣候變遷故事鍊,透過分析現今氣候資訊及觀測資料中,控制北台灣冬季降水型態及強度的重要因子,並理解在氣候變遷之下,這些重要因子如何透過物理機制被影響,以理解未來的北台灣極端降水可能的變化。
為了區分北台灣地區的降水型態,我們使用階層式聚類分析,針對25年間秋季及冬季的網格化觀測降水資料進行分類。聚類分析結果顯示出四種不同的降水型態,並且在其中兩個型態當中具有較高頻率的極端降水事件出現,分別為宜蘭 (YL) 及宜蘭 – 北海岸 (YL-NC) 兩個類型。四個聚類分別顯示了不同的綜觀天氣條件及東北季風上游垂直結構中的熱力學及動力學特徵。研究結果顯示,邊界層中的垂直積分水汽輸送(IVT)和估計逆溫強度(EIS)是影響臺灣北部地區降水型態差異的關鍵因素,通過不同的流場型態和不同的層積雲活躍程度,能夠對區域的環流造成影響,進而控制臺灣北部的降水模式。在研究中使用臺灣地球系統模式 (TaiESM1) 中共享社會經濟途徑 (SSP5-8.5) 的情境進行對未來北台灣極端降水控制因子的評估。結果顯示,在本世紀初至世紀末,邊界層中的垂直積分水汽輸送有隨全球暖化而出現較高頻率的高水氣傳送事件,且傳送方向偏向北風的頻率具有增加的情形。同時,估計逆溫強度的增加也指示了大氣穩定度的提升,並改變層積雲的活躍程度。在未來,北台灣地區冬季受到環境特徵改變的影響,增加極端降水的發生頻率,並且在北海岸地區可能出現較顯著的提升。 為了釐清北臺灣地區宜蘭及北海岸地區的降水機制,我們進行理想化 TaiwanVVM 的初步模擬。分析結果顯示,北海岸地區的山地地形在穩定的逆溫層環境之下引發亂流,形成活躍的層積雲並造成降水;宜蘭地區則由於東北季風無法通過中央山脈及雪山山脈,在宜蘭平原地區形成阻擋流,在和環境的東北季風輻合後形成對流,造成宜蘭地區的降水。 | zh_TW |
| dc.description.abstract | In northern Taiwan, extreme winter precipitation caused by the interaction between the northeast winter monsoon and topography can lead to disasters. However, the climate model has difficulties to resolve the complex circulation and the precipitation process on the local scale, especially under complex topography. In this study, we employ the storyline approach to analyze the factors that control rain patterns and precipitation intensity in northern Taiwan during winter and assess how climate change may alter these factors.
To classify the rain patterns in northern Taiwan, we apply hierarchical agglomerative clustering to gridded daily precipitation data observed during the fall and winter seasons in 25 years period. The clustering results reveal four distinct rain patterns, with a higher occurrence of extreme events in Yilan (YL) and both Yilan and the north coast (YL-NC). These four clusters offer insights into the varying synoptic weather regimes and the dynamic and thermodynamic characteristics of the vertical structure upstream. The results showed the integrated vapor transport in the boundary layer (IVT) and estimated inversion strength (EIS) controlled the rain patterns in northern Taiwan by the different flow regimes and stratocumulus activity. The extreme precipitation in the future can be evaluated with the change of controlling factors in the climate model. For Taiwan Earth System Model (TaiESM; Lee et al., 2020) Version 1 in the Shared Socioeconomic Pathways (SSP5-8.5) scenario, the IVT showed an increased frequency of northerly and high transport events from the early century to the late century. Also, the higher EIS indicated increasing stability in the late century. The changes in factors related to dynamics and thermodynamics suggest an increased frequency of extreme precipitation for the northern coast in the future. From the preliminary results of the idealized TaiwanVVM simulation, the mechanism of precipitation in Yilan and the north coast can be clarified. The analysis showed that the precipitation on the north coast was caused by the terrain-induced turbulence below the inversion layer, which is different from the convergence of prevailing wind and the block flow in Yilan. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:03:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T17:03:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract v Contents vii Figure Captions viii Table Captions xii 1. Introduction 1 2. The rain patterns in northern Taiwan 8 2.1 Hierarchical clustering 8 2.2 The four rain patterns in northern Taiwan 10 2.3 Future change of upstream properties in TaiESM1 15 3. Model simulation 20 3.1 Model description and experiment setup 20 3.2 The simulation results 25 4. Discussion 29 5. Conclusion 32 References 36 Figures 49 Tables 72 Appendices 75 Appendix A. The sensitivity of cluster analysis 75 Appendix B. The model intercomparison of CMIP6 78 | - |
| dc.language.iso | en | - |
| dc.subject | 層積雲 | zh_TW |
| dc.subject | 雲解析模式 | zh_TW |
| dc.subject | TaiESM1 | zh_TW |
| dc.subject | 氣候變遷故事鏈 | zh_TW |
| dc.subject | 階層式聚類分析 | zh_TW |
| dc.subject | 極端降水 | zh_TW |
| dc.subject | hierarchical clustering | en |
| dc.subject | extreme precipitation | en |
| dc.subject | cloud-resolving model | en |
| dc.subject | TaiESM1 | en |
| dc.subject | storyline approach | en |
| dc.subject | stratocumulus | en |
| dc.title | 利用氣候變遷故事鏈探討臺灣北部冬季極端降水 | zh_TW |
| dc.title | A storyline approach of winter extreme precipitation over Northern Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭鴻基;陳維婷;蘇世顥 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Chi Kuo;Wei-Ting Chen;Shih-Hao Su | en |
| dc.subject.keyword | 氣候變遷故事鏈,階層式聚類分析,TaiESM1,極端降水,雲解析模式,層積雲, | zh_TW |
| dc.subject.keyword | storyline approach,hierarchical clustering,TaiESM1,extreme precipitation,cloud-resolving model,stratocumulus, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202302717 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
