Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89081
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陸怡蕙zh_TW
dc.contributor.advisorYir-Hueih Luhen
dc.contributor.author華思遠zh_TW
dc.contributor.authorSIYUAN HUAen
dc.date.accessioned2023-08-16T17:03:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationAnderson, J. B., Jolly, D. A., & Green, R. D. (2005). Determinants of farmer adoption of organic production methods in the fresh-market produce sector in California: A logistic regression analysis (No. 1846-2016-152504).
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Springer.
Audretsch, D. B., & Feldman, M. P. (1996). R&D spillovers and the geography of innovation and production. American Economic Review, 86(3), 630-640.
Barański, M., Średnicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G. B., ... & Leifert, C. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. British Journal of Nutrition, 112(5), 794-811.
Boncinelli, F., Bartolini, F., Brunori, G., & Casini, L. (2016). Spatial analysis of the participation in agri-environment measures for organic farming. Renewable Agriculture and Food Systems, 31(4), 375-386.
Chowdhury, M. A. (2017). M etal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents. Journal of Biomedical Materials Research Part A, 105(4), 1184-1194.
Cukur, T. (2015). Conventional Dairy Farmers Converting to Organic Dairy Production in Turkey. Polish Journal of Environmental Studies, 24(4).
Darnhofer, I. (2005). Organic farming and rural development: some evidence from Austria. Sociol. Rural. 45 (4), 308–323.
Daugbjerg, C., & Swinbank, A. (2012). An introduction to the ‘new’politics of agriculture and food. Policy and Society, 31(4), 259-270.
Ebi, K. L., Paulson, J. A., & Aggarwal, R. (2016). Global climate change and health: improving resilience and reducing risks. The Lancet, 387(10032), 1359-1361.
FAO and INRAE, 2020. Enabling sustainable food systems: innovators’ handbook. Rome.
Finley, L., Chappell, M., Thiers, P., Moore, J. (2018). Does organic farming present greater opportunities for employment and community development than conventional farming? A survey-based investigation in California and Washington. Agroecol. Sustain. Food Syst. 42 (5), 552–572.
Frederiksen P, Langer V. (2004). Localisation and concentration of organic farming in the 1990s — The Danish case. Tijd- schrift voor Economische en Sociale Geografie, 2004, 95(5):539–549
Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189-206.
Guo, H., & Marchand, S. (2019). Social interactions and spillover effects in Chinese family farming. The Journal of Development Studies, 55(11), 2306-2328.
Ilbery, B., Kirwan, J., & Maye, D. (2016). Explaining regional and local differences in organic farming in England and Wales: a comparison of South West Wales and South East England. Regional Studies, 50(1), 110-123.
Jolly, D. A. (1991). Differences between buyers and nonbuyers of organic produce and willingness to pay organic price premiums. Journal of Agribusiness, 9(345-2016-15413), 97-111.
Karki, L., Schleenbecker, R., & Hamm, U. (2011). Factors influencing a conversion to organic farming in Nepalese tea farms. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS), 112(2), 113-123.
Kirwan, J., Ilbery, B., Maye, D., & Carey, J. (2013). Grassroots social innovations and food localisation: An investigation of the Local Food programme in England. Global Environmental Change, 23(5), 830-837.
Kujala, S., Hakala, O., & Viitaharju, L. (2022). Factors affecting the regional distribution of organic farming. Journal of Rural Studies, 92, 226-236.
Kuminoff, N. V., & Wossink, A. (2010). Why isn’t more US farmland organic?. Journal of Agricultural Economics, 61(2), 240-258.
Läpple, D., & Kelley, H. (2015). Spatial dependence in the adoption of organic drystock farming in Ireland. European Review of Agricultural Economics, 42(2), 315-337.
Läpple, D., & Van Rensburg, T. (2011). Adoption of organic farming: Are there differences between early and late adoption?. Ecological economics, 70(7), 1406-1414.
LeSage, J. P., & Pace, R. K. (2009). Spatial econometric models. In Handbook of applied spatial analysis: Software tools, methods and applications (pp. 355-376). Berlin, Heidelberg: Springer Berlin Heidelberg.
Lewis, D. J., Barham, B. L., & Robinson, B. (2011). Are there spatial spillovers in the adoption of clean technology? The case of organic dairy farming. Land Economics, 87(2), 250-267.
Marasteanu, I. J., & Jaenicke, E. C. (2019). Economic impact of organic agriculture hotspots in the United States. Renewable Agriculture and Food Systems, 34(6), 501-522.
Métouolé Méda, Y. J., Egyir, I. S., Zahonogo, P., Jatoe, J. B. D., & Atewamba, C. (2018). Institutional factors and farmers’ adoption of conventional, organic and genetically modified cotton in Burkina Faso. International journal of agricultural sustainability, 16(1), 40-53.
Mo ̈hring, N., Ingold, K., Kudsk, P., Martin-Laurent, F., Niggli, U., Siegrist, M., Studer, B., Walter, A., Finger, R. (2020). Pathways for advancing pesticide policies. Nat. Food 1 (9), 535–540.
Persson, T., & Tabellini, G. (2002). Political economics: Explaining economic policy. MIT press.
Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A systematic study of sustainable development goal (SDG) interactions. Earth's Future, 5(11), 1169-1179.
Qiao B., Li G. P., Yang N. N. (2007) The evolution and new development of the industry agglomeration measurement. The Journal of Quantitative & Technical Economics, 2007, 24(4): 124–133
Qiao, Y., Martin, F., Cook, S., He, X., Halberg, N., Scott, S., & Pan, X. (2018). Certified organic agriculture as an alternative livelihood strategy for small-scale farmers in China: A case study in Wanzai County, Jiangxi Province. Ecological Economics, 145, 301-307.
Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature plants, 2(2), 1-8.
Reganold, J. P., Jackson-Smith, D., Batie, S. S., Harwood, R. R., Kornegay, J. L., Bucks, D., ... & Willis, P. (2011). Transforming US agriculture. Science, 332(6030), 670-671.
Sage, J. L., & Goldberger, J. R. (2012). Decisions to direct market: Geographic influences on conventions in organic production. Applied Geography, 34, 57-65.
Sapbamrer, R., & Thammachai, A. (2021). A systematic review of factors influencing farmers’ adoption of organic farming. Sustainability, 13(7), 3842.
Savari, M., Ebrahimi-Maymand, R., & Mohammadi-Kanigolzar, F. (2013). The Factors influencing the application of organic farming operations by farmers in Iran. Agris on-line Papers in Economics and Informatics, 5(665-2016-44970), 179-187.
Schmidtner, E., Lippert, C., Engler, B., Häring, A. M., Aurbacher, J., & Dabbert, S. (2012). Spatial distribution of organic farming in Germany: does neighbourhood matter?. European Review of Agricultural Economics, 39(4), 661-683.
Seufert, V., Ramankutty, N., & Mayerhofer, T. (2017). What is this thing called organic?–How organic farming is codified in regulations. Food Policy, 68, 10-20.Audretsch, D. B., & Feldman, M. P. (1996). R&D spillovers and the geography of innovation and production. American Economic Review, 86(3), 630-640.
Squalli, J., & Adamkiewicz, G. (2018). Organic farming and greenhouse gas emissions: A longitudinal US state-level study. Journal of Cleaner Production, 192, 30-42.
Sriwichailamphan, T., & Sucharidtham, T. (2014). Factors affecting adoption of vegetable growing using organic system: A case study of Royal Project Foundation, Thailand. Int. J. Econ. Manag. Sci, 3(2).
Thapa, G. B., & Rattanasuteerakul, K. (2011). Adoption and extent of organic vegetable farming in Mahasarakham province, Thailand. Applied Geography, 31(1), 201-209.
Thompson, G. D., & Kidwell, J. (1998). Explaining the choice of organic produce: cosmetic defects, prices, and consumer preferences. American journal of agricultural economics, 80(2), 277-287.
Treadwell, D. D., McKinney, D. E., & Creamer, N. G. (2003). From philosophy to science: A brief history of organic horticulture in the United States. HortScience, 38(5), 1009-1014.
Willer, H., Trávníček, J., Meier, C., & Schlatter, B. (2021). The world of organic agriculture 2021-statistics and emerging trends.
Willer, H., Yussefi, M., & Sorensen, N. (Eds.). (2010). The world of organic agriculture: statistics and emerging trends 2008.
Wollni, M., & Andersson, C. (2014). Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecological Economics, 97, 120-128.
Xie, Y M, Zhou, F Z. (2013). Analysis on the EU organic payments policy. Collected Essays on Finance and Economics, (3): 26–31
Yang, W., & Sharp, B. (2017). Spatial dependence and determinants of dairy farmers’ adoption of best management practices for water protection in New Zealand. Environmental management, 59(4), 594-603.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89081-
dc.description.abstract自20世紀80年代初以來,中國經歷了快速的經濟成長及城市化進程,但同時也面臨嚴重的環境問題。為了解決環境問題並提升農業的可持續或永續發展(Sustainable Development),近年來,中國政府積極推動有機農業的發展。根據2012年至2022年的數據,中國有機農地的佔比從0.48%增長到3.14%,其中稻米、穀物、蔬菜、水果及茶葉等有機農作物的佔比較高。本研究利用中國2012-2022年的省級數據,運用ArcGIS軟體分析中國五大有機農作物的地理分佈狀況。同時,本研究以建構的空間統計模型,分析了影響有機農業發展以及有機茶葉空間效應的重要因子。相較於過去的研究,本研究的主要特點在於同時考慮不同有機農作物的地理分佈特性,並運用固定面板模型(Fixed-Effects Panel Model)與本研究使用雙固定空間杜賓模型(Double Fixed-Effects Spatial Durbin Model, Double FE-SDM)來探討五種主要有機農產品的採用率,並探討其主要影響因素。
研究結果表示:(1)中國有機農業的發展呈現地理特徵上的差異性,即空間異質性(Spatial Heterogeneity),同時不同地區之間存在相互影響,即空間依賴性(Spatial Dependency)。此外,不同有機農作物在地理上呈現不同的聚集現象,即存在冷熱點區域的落點差異。(2)居民收入水平、高速公路的公里數等因素對五種有機農作物的發展具有正向且顯著的影響。(3)有機茶葉的發展主要受到當地區位因素的直接影響,同時也決定於鄰域地區的空間溢出效應 (Spatial Spillover Effects)。此外,本研究發現少數民族佔轄區總人口比例、農業就業人數、農業從業人員的平均受教育年限等因素,其在空間上皆產生顯著的溢出效應。本研究不僅可以填補過往相關文獻的缺口,對於中國未來有機農業發展的相關政策制定具有重要意義,研究發現亦有助於改善政府推動有機農業政策的成效。
zh_TW
dc.description.abstractSince the early 1980s, China has undergone rapid economic growth and urbanization, but this has also brought about serious environmental issues. To tackle these challenges and promote sustainable agricultural practices, the Chinese government has been actively advocating and supporting the growth of organic agriculture. According to data from 2012 to 2022, the proportion of organic farmland in China has increased from 0.48% to 3.14%, with higher proportions observed for organic crops such as rice, grains, vegetables, fruits, and tea. In this study, we utilize provincial-level data spanning from 2012 to 2022 and employ ArcGIS software to conduct a spatial analysis of the geographical distribution of the five major organic crops in China. Furthermore, we construct a spatial econometric model to investigate the determinants influencing the development of organic agriculture and to explore the spatial effects of organic tea production. In comparison to previous studies, this research distinguishes itself by simultaneously considering the geographical distribution characteristics of different organic crops and employing fixed effects panel models and spatial Durbin models to analyze the adoption rates of various agricultural products.
The findings reveal that (1) organic agriculture in China exhibits spatial heterogeneity and spatial dependence, with different organic crops showing varying patterns of spatial clustering or hotspots; (2) factors such as residents' income levels and the length of highways positively impact the development of the five organic crops; (3) the growth and progress of organic tea cultivation are significantly shaped by various localized factors, while also being subject to spatial spillover effects from neighboring areas, with factors such as the proportion of minority population, agricultural employment, and average education level of agricultural workers displaying significant spatial spillover effects. This study provides valuable insights for the formulation of future policies related to organic agriculture development and contributes to enhancing the effectiveness of government initiatives in promoting organic agriculture.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T17:03:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T17:03:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
口試委員會審定書 I
謝辭 II
摘要 III
ABSTRACT IV
圖目錄 VIII
表目錄 IX
第一章 緒論 1
第二章 中國有機農業發展政策 5
2.1 中國有機農業的支持政策 6
2.2 部分地區有機農業的支持政策 7
第三章 文獻回顧 9
3.1 影響有機農業採用的空間因素 9
3.2 影響有機農業採用之空間計量分析 11
第四章 數據來源及實證模型 15
4.1 數據來源 15
4.2 敘述統計 19
4.3 空間統計模型 22
4.3.1 空間自相關檢驗 22
4.3.2 空間統計模型設定 24
第五章 實證結果分析 28
5.1 中國各大區域有機農業發展趨勢 28
5.2 不同有機農產品的空間分佈 30
5.3 認證有機農產品發展的空間依賴性 40
5.3.1 認證有機農產品的全局Moran's I 40
5.3.2 認證有機農產品的空間聚集之熱/冷點區分析 44
5.4 認證有機農產品發展的影響因素及空間效應 64
5.4.1 統計檢驗 65
5.4.2 模型估計結果與分析 68
5.4.3 有機茶葉空間效應分解 75
第六章 結論 78
參考文獻 82 
圖目錄
圖5-1中國七大行政地理分區 28
圖5-2 2012-2022年中國七大區域有機農地面積分佈圖(單位:萬公頃) 29
圖5-3 2012-2022年中國七大區域有機農地面積佔總耕地面積比例(%) 30
圖5-4 2012、2017、2022年中國認證有機稻米農地面積比例—地理分佈圖 31
圖5- 5 2012、2017、2022年中國認證有機穀物農地面積比例—地理分佈圖33
圖5- 6 2012、2017、2022年中國認證有機蔬菜農地面積比例—地理分佈圖 35
圖5- 7 2012、2017、2022年中國認證有機水果農地面積比例—地理分佈圖 37
圖5- 8 2012、2017、2022年中國認證有機茶葉農地面積比例—地理分佈圖 39
圖5- 9 2012年中國認證有機稻米的面積變化冷熱點分佈 45
圖5- 10 2017年中國認證有機稻米的面積變化冷熱點分佈 45
圖5- 11 2022年中國認證有機稻米的面積變化冷熱點分佈 46
圖5- 12 2012年中國認證有機穀物的面積變化冷熱點分佈 47
圖5- 13 2017年中國認證有機穀物的面積變化冷熱點分佈 48
圖5- 14 2022年中國認證有機穀物的面積變化冷熱點分佈 48
圖5- 15 2012年中國認證有機蔬菜的面積變化冷熱點分佈 50
圖5- 16 2017年中國認證有機蔬菜的面積變化冷熱點分佈 51
圖5- 17 2017年中國認證有機蔬菜的面積變化冷熱點分佈 51
圖5- 18 2012年中國認證有機水果的面積變化冷熱點分佈 53
圖5- 19 2017年中國認證有機水果的面積變化冷熱點分佈 53
圖5- 20 2022年中國認證有機水果的面積變化冷熱點分佈 54
圖5- 21 2012年中國認證有機茶葉的面積變化冷熱點分佈 55
圖5- 22 2017年中國認證有機茶葉的面積變化冷熱點分佈 56
圖5- 23 2022年中國認證有機茶葉的面積變化冷熱點分佈 56
表目錄
表1- 1經過認證的中國有機農地面積、總農地面積及有機農地面積之比例 2
表4- 1 解釋變數與被解釋變數的描述性統計結果 17
表5- 1 2012、2017、2022年有機認證農產品面積佔比之莫蘭指數 43
表5- 2 2012、2017、2022年中國認證有機稻米熱/冷點各大地理分區個數 58
表5- 3 2012、2017、2022年中國認證有機穀物熱/冷點各大地理分區個個數 59
表5- 4 2012、2017、2022年中國認證有機蔬菜熱/冷點各大地理分區個數 60
表5- 5 2012、2017、2022年中國認證有機水果熱/冷點各大地理分區個數 61
表5- 6 2012、2017、2022年中國認證有機茶葉熱/冷點各大地理分區個數 62
表5- 7 LM檢驗、LR檢驗與HAUSMAN檢驗結果 65
表5- 8 基於不同有機農產品的空間模型估計結果 68
表5- 9 各影響因素對有機茶葉的空間效應分解結果 75
-
dc.language.isozh_TW-
dc.subject中國有機農業zh_TW
dc.subject有機農業採用zh_TW
dc.subject空間溢出效應zh_TW
dc.subject空間聚集zh_TW
dc.subject空間計量模型zh_TW
dc.subject空間自相關zh_TW
dc.subject地理資訊系統zh_TW
dc.subjectGeographic information systemen
dc.subjectChina organic agricultureen
dc.subjectOrganic agriculture adoptionen
dc.subjectSpatial spillover effectsen
dc.subjectSpatial econometricsen
dc.subjectSpatial clustersen
dc.subjectSpatial autocorrelationen
dc.title中國有機農業的地理分佈及影響因素zh_TW
dc.titleGeographical Distribution and Determinants of Organic Agriculture in Chinaen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝銘逢;何率慈zh_TW
dc.contributor.oralexamcommitteeMing-Feng Hsieh;Shuay-Tsyr Hoen
dc.subject.keyword中國有機農業,地理資訊系統,空間自相關,空間計量模型,空間聚集,空間溢出效應,有機農業採用,zh_TW
dc.subject.keywordChina organic agriculture,Geographic information system,Spatial autocorrelation,Spatial econometrics,Spatial clusters,Spatial spillover effects,Organic agriculture adoption,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202301975-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業經濟學系-
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf6.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved