請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8907完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪傳揚 | |
| dc.contributor.author | Yi-Chieh Lin | en |
| dc.contributor.author | 林依潔 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:03:51Z | - |
| dc.date.available | 2019-07-03 | |
| dc.date.available | 2021-05-20T20:03:51Z | - |
| dc.date.copyright | 2009-08-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-18 | |
| dc.identifier.citation | 戶刈義次 (1963). 作物學試驗法. 東京農業技術學會印行 第159-176頁
Ames, G.F. (1986). Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55, 397-425. Bird, D., Beisson, F., Brigham, A., Shin, J., Greer, S., Jetter, R., Kunst, L., Wu, X., Yephremov, A., and Samuels, L. (2007). Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52, 485-498. Blakeslee, J.J., Peer, W.A., and Murphy, A.S. (2005). Auxin transport. Curr Opin Plant Biol 8, 494-500. Blakeslee, J.J., Bandyopadhyay, A., Lee, O.R., Mravec, J., Titapiwatanakun, B., Sauer, M., Makam, S.N., Cheng, Y., Bouchard, R., Adamec, J., Geisler, M., Nagashima, A., Sakai, T., Martinoia, E., Friml, J., Peer, W.A., and Murphy, A.S. (2007). Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19, 131-147. Buer, C.S., Muday, G.K., and Djordjevic, M.A. (2007). Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145, 478-490. Campbell, E.J., Schenk, P.M., Kazan, K., Penninckx, I.A., Anderson, J.P., Maclean, D.J., Cammue, B.P., Ebert, P.R., and Manners, J.M. (2003). Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133, 1272-1284. Catala, R., Santos, E., Alonso, J.M., Ecker, J.R., Martinez-Zapater, J.M., and Salinas, J. (2003). Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15, 2940-2951. Cecchetti, V., Altamura, M.M., Falasca, G., Costantino, P., and Cardarelli, M. (2008). Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20, 1760-1774. Chen, S., Sanchez-Fernandez, R., Lyver, E.R., Dancis, A., and Rea, P.A. (2007). Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem 282, 21561-21571. Cheng, Y., Dai, X., and Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in 53 Arabidopsis. Genes Dev 20, 1790-1799. Cowman, A.F., Galatis, D., and Thompson, J.K. (1994). Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci U S A 91, 1143-1147. Ducos, E., Fraysse, S., and Boutry, M. (2005). NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum. FEBS Lett 579, 6791-6795. Eichhorn, H., Klinghammer, M., Becht, P., and Tenhaken, R. (2006). Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp Bot 57, 2193-2201. Endicott, J.A., and Ling, V. (1989). The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58, 137-171. Fetsch, E.E., and Davidson, A.L. (2002). Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 99, 9685-9690. Foote, S.J., Thompson, J.K., Cowman, A.F., and Kemp, D.J. (1989). Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57, 921-930. Footitt, S., Dietrich, D., Fait, A., Fernie, A.R., Holdsworth, M.J., Baker, A., and Theodoulou, F.L. (2007). The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol. 144, 1467-1480. Frelet-Barrand, A., Kolukisaoglu, H.U., Plaza, S., Ruffer, M., Azevedo, L., Hortensteiner, S., Marinova, K., Weder, B., Schulz, B., and Klein, M. (2008). Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol 49, 557-569. Froshauer, S., and Beckwith, J. (1984). The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem 259, 10896-10903. Gaedeke, N., Klein, M., Kolukisaoglu, U., Forestier, C., Muller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Mueller-Roeber, B., and Martinoia, E. (2001). The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20, 1875-1887. Gaillard, S., Jacquet, H., Vavasseur, A., Leonhardt, N., and Forestier, C. (2008). AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol 8, 22. 54 Garcia, O., Bouige, P., Forestier, C., and Dassa, E. (2004). Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol 343, 249-265. Geisler, M., and Murphy, A.S. (2006). The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580, 1094-1102. Geisler, M., Blakeslee, J.J., Bouchard, R., Lee, O.R., Vincenzetti, V., Bandyopadhyay, A., Titapiwatanakun, B., Peer, W.A., Bailly, A., Richards, E.L., Ejendal, K.F., Smith, A.P., Baroux, C., Grossniklaus, U., Muller, A., Hrycyna, C.A., Dudler, R., Murphy, A.S., and Martinoia, E. (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44, 179-194. Goddijn, O.J., and van Dun, K. (1999). Trehalose metabolism in plants. Trends Plant Sci 4, 315-319. Goodman, C.D., Casati, P., and Walbot, V. (2004). A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16, 1812-1826. Gottesman, M.M., and Pastan, I. (1988). Resistance to multiple chemotherapeutic agents in human cancer cells. Trends Pharmacol Sci 9, 54-58. Grec, S., Vanham, D., de Ribaucourt, J.C., Purnelle, B., and Boutry, M. (2003). Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35, 237-250. Hassinen, V.H., Tervahauta, A.I., Halimaa, P., Plessl, M., Peraniemi, S., Schat, H., Aarts, M.G., Servomaa, K., and Karenlampi, S.O. (2007). Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225, 977-989. Henikoff, S., Greene, E.A., Pietrokovski, S., Bork, P., Attwood, T.K., and Hood, L. (1997). Gene families: the taxonomy of protein paralogs and chimeras. Science 278, 609-614. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271-282. Higgins, C.F. (1992). ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8, 67-113. Higgins, C.F., and Linton, K.J. (2004). The ATP switch model for ABC transporters. Nat Struct Mol Biol 11, 918-926. Higgins, C.F., Hiles, I.D., Salmond, G.P., Gill, D.R., Downie, J.A., Evans, I.J., Holland, I.B., Gray, L., Buckel, S.D., Bell, A.W., and et al. (1986). A family 55 of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323, 448-450. Hsing, Y.-I., Chern, C.-G., Fan, M.-J., Lu, P.-C., Chen, K.-T., Lo, S.-F., Sun, P.-K., Ho, S.-L., Lee, K.-W., Wang, Y.-C., Huang, W.-L., Ko, S.-S., Chen, S., Chen, J.-L., Chung, C.-I., Lin, Y.-C., Hour, A.-L., Wang, Y.-W., Chang, Y.-C., Tsai, M.-W., Lin, Y.-S., Chen, Y.-C., Yen, H.-M., Li, C.-P., Wey, C.-K., Tseng, C.-S., Lai, M.-H., Huang, S.-C., Chen, L.-J., and Yu, S.-M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63, 351-364. Huang, C.F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y., and Ma, J.F. (2009). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21, 655-667. Hyde, S.C., Emsley, P., Hartshorn, M.J., Mimmack, M.M., Gileadi, U., Pearce, S.R., Gallagher, M.P., Gill, D.R., Hubbard, R.E., and Higgins, C.F. (1990). Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346, 362-365. Iba, K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53, 225-245. Igarashi, Y., Yoshiba, Y., Takeshita, T., Nomura, S., Otomo, J., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2000). Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol 41, 750-756. Inoue, H., Nojima H., Okayama H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23-28 International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature 436, 793-800 Jasinski, M., Ducos, E., Martinoia, E., and Boutry, M. (2003). The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol 131, 1169-1177. Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand-Brynaert, J., and Boutry, M. (2001). A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13, 1095-1107. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6, 3901-3907. Kerr, I.D., Berridge, G., Linton, K.J., Higgins, C.F., and Callaghan, R. (2003). 56 Definition of the domain boundaries is critical to the expression of the nucleotide-binding domains of P-glycoprotein. Eur Biophys J 32, 644-654. Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., and Lee, Y. (2007). The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50, 207-218. Kim, D.Y., Bovet, L., Kushnir, S., Noh, E.W., Martinoia, E., and Lee, Y. (2006). AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140, 922-932. Klein, M., Burla, B., and Martinoia, E. (2006). The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580, 1112-1122. Klein, M., Martinoia, E., Hoffmann-Thoma, G., and Weissenbock, G. (2000). A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Plant J 21, 289-304. Klein, M., Martinoia, E., Hoffmann-Thoma, G., and Weissenbock, G. (2001). The ABC-like vacuolar transporter for rye mesophyll flavone glucuronides is not species-specific. Phytochem 56, 153-159. Klein, M., Perfus-Barbeoch, L., Frelet, A., Gaedeke, N., Reinhardt, D., Mueller-Roeber, B., Martinoia, E., and Forestier, C. (2003). The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J 33, 119-129. Klein, M., Geisler, M., Suh, S.J., Kolukisaoglu, H.U., Azevedo, L., Plaza, S., Curtis, M.D., Richter, A., Weder, B., Schulz, B., and Martinoia, E. (2004). Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant J 39, 219-236. Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., and Maeshima, M. (2006). Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47, 309-318. Kolukisaoglu, H.U., Bovet, L., Klein, M., Eggmann, T., Geisler, M., Wanke, D., Martinoia, E., and Schulz, B. (2002). Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta 216, 107-119. Larsen, P.B., Cancel, J., Rounds, M., and Ochoa, V. (2007). Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225, 1447-1458. 57 Larsen, P.B., Geisler, M.J., Jones, C.A., Williams, K.M., and Cancel, J.D. (2005). ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41, 353-363. Lee, E.K., Kwon, M., Ko, J.H., Yi, H., Hwang, M.G., Chang, S., and Cho, M.H. (2004). Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol 134, 528-538. Lee, M., Choi, Y., Burla, B., Kim, Y.Y., Jeon, B., Maeshima, M., Yoo, J.Y., Martinoia, E., and Lee, Y. (2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10, 1217-1223. Lewis, D.R., Miller, N.D., Splitt, B.L., Wu, G., and Spalding, E.P. (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19, 1838-1850. Lin, R., and Wang, H. (2005). Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol 138, 949-964. Linton, K.J. (2007). Structure and function of ABC transporters. Physiology (Bethesda) 22, 122-130. Luo, B., Xue, X.Y., Hu, W.L., Wang, L.J., and Chen, X.Y. (2007). An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48, 1790-1802. Mandaokar, A., Thines, B., Shin, B., Lange, B.M., Choi, G., Koo, Y.J., Yoo, Y.J., Choi, Y.D., and Browse, J. (2006). Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46, 984-1008. Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, U., Muller-Rober, B., and Schulz, B. (2002). Multifunctionality of plant ABC transporters--more than just detoxifiers. Planta 214, 345-355. Mentewab, A., and Stewart, C.N., Jr. (2005). Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nature Biotechnol 23, 1177-1180. Miyao, A., Iwasaki, Y., Kitano, H., Itoh, J.-I., Maekawa, M., Murata, K., Yatou, O., Nagato, Y., and Hirochika, H. (2007). A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol 63, 625-635. Moons, A. (2003). Ospdr9, which encodes a PDR-type ABC transporter, is induced by 58 heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett 553, 370-376. Moons, A. (2008). Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta. Multani, D.S., Briggs, S.P., Chamberlin, M.A., Blakeslee, J.J., Murphy, A.S., and Johal, G.S. (2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81-84. Nielsen, K.M., Bones, A.M., Smalla, K., and van Elsas, J.D. (1998). Horizontal gene transfer from transgenic plants to terrestrial bacteria--a rare event? FEMS Microbiol Reviews 22, 79-103. Noh, B., Murphy, A.S., and Spalding, E.P. (2001). Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 2441-2454. Noh, B., Bandyopadhyay, A., Peer, W.A., Spalding, E.P., and Murphy, A.S. (2003). Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423, 999-1002. Ozolina, N.V., Pradedova, E.V., Platonova, T.A., and Salyaev, R.K. (2004). Detection of vanadate-inhibited ATPase activity on the red beet tonoplast and its relationship with ABC-transporters. Dokl Biochem Biophys 396, 158-160. Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R.B., Hofer, R., Schreiber, L., Chory, J., and Aharoni, A. (2007). The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol. 145, 1345-1360. Petrasek, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertova, D., Wisniewska, J., Tadele, Z., Kubes, M., Covanova, M., Dhonukshe, P., Skupa, P., Benkova, E., Perry, L., Krecek, P., Lee, O.R., Fink, G.R., Geisler, M., Murphy, A.S., Luschnig, C., Zazimalova, E., and Friml, J. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914-918. Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L., and Samuels, A.L. (2004). Plant cuticular lipid export requires an ABC transporter. Science 306, 702-704. Ravna, A.W., and Sager, G. (2008). Molecular model of the outward facing state of the human multidrug resistance protein 4 (MRP4/ABCC4). Bioorg Med Chem Lett 18, 3481-3483. Ray, J.L., and Nielsen, K.M. (2005). Experimental methods for assaying natural transformation and inferring horizontal gene transfer. Methods in enzymol 395, 59 491-520. Rea, P.A. (2007). Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58, 347-375. Rea, P.A., Li, Z.S., Lu, Y.P., Drozdowicz, Y.M., and Martinoia, E. (1998). From vacuolar Gs-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49, 727-760. Rentsch, D., Hirner, B., Schmelzer, E., and Frommer, W.B. (1996). Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8, 1437-1446. Rizzi, A., Pontiroli, A., Brusetti, L., Borin, S., Sorlini, C., Abruzzese, A., Sacchi, G.A., Vogel, T.M., Simonet, P., Bazzicalupo, M., Nielsen, K.M., Monier, J.M., and Daffonchio, D. (2008). Strategy for in situ detection of natural transformation-based horizontal gene transfer events. Applied and Environ Microbiol 74, 1250-1254. Rommens, C.M. (2006). Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends in plant science 11, 317-319. Ross, J.I., Eady, E.A., Cove, J.H., Cunliffe, W.J., Baumberg, S., and Wootton, J.C. (1990). Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4, 1207-1214. Sanchez-Fernandez, R., Rea, P.A., Davies, T.G., and Coleman, J.O. (2001a). Do plants have more genes than humans? Yes, when it comes to ABC proteins. Trends Plant Sci 6, 347-348. Sanchez-Fernandez, R., Davies, T.G., Coleman, J.O., and Rea, P.A. (2001b). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276, 30231-30244. Santelia, D., Vincenzetti, V., Azzarello, E., Bovet, L., Fukao, Y., Duchtig, P., Mancuso, S., Martinoia, E., and Geisler, M. (2005). MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579, 5399-5406. Sauna, Z.E., Kim, I.W., and Ambudkar, S.V. (2007). Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Biomembr 39, 481-487. Schluter, K., Futterer, J., and Potrykus, I. (1995). 'Horizontal' gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs--if at all--at an extremely low frequency. Bio/technol 13, 1094-1098. Schwacke, R., Grallath, S., Breitkreuz, K.E., Stransky, E., Stransky, H., Frommer, W.B., and Rentsch, D. (1999). LeProT1, a transporter for proline, glycine 60 betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell 11, 377-392. Scofield, G.N., Hirose, T., Aoki, N., and Furbank, R.T. (2007). Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot 58, 3155-3169. Scofield, G.N., Hirose, T., Gauron, J.A., Upadhyaya, N.M., Ohsugi, R., and Furbank, R.T. (2002). Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Func Plant Biol 29, 815-826. Senior, A.E., al-Shawi, M.K., and Urbatsch, I.L. (1995). The catalytic cycle of P-glycoprotein. FEBS Lett 377, 285-289. Sharma, R., Awasthi, Y.C., Yang, Y., Sharma, A., Singhal, S.S., and Awasthi, S. (2003). Energy dependent transport of xenobiotics and its relevance to multidrug resistance. Curr Cancer Drug Targets 3, 89-107. Shi, J., Wang, H., Schellin, K., Li, B., Faller, M., Stoop, J.M., Meeley, R.B., Ertl, D.S., Ranch, J.P., and Glassman, K. (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature biotechnol 25, 930-937. Shitan, N., Bazin, I., Dan, K., Obata, K., Kigawa, K., Ueda, K., Sato, F., Forestier, C., and Yazaki, K. (2003). Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci U S A 100, 751-756. Sidler, M., Hassa, P., Hasan, S., Ringli, C., and Dudler, R. (1998). Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10, 1623-1636. Stefkova, J., Poledne, R., and Hubacek, J.A. (2004). ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 53, 235-243. Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D., and Boutry, M. (2005). NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139, 341-352. Swarbreck, D., Ripoll, P.J., Brown, D.A., Edwards, K.J., and Theodoulou, F. (2003). Isolation and characterisation of two multidrug resistance associated protein genes from maize. Gene 315, 153-164. Takeda, T., Toyofuku, k., Matsukura, C., and Yamaguchi, J. (2001). Sugar transporters involved in flowering and grain development of rice. J Plant Physiol 158, 465-470. Terasaka, K., Shitan, N., Sato, F., Maniwa, F., Ueda, K., and Yazaki, K. (2003). Application of vanadate-induced nucleotide trapping to plant cells for detection 61 of ABC proteins. Plant Cell Physiol 44, 198-200. Theodoulou, F.L. (2000). Plant ABC transporters. Biochim Biophys Acta 1465, 79-103. Trombik, T., Jasinski, M., Crouzet, J., and Boutry, M. (2008). Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of Nicotiana plumbaginifolia. Plant Mol Biol 66, 165-175. Ueda, A., Shi, W., Sanmiya, K., Shono, M., and Takabe, T. (2001). Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42, 1282-1289. van den Brule, S., Muller, A., Fleming, A.J., and Smart, C.C. (2002). The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J 30, 649-662. Verrier, P.J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geisler, M., Klein, M., Kolukisaoglu, U., Lee, Y., Martinoia, E., Murphy, A., Rea, P.A., Samuels, L., Schulz, B., Spalding, E.J., Yazaki, K., and Theodoulou, F.L. (2008). Plant ABC proteins--a unified nomenclature and updated inventory. Trends Plant Sci 13, 151-159. Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945-951. Wang, Y., Xiao, Y., Zhang, Y., Chai, C., Wei, G., Wei, X., Xu, H., Wang, M., Ouwerkerk, P.B., and Zhu, Z. (2008). Molecular cloning, functional characterization and expression analysis of a novel monosaccharide transporter gene OsMST6 from rice (Oryza sativa L.). Planta 228, 525-535. Wingler, A. (2002). The function of trehalose biosynthesis in plants. Phytochem 60, 437-440. Winje, B.A., Mannsaker, T., Langeland, N., and Heldal, E. (2008). Drug resistance in tuberculosis. Tidsskr Nor Laegeforen 128, 2588-2592. Wright, P.K. (2008). Targeting vesicle trafficking: an important approach to cancer chemotherapy. Recent Pat Anticancer Drug Discov 3, 137-147. Xu, X.H., Zhao, H.J., Liu, Q.L., Frank, T., Engel, K.H., An, G., and Shu, Q.Y. (2009). Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119, 75-83. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10, 88-94. Yamaguchi, H., Nishizawa, N.K., Nakanishi, H., and Mori, S. (2002). 1D17, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. J Exp Bot 53, 727-735. Yasuno, N., Takamure, I., Kidou, S., Tokuji, Y., Ureshi, A.N., Funabiki, A., Ashikaga, K., Yamanouchi, U., Yano, M., and Kato, K. (2009). Rice shoot branching requires an ATP-binding cassette subfamily G protein. New Phytol 182, 91-101. Yazaki, K. (2005). Transporters of secondary metabolites. Curr Opin Plant Biol 8, 301-307. Yazaki, K., Shitan, N., Takamatsu, H., Ueda, K., and Sato, F. (2001). A novel Coptis japonica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome. J Exp Bot 52, 877-879. Yew, W.W., and Leung, C.C. (2008). Management of multidrug-resistant tuberculosis: Update 2007. Respirology 13, 2 1-46. Yuan, H., Li, X., Wu, J., Li, J., Qu, X., Xu, W., and Tang, W. (2008). Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance. Curr Med Chem 15, 470-476. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8907 | - |
| dc.description.abstract | ABC轉運蛋白(ATP-binding cassette transporter)廣泛存在各種物種之間,對各種不同基質的轉運扮演重要的角色。目前植物的ABC轉運蛋白功能以阿拉伯芥研究較多,水稻中ABC轉運蛋白功能性分析的相關研究非常少。因此本試驗擬針對水稻ABC轉運蛋白MDR次基因家族成員OsABCB10基因進行功能性分析。胺基酸比對結果顯示,OsABCB10為全分子轉運蛋白,具有ABC轉運蛋白的保守性功能區域Walker A、ABC signature以及Walker B。即時定量聚合酶連鎖反應(Q-RT- PCR)分析OsABCB10組織專一性基因表現,結果顯示孕穗期水稻的葉身、葉鞘及花序中都有相當高OsABCB10基因的表現,未成熟種子中表現量更強。以植物荷爾蒙處理兩週大水稻幼苗,結果顯示NAA、JA及SA都會誘導OsABCB10基因在地上部或根部表現。高鹽、ABA以及低溫(4℃)等非生物逆境都會誘導地上部OsABCB10的表現,而根部則受高鹽、乾旱及低溫誘導表現,其中低溫處理可強烈誘導根部OsABCB10的表現超過1000倍以上。分析POsABCB10-GUS轉殖水稻,結果發現GUS主要累積在葉片以及未成熟花序中,尤其集中於內穎、外穎、小穗軸及雌蕊部分。以低溫處理POsABCB10-GUS轉殖株2天,結果顯示GUS受誘導表現累積於根部。將POsABCB10-GUS種子浸潤後,結果顯示浸潤後2小時啟動子活性最高,隨浸潤時間增加而活性降低。分析OsABCB10:GFP融合蛋白於細胞中表現的位置,結果顯示OsABCB10是一個表現於細胞膜上的蛋白質。進一步分析基因剔除突變株abcb10同型合子,外表性狀與野生型無明顯差異,但是溫室或是田間試驗的結果顯示,abcb10稔實率較野生型大幅降低60%以上,同時abcb10花粉也有近40%表現出發育不良的情形。反之,OsABCB10基因大量表現的轉殖系,則與野生型無明顯差異。這些結果顯示,OsABCB10可能是維持水稻穀粒稔實率的重要基因。另外,試驗中亦觀察到abcb10種子有發芽遲緩及發芽率降低的現象,顯示OsABCB10可能也參與了種子發芽過程的調節。此試驗的結果說明了低溫誘導表現的OsABCB10可能是參與調節水稻穀粒充實率或種子發芽的ABC轉運蛋白。 | zh_TW |
| dc.description.abstract | ATP binding cassette (ABC) transporters ubiquitously existed in all living organisms, and play important roles in transporting various substances across membrane systems. The functions of ABC transporters have been investigated extensively in Arabidopsis, however, very few studies are reported in rice. To this end, this study focuses on the functional characterization of the rice OsABCB10 ABC transporter. Amino acid alignment analysis showed that the OsABCB10 is a full molecule MDR-type ABC transporter containing typical Walker A、ABC signature and Walker B domains. Quantitative RT-PCR analysis indicated that the OsABCB10 was highly expressed in blade, sheath and inflorescence at booting stage, and strongly expressed in the immature seeds. Treatment of two-week-old rice seedlings with different plant hormones revealed that the OsABCB10 was induced by NAA, JA and SA both in shoot and root. Furthermore, the OsABCB10 was slightly induced by salt, ABA and cold (4℃) in shoot tissue, while it was slightly induced by salt and drought in root tissue. Surprisingly, cold treatment dramatically increased more than 1000 folds of OsABCB10 transcript accumulated in root tissue. Transgenic rice harboring POsABCB10-GUS construct showed that GUS protein slightly accumulated in blade and inflorescence, and strongly expressed in palea, lemma, rachilla and pistil. Upon cold treatment, GUS protein was induced in root tissue of POsABCB10-GUS plants as compared with control plants. Moreover, OsABCB10 promoter activity was enhanced after 2 hours imbibition, and then gradually declined with imbibition time. Subcellular localization assay showed that OsABCB10 is localized at plasma membrane. The OsABCB10 knock-out mutant abcb10 showed a striking seed fertility reduced phenotype either cultivated in the greenhouse or in the field. Meanwhile, up to 40% non-fertile pollen was observed in abcb10. In contrast, rice overexpressing OsABCB10 had no effect on seed fertility. These results demonstrated that OsABCB10 is required for seed development, and may be a crucial gene to maintain seed fertility in rice. In addition, seeds of abcb10 showed a germination delayed phenotype and possessed lower germination rate as compared with WT, indicating that OsABCB10 plays a role in modulating seed germination. Taken together, our results provide evidences to support that cold treatment highly induced MDR-type ABC transporter OsABCB10 may be involved in mediating seed fertility or seed germination of rice. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:03:51Z (GMT). No. of bitstreams: 1 ntu-98-R96623004-1.pdf: 3974924 bytes, checksum: dbbcc856d337b22aa577a6ecfc4011f4 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………IV
英文摘要………………………………………………………V 縮寫字對照表………….……………………………………VII 壹、前言 一、ABC轉運蛋白的發現…………………………………………………1 二、ABC轉運蛋白的基本特性……………………………………………2 三、ABC轉運蛋白的分類與命名…………………………………………4 四、植物的ABC轉運蛋白……………………………………………...7 五、植物ABC轉運蛋白的功能……………………………8 六、水稻ABC轉運蛋白基因的研究..………………………17 貳、研究目的………………………………………………………21 参、材料與方法 一、質粒的構築…………………………………………22 二、水稻基因轉殖……………………………………………………26 三、基因表現分析材料與處理…………………………………………28 四、基因表現分析………………………………………………………31 五、基因型分析(genotyping)………………………………………………35 六、啟動子特性分析…………………………………………………………35 七、蛋白質次細胞位置分析.……………………………………36 八、花粉活性鑑定………….……………………………………………37 九、種子發芽率分析……………………………………………37 肆、結果 一、水稻MDR基因家族分子特性分析.…………………………………38 二、OsABCB10基因表現特性分析.………………………………………39 三、OsABCB10啟動子特性分析…………………………………………41 四、OsABCB10次細胞定位分析.………………………………………43 五、OsABCB10基因活化標記(activation-tagged)轉殖株品系M0029907的分析.………………43 六、OsABCB10基因剔除突變株(NF2043)的篩選及外表性狀觀察.…………44 伍、討論.………………….………..…47 陸、參考文獻....................52 圖1、水稻MDR基因家族胺基酸保守性序列分析………………….……….………63 圖2、ABC轉運蛋白MDR(ABCB)次基因家族成員的親源演化樹分析……….……65 圖3、以生物資訊學方式進行OsABCB10胺基酸序列分析…………………………66 圖4、OsABCB10組織專一性之基因表現分析……………………………………..…67 圖5、OsABCB10於孕穗期穎花內部各花器之基因表現分析…...…………………...68 圖6、水稻幼苗於不同植物荷爾蒙處理下OsABCB10基因表現分析……………….69 圖7、水稻幼苗於不同重金屬處理下OsABCB10基因表現分析.……..…………..…70 圖8、水稻幼苗於不同非生物逆境處理下OsABCB10基因表現分析………….……71 圖9、OsABCB10啟動子cis-acting element區域分析………………………….…..…72 圖10、POsABCB10-GUS轉殖水稻的組織化學染色分析………….………….…….……73 圖11~13、POsABCB10-GUS轉殖水稻幼花序的組織化學染色分析…….……….....74~76 圖14、POsABCB10-GUS轉殖水稻穎花內部各構造的組織化學染色分析……….……..77 圖15、POsABCB10-GUS轉殖水稻於低溫逆境處理後組織化學染色分析………….…..78 圖16、POsABCB10-GUS轉殖水稻種子浸潤(imbibition)後化學組織染色分析….……..79 圖17、OsABCB10蛋白的次細胞定位(subcellular localization)………...….....……..80 圖18、OsABCB10基因活化標記(activation-tagged)轉殖株M0029907之分析.……..81 圖19、基因活化標記轉殖株M0029907中對OsABCB10兩翼基因之影響…...……..82 圖20、OsABCB10基因剔除(knock-out)突變株品系NF2043之篩選……….....……..83 圖21、野生型及基因剔除突變株NF2043開花期與孕穗期外表性狀差異......……..84 圖22、OsABCB10基因缺失使種子稔實率(Seed Fertility)大幅降低……….....……..85 圖23、OsABCB10基因的活化或缺失突變株種子外觀及千粒重分析………..……..86 圖24、OsABCB10基因缺失突變株顯著降低活性花粉數……………………..……..87 圖25、野生型(TNG67)及OsABCB10基因活化轉殖株之種子發芽率分析……..…..88 圖26、野生型(Nipponbare)及OsABCB10基因剔除突變株之種子發芽分析………..89 | |
| dc.language.iso | zh-TW | |
| dc.title | 水稻ABC類型ATP-Binding Cassette(ABC)轉運蛋白OsABCB10的功能分析 | zh_TW |
| dc.title | Functional Analysis of Rice MDR-type ATP-Binding Cassette (ABC) Transporter OsABCB10 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余淑美,盧虎生,陸重安,陳凱儀 | |
| dc.subject.keyword | 功能性分析,ABC轉運蛋白, | zh_TW |
| dc.subject.keyword | Functional analysis,ABC transporter, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 3.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
