請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89044
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏恒巍 | zh_TW |
dc.contributor.advisor | Hen-Wei Wei | en |
dc.contributor.author | 陳威廷 | zh_TW |
dc.contributor.author | Wei-Ting Chen | en |
dc.date.accessioned | 2023-08-16T16:53:53Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | Abbasi, M., A. Mahdavi, A. Samie, and R. Jahanian. 2014. Effects of different levels of dietary crude protein and threonine on performance, humoral immune responses and intestinal morphology of broiler chicks. Braz. J. Poult. Sci. 16:35-44.
Alexandratos, N. and J. Bruinsma. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper. 12:3. Altine, S., M. Sabo, N. Muhammad, A. Abubakar, and L. Saulawa. 2016. Basic nutrient requirements of the domestic quails under tropical conditions: A review. World Sci. News. 2:223-235. Association of Official Analytical Chemists. 1990. Official methods of analysis. 15th edition. AOAC, Washington DC, USA. Aviagen 2014. Arbor acres plus broiler performance objectives. Aviagen Incorporated, USA. Awad, E. A., I. Zulkifli, A. S. Farjam, L. T. Chwen, M. A. Hossain, and A. Aljuobori. 2016. Effect of low-protein diet, gender and age on the apparent ileal amino acid digestibility in broiler chickens raised under hot-humid tropical condition. Indian J. Ani. Sci. 86:696-701. Baker, D., M. Sugahara, and H. Scott. 1968. The glycine-serine interrelationship in chick nutrition. Poult. Sci. 47:1376-1377. Baker, D. H. 1997. Ideal amino acid profiles for swine and poultry and their applications in feed formulation. Kyowa Hakko Technol. Review 9:1-24. Baker, D. H. 2009. Advances in protein–amino acid nutrition of poultry. Amino Acids 37:29-41. Baker, D. H. and Y. Han. 1994. Ideal amino acid profile for chicks during the first three weeks posthatching. Poult. Sci. 73:1441-1447. Bartell, S. and A. Batal. 2007. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult. Sci. 86:1940-1947. Batal, A. B. and C. Parsons. 2002. Effects of age on nutrient digestibility in chicks fed different diets. Poult. Sci. 81:400-407. Bayomy, H., M. Rozan, and G. Mohammed. 2017. Nutritional composition of quail meatballs and quail pickled eggs. J. Nutr. Food Sci. 7:1-5. Bedford, M. and J. Summers. 1985. Influence of the ratio of essential to non essential amino acids on performance and carcase composition of the broiler chick. British Poult. Sci. 26:483-491. Bender, A. 1965. The balancing of amino acid mixtures and proteins. P. Nutr. Soc. 24:190-196. Blake, J. P. and J. Hess. 2009. Feeding game birds: Pheasant, quail, and partridge. Alabama Cooperative Extension System. Bortoluzzi, C., S. Rochell, and T. Applegate. 2018. Threonine, arginine, and glutamine: Influences on intestinal physiology, immunology, and microbiology in broilers. Poult. Sci. 97:937-945. Carvalho, L. C., D. Malheiros, M. B. Lima, T. S. Mani, J. A. Pavanini, R. D. Malheiros, and E. P. Silva. 2023. Determination of the Optimal Dietary Amino Acid Ratio Based on Egg Quality for Japanese Quail Breeder. Agriculture. 13:173. Cheng, K. M., D. C. Bennett, and A. D. Mills. 2010. The UFAW handbook on the care and management of laboratory and other research animals. 8th edition. 655-673. Chrystal, P. V., A. F. Moss, A. Khoddami, V. D. Naranjo, P. H. Selle, and S. Y. Liu. 2020. Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poult. Sci. 99:505-516. Chung, T. and D. Baker. 1992. Ideal amino acid pattern for 10-kilogram pigs. J. Anim. Sci. 70:3102-3111. D'Mello, J. 1994. Amino acid imbalances, antagonisms and toxicities. Amino acids Farm Anim. Nutr. 63-97. De Lima, M. B., M. G. B. L. de Sousa, A. R. T. Minussi, L. C. de Carvalho, A. G. Veras, E. B. Malheiros, and E. P. da Silva. 2022. Arginine requirement for egg production in Japanese quail. Poult. Sci. 101:101841. Dean, W. and H. Scott. 1965. The development of an amino acid reference diet for the early growth of chicks. Poult. Sci. 44:803-808. Dean, W. and H. Scott. 1968. Ability of arginine to reverse the growth depression induced by supplementing a crystalline amino acid diet with excess lysine. Poult. Sci. 47:341-342. Del Hoyo, J., J. Del Hoyo, A. Elliott, and J. Sargatal. 1992. Handbook of the birds of the world. Lynx Edicions Barcelona. Ding, X., D. Li, Z. Li, J. Wang, Q. Zeng, S. Bai, Z. Su, and K. Zhang. 2016. Effects of dietary crude protein levels and exogenous protease on performance, nutrient digestibility, trypsin activity and intestinal morphology in broilers. Livest. Sci. 193:26-31. Edmonds, M. S. and D. H. Baker. 1987. Comparative effects of individual amino acid excesses when added to a corn-soybean meal diet: effects on growth and dietary choice in the chick. J. Anim. Sci. 65:699-705. Edwards, H. and D. H. Baker. 1999. Maintenance sulfur amino acid requirements of young chicks and efficiency of their use for accretion of whole-body sulfur amino acids and protein. Poult. Sci. 78:1418-1423. Ekperigin, H. and P. Vohra. 1981. Histopathological and biochemical effects of feeding excess dietary methionine to broiler chicks. Avian Dis. 25:82-95. Fancher, B. I. and L. S. Jensen. 1989. Male broiler performance during the starting and growing periods as affected by dietary protein, essential amino acids, and potassium levels. Poult. Sci. 68:1385-1395. Fernando, M. and B. McCraw. 1973. Mucosal morphology and cellular renewal in the intestine of chickens following a single infection of Eimeria acervulina. J. Parasitol. 59:493-501. Fisher, H., P. Griminger, G. Leveille, and R. Shapiro. 1960. Quantitative aspects of lysine deficiency and amino acid imbalance. J. Nutr. 71:213-220. Fuller, M. F., R. McWilliam, T. C. Wang, and L. R. Giles. 1989. The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. Br. J. Nutr. 62:255-267. Gietzen, D. W., L. F. Erecius, and Q. R. Rogers. 1998. Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. J. Nutr. 128:771-781. Graber, G. and D. H. Baker. 1973. The essential nature of glycine and proline for growing chickens. Poult. Sci. 52:892-896. Guillaume, J. and J. Summers. 1970. Maintenance energy requirement of the rooster and influence of plane of nutrition on metabolizable energy. Can. J. Anim. Sci. 50:363-369. Hajkhodadadi, I., H. Moravej, M. Shivazad, H. Ghasemi, and A. Zareh-Shahneh. 2014. Lysine requirements of female japanese quails base on performance and carcass variables from twenty-one to forty-two days of age. Iran. J. Appl. Anim. Sci. 4:629-635. Han, Y. and D. H. Baker. 1991. Lysine requirements of fast-and slow-growing broiler chicks. Poult. Sci. 70:2108-2114. Han, Y. and D. H. Baker. 1993. Effects of excess methionine or lysine for broilers fed a corn-soybean meal diet. Poult. Sci. 72:1070-1074. Heger, J., Z. Frydrych, and P. Froněk. 1987. The effect of nonessential nitrogen on the utilization of dietary protein in the growing rat. J. Anim. Physiol. Anim. Nutr. 57:130-139. Heger, J., S. Mengesha, and D. Vodehnal. 1998. Effect of essential: total nitrogen ratio on protein utilization in the growing pig. Br. J. Nutr. 80:537-544. Hurwitz, S., D. Sklan, and I. Bartov. 1978. New formal approaches to the determination of energy and amino acid requirements of chicks. Poult. Sci. 57:197-205. Huston, R. and H. Scott. 1968. Effect of varying the composition of a crystalline amino acid mixture on weight gain and pattern of free amino acids in chick tissue. Fed Proc. 27:1204-1209. Ikemoto, S., M. Miyashita, C. Yamanaka, F. Shizuka, Y. Kido, and K. Kishi. 1989. Optimal ratios of essential to total amino acids for amino acid mixtures given to rats. Nutr. Rep. Int. 39:477-485. Khajali, F., and R. Wideman. 2010. Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World's Poult. Sci. J. 66:751-766. Khosravi, H., M. Mehri, F. Bagherzadeh-Kasmani, and M. Asghari-Moghadam. 2016. Methionine requirement of growing Japanese quails. Anim. Feed Sci. Technol. 212:122-128. Kidd, M., and P. Tillman. 2016. Key principles concerning dietary amino acid responses in broilers. Anim. Feed Sci. Technol. 221:314-322. Kidd, M. T., C. W. Maynard, and G. J. Mullenix. 2021. Progress of amino acid nutrition for diet protein reduction in poultry. J. Anim. Sci. Biotechnol. 12:45. Kim, S., D. Baker, and R. Easter. 2001. Dynamic ideal protein and limiting amino acids for lactating sows: the impact of amino acid mobilization. J. Anim. Sci. 79:2356-2366. Konashi, S., K. Takahashi, and Y. Akiba. 2000. Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. Br. J. Nutr. 83:449-456. Law, F. L., I. Zulkifli, A. F. Soleimani, J. B. Liang, and E. A. Awad. 2018. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australas. J. Anim. Sci. 31:1291. Lima, M., F. Costa, J. Batista, S. Oliveira, and S. Santos. 2013. Impact of the feed metabolizable energy on protein and amino acids demand of Japanese quails. Global J. Anim. Sci. Res. 1:8-19. Liu, S., J. Q. Ni, J. S. Radcliffe, and C. E. Vonderohe. 2017. Mitigation of ammonia emissions from pig production using reduced dietary crude protein with amino acid supplementation. Bioresour. Technol. 233:200-208. Lukanov, H., and I. Pavlova. 2020. Domestication changes in Japanese quail (Coturnix japonica): a review. World's Poult. Sci. J. 76:787-801. Maynard, C., A. Ghane, P. Chrystal, P. Selle, and S. Liu. 2020. Low crude protein diets: Does the modern broiler adapt to diet composition through manipulation of nutrient metabolism or are macro nutrient utilization values fiat data points. Poult. Sci. 98:64. Mehri, M., G. Jalilvand, M. Ghazaghi, A.-H. Mahdavi, and F. B. Kasmani. 2013. Estimation of optimal lysine in quail chicks during the second and third weeks of age. Ital. J. Anim. Sci. 12:e84. Minvielle, F. 2004. The future of Japanese quail for research and production. World's Poult. Sci. J. 60:500-507. Minvielle, F. F. 1998. Genetics and breeding of Japanese quail for production around the world. Asian Pacific Poultry Congress. Nagova, Japan. Mondry, R. 2016. Quail farming in tropical regions. CTA and ISF Cameroon Pro-Agro series Collection, Cameroon. Munks, B., A. Robinson, E. F. Beach, and H. H. Williams. 1945. Amino acids in the production of chicken egg and muscle. Poult. Sci. 24:459-464. National Research Council. 1994. Nutrient requirements of poultry, 9th revised edition. National Academy Press, Washington, DC, USA. Nichols, C. R. 1991. A comparison of the reproductive and behavioural differences in feral and domestic Japanese quail. University of British Columbia. Nitsan, Z., G. Ben‐Avraham, Z. Zoref, and I. Nir. 1991. Growth and development of the digestive organs and some enzymes in broiler chicks after hatching. Br. Poult. Sci. 32:515-523. Noy, Y. and D. Sklan. 1995. Digestion and absorption in the young chick. Poult. Sci. 74:366-373. Oxford, J. H., and R. K. Selvaraj. 2019. Effects of glutamine supplementation on broiler performance and intestinal immune parameters during an experimental coccidiosis infection. J. Appl. Poult. Res. 28:1279-1287. Padgett, C. A. and W. D. Ivey. 1959. Coturnix quail as a laboratory research animal. Science. 129:267-268. Recharla, N., K. Kim, J. Park, J. Jeong, Y. Jeong, H. Lee, O. Hwang, J. Ryu, Y. Baek, and Y. Oh. 2017. Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta. J. Anim. Sci. Technol. 59:1-8. Ribeiro, C. L. N., S. L. T. Barreto, R. S. Reis, J. C. L. Muniz, J. L. Donzele, P. C. Gomes, J. G. Vargas Júnior, and L. F. T. Albino. 2013. Digestible lysine levels in diets for laying Japanese quails. Rev. Bras. Zootec. 42:489-495. Robbins, K. R., A. M. Saxton, and L. L. Southern. 2006. Estimation of nutrient requirements using broken-line regression analysis1. J. Anim. Sci. 84:155-165. Rostagno, H., L. Albino, J. Donzele, P. Gomes, R. Oliveira, D. Lopes, A. Ferreira, S. T. Barreto, and R. Euclides. 2011. Brazilian tables for poultry and swine: composition of feedstuffs and nutritional requirements. Animal Science Department UFV, Viçosa, MG, Brazil . Santhi, D. and A. Kalaikannan. 2017. Japanese quail (Coturnix coturnix japonica) meat: characteristics and value addition. World's Poult. Sci. J. 73:337-344. Sarabmeet, K., and A. Mandal. 2015. The performance of Japanese quail (white breasted line) to dietary energy and amino acid levels on growth and immuno-competence. J. Nutr. Food Sci. 5:4 Sasse, C. E. and D. H. Baker. 1973. Modification of the Illinois reference standard amino acid mixture. Poult. Sci. 52:1970-1972. Scott, H., W. Glista, and H. Mitchell. 1951. The amino acid requirements of the chick. Poult. Sci. 915-915. Scott, H., G. Klain, and B. C. Johnson. 1960. The amino acid requirement of the growing chick fed a crystalline amino acid diet. Poult. Sci. 39:39-44. Sell, J., C. Angel, F. Piquer, E. Mallarino, and H. Al-Batshan. 1991. Developmental patterns of selected characteristics of the gastrointestinal tract of young turkeys. Poult. Sci. 70:1200-1205. Sell, J. L. 1996. Physiological limitations and potential for improvement in gastrointestinal tract function of poultry. J. Appl. Poult. Res. 5:96-101. Shim, K., and P. Vohra. 1984. A review of the nutrition of Japanese quail. World's Poult. Sci. J. 40:261-274. Shimakura, K. 1940. Notes on the genetics of the Japanese quail. I. The simple, Mendelian, autosomal, recessive character" brown-splashed white," of its plumage. Jap. J. Genet. 16:106-112. Si, J., C. Fritts, D. Burnham, and P. Waldroup. 2004. Extent to which crude protein may be reduced in corn-soybean meal broiler diets through amino acid supplementation. Int. J. Poult. Sci. 3. Silva, J. d., and F. Costa. 2009. Tabela para codornas japonesas e europeias. Funep, Jaboticabal, São Paulo, Brazil. Sugahara, M., and S. Ariyoshi. 1968. The role of dispensable amino acids for the maximum growth of chick. Agric. Biol. Chem. 32:153-160. Sulistiyanto, B., Y. Akiba, and K. Sato. 1999. Energy utilisation of carbohydrate, fat and protein sources in newly hatched broiler chicks. Br. Poult. Sci. 40:653-659. Svacha, A., C. Weber, and B. Reid. 1970. Lysine, methionine and glycine requirements of Japanese quail to five weeks of age. Poult. Sci. 49:54-59. Tamir, H., and S. Ratner. 1963. Enzymes of arginine metabolism in chicks. Arch. Biochem. Biophys. 102:249-258. Van Harn, J., M. Dijkslag, and M. Van Krimpen. 2019. Effect of low dietary protein levels on performance, litter quality and footpad lesions in broilers. Poult. Sci. 98:4868-4877. Wecke, C., D. R. Khan, A. Sünder, and F. Liebert. 2018. Age and gender dependent amino acid concentrations in the feather, feather-free and whole empty body protein of fast growing meat-type chickens. Open J. Anim. Sci. 8:223. Wei, H. W., H. M. Kuo, W. Z. Chiu, and B. J. Chen. 2009. The optimum dietary essential amino acid pattern for male Taiwan country chicks. Asian-Australas. J. Anim. Sci. 22:1186-1194. Wu, G. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1-17. Wu, G. and P. Li. 2022. The “ideal protein” concept is not ideal in animal nutrition. Exp. Biol. Med. 247:1191-1201. Wu, G., Z. Wu, Z. Dai, Y. Yang, W. Wang, C. Liu, B. Wang, J. Wang, and Y. Yin. 2013. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44:1107-1113. Young, V. R., and J. Zamora. 1968. Effects of altering the proportions of essential to nonessential amino acids on growth and plasma amino acid levels in the rat. The J. Nutr. 96:21-27. Zelenka, J. 1968. Influence of the age of chicken on the metabolisable energy values of poultry diets. Br. Poult. Sci. 9:135-142. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89044 | - |
dc.description.abstract | 本研究旨在探討日本鵪鶉對各必需胺基酸之可消化需要量以及整體必需胺基酸對總胺基酸之比例,藉以建立飼糧中理想胺基酸組成。本研究分為五個試驗,皆以4日齡之 English White 品系日本鵪鶉(Coturnix japonica)為試驗動物,試驗為期7日,至10日齡結束。試驗一以滿足NRC(1994)所推薦生長期飼糧中各營養分需要量之玉米-大豆粕實用飼糧,餵飼日本鵪鶉,並根據其每日之體重、採食量與飼糧之可代謝能濃度,計算4至10日齡鵪鶉平均每日每公斤代謝體重所對應之可代謝能需要量(k 值),經檢測後結果為467.08 ± 33.57 kcal ME/kg^0.75。試驗二參考NRC (1994)所載的各必需胺基酸推薦量,配製五組半純化飼糧,彼等各必需胺基酸之濃度分別為推薦量之50%、75%、100%、125%或150%,餵飼4至10日齡之English White日本鵪鶉。試驗結束後,使用比較性屠宰法計算其體氮蓄積速率,繼之以二次曲線模型進行統計分析。結果顯示,當飼糧中各必需胺基酸濃度達到NRC (1994)推薦量的113.17%時,日本鵪鶉將呈現最佳的體氮蓄積率。試驗三以滿足NRC (1994)對各必需胺基酸推薦量之113.17%之半純化飼糧,餵飼4至10日齡之日本鵪鶉,藉以檢測該飼糧之可代謝能濃度,並以此計算出鵪鶉平均每日每公斤代謝體重所對應之可代謝能需要量(k 值)。經檢測後結果顯示,該半純化飼糧之表面可代謝能濃度為3450.07 ± 64.45 kcal/kg,而k 值為466.23 ± 21.27 kcal ME/kg^0.75。試驗四共22組。其中一組於試驗開始時犧牲,提供計算起始體氮之依據。對照組飼糧則為試驗三所檢測之半純化飼糧。其餘組別為缺乏組,兩兩成對,以一種必需胺基酸當成唯一的限制胺基酸,分別為對照組濃度的50或60%。依據k 值、半純化飼糧之可代謝能濃度與日本鵪鶉個別代謝體重,計算每日應有之採食量,進行餵飼。於試驗結束後,以比較性屠宰法分析其體氮蓄積率。將兩兩成對之各必需胺基酸缺乏組別的限制胺基酸濃度與所對應的體氮蓄積率,進行直線迴歸,再與對照組體氮蓄積率的水平線相交,所得交點的x 軸之對應值,即為生長中鵪鶉每日每公斤代謝體重,對此必需胺基酸之維持加生長的需要量。而各迴歸直線斜率之倒數與迴歸直線對x 軸的截距,則分別代表日本鵪鶉每日每公斤代謝體重,對此必需胺基酸用於生長與維持之需要量。另將所求得之生長、維持、維持加生長之各必需胺基酸需要量,除以離胺酸組所對應之數值,即分別得到4至10日齡鵪鶉維持加生長所需之理想必需胺基酸組成為Lys:Arg:SAA:His:Trp:Leu:AAA:Ile:Thr:Val = 100:91:62:26:17:121:157:69:75:69;生長所需之組成為100:89:44:20:17:99:102:74:67:76;維持所需之組成為100:98:135:50:9:209:375:49:104:40。試驗五調整飼糧中非必需胺基酸之濃度,並應用試驗四所求得之4 至10 日齡鵪鶉對各必需胺基酸生長加維持之理想組成為基礎,配製出五種試驗飼糧,分別為飼糧中整體必需胺基酸佔總胺基酸之比例(E:T)為0.62、0.48、0.39、0.32 或0.28 之處理組飼糧。以管飼輔助任飼進行試驗,試驗結果顯示當E:T小於0.40時,隨著飼糧中E:T 下降,體內的氮蓄積速率呈線性上升(P < 0.05),而E:T小於0.47時,飼糧氮的利用效率則呈線性下降(P < 0.05)。達到最佳體氮蓄積速率與最佳飼糧氮利用效率之轉折點,分別為0.40與0.47。
綜上所述,本研究所發現飼糧中理想胺基酸之組成,可當成評估生長期鵪鶉飼料中可被消化必需胺基酸組成良窳之依據,以期能降低飼糧中粗蛋白質之濃度,並使含氮廢物之排放量減少,進而建立鵪鶉最佳之生產效能。 | zh_TW |
dc.description.abstract | The aim of the current study was to investigate the digestible requirements of the integrity of individual essential amino acids for Japanese quail to establish the ideal amino acid pattern (IAAP) in diets. This study consisted of five trials whose animal model was used the 4- 10 day old English White strain of Japanese quail (Coturnix japonica) as experimental animals. In the first trial, Japanese quail was fed with a practical diet, basing on corn and soybean, which met the requirements of nutrients in the growth period recommended by NRC (1994). The requirement of metabolizable energy, k value, for daily maintenance plus growth basing on metabolic body weight was computed according to dietary concentration of metabolizable energy and the daily body weight and feed intake of quail. A result showed k value as 467.08 ± 33.57 kcal ME/kg^0.75. The second trial was to investigate the integrity of requirements recommended by NRC (1994) for individual essential amino acids. Quail receiving diets containing 50, 75, 100, 125, or 150% of requirements of entire essential amino acids recommended by NRC (1994) from d4 to 10. The accumulation rates of body nitrogen calculated by the methodology of comparative slaughter were computed according to a quadratic regression model and the x coordinate of the inflection point of a corresponding quadratic curve was 113.17%. It implied that the best accumulation rate of body nitrogen would be achieved when the dietary levels of individual essential amino acids reached entirely to 113.17% of requirements recommended by NRC (1994). In the third trial, Japanese quails ingested a semi- synthetic diet containing 113.17% of the entire requirements of individual essential amino acids recommended by NRC (1994) for detected the apparent metabolizable energy level of the diet and it was as 3450.07 ± 64.45 kcal/kg. A k value was also computed as 466.23 ± 21.27 kcal ME/kg^0.75 according to dietary concentration of metabolizable energy and the daily body weight and feed intake of quail. In the fourth trial, 22 treatments were conducted. One set of quail was sacrificed in the beginning of the test to provide a basis for computing the initial body nitrogen mass of the rest quail. The percentages of entire essential amino acids in a control diet was designed as 113.17% referring to the quail requirements suggested by NRC (1994). Individual essential amino acids were assigned to be the only limiting amino acid in corresponding deficiency groups, and the deficiency level was 50 or 60% of the control group, respectively. According to the apparent metabolizable energy level of the semi-synthetic diet, the individual metabolic body weight of individual quail, and the k value obtained in trial 3, daily feed intake was computed for feeding. In the end of the experiment, the nitrogen retention rate was calculated by comparative slaughtering. The x coordinate of an intersection for each straight line, resulting from every two deficient groups with the same limiting amino acid but at different levels, with a horizontal line from the response of the control group represented the daily requirement for the corresponding essential amino acid based on metabolic body weight for growth plus maintenance. The x-intercept and the reciprocal of slope for each straight line stood for the respective requirement for maintenance and growth, separately, corresponding to the examined essential amino acid. Each amino acid requirement obtained for growth, maintenance, and growth plus maintenance were divided by the value of lysine to obtain the ideal essential amino acid pattern (IEAAP) for growth plus maintenance from 4 to 10 days of age was Lys: Arg: SAA: His: Trp: Leu: AAA: Ile: Thr: Val =100:91:62:26:17:121:157:69:75:69, respectively, for growth, was 100:89:44:20:17:99:102:74:67:76, respectively, and for maintenance was 100:98:135:50:9:209:375:49:104:40. In the final trial, The ratio of total essential amino acids to total amino acids (E:T) was manipulated by adjusting the levels of dietary non-essential amino acids while maintaining the individual essential amino acid requirement levels for growth plus maintenance originating from the trial 4. The E:T ratio was designed as 0.62, 0.48, 0.39, 0.32 or 0.28 for each treatment. The results showed that a decrease in the E:T ratio was accompanied by a significantly linear (P < 0.05) increase in body nitrogen retention rate until the E:T ratio smaller than 0.40 while a significantly linear (P < 0.05) decrease in dietary nitrogen utilization efficiency until the E:T ratio larger than 0.47. The optimal ratios of E:T were 0.40 and 0.47 for body nitrogen retention rate and dietary nitrogen utilization efficiency, respectively.
To sum up, the results obtained will be as a criterion to evaluate the pattern of digestible ideal amino acids in practical diets for reducing the dietary level of crude protein and the nitrogen emission of excrement whereas lifting the efficiency of production. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:53:53Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T16:53:53Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 I
致謝 II 摘要 III Abstract V 圖目錄 XI 表目錄 XII 壹、前言 1 貳、文獻探討 2 一、日本鵪鶉之介紹 2 (一)鵪鶉分類 2 (二)日本鵪鶉繁殖生長性狀、體型及特徵 4 (三)日本鵪鶉產業發展之介紹 5 (四)日本鵪鶉作為試驗動物模型之探討 7 二、理想胺基酸組成之概念 9 三、家禽理想胺基酸組成之研究進展 10 四、理想胺基酸組成之研究方法 14 (一)分析動物體的胺基酸組成 14 (二)測定高生物價蛋白質的胺基酸組成 14 (三)文獻總結法 14 (四)劑量反應法 15 (五)胺基酸扣除法 16 (六)比較選擇法 17 (七)劑量反應法之改良 17 五、整體必需胺基酸與整體非必需胺基酸之關係 18 六、家禽能量系統之介紹 20 參、試驗內容 21 試驗一、檢測生長期中日本鵪鶉的每日每公斤代謝體重所對應之可代謝能需要量(k值) 21 一、前言 21 二、材料與方法 22 三、結果 27 四、討論 28 試驗二、檢測NRC(1994)手冊對生長期日本鵪鶉之各必需胺基酸推薦量之整體適用性 29 一、前言 29 二、材料與方法 30 三、結果 33 四、討論 37 試驗三、檢測生長期日本鵪鶉對可致使最佳體氮蓄積率之整體必需胺基酸百分比之半純化飼糧之表面代謝能 39 一、前言 39 二、材料與方法 40 三、結果 43 四、討論 45 試驗四、日本鵪鶉生長期飼糧中理想必需胺基酸組成之建立 46 一、前言 46 二、材料與方法 47 三、結果 53 四、討論 59 試驗五、建立鵪鶉生長期飼糧中可吸收整體必需胺基酸對總胺基酸之比例 63 一、前言 63 二、材料與方法 64 三、結果 69 四、討論 73 肆、結論 75 伍、附錄 76 陸、參考文獻 80 | - |
dc.language.iso | zh_TW | - |
dc.title | 日本鵪鶉生長期飼糧中理想可消化胺基酸組成之建立 | zh_TW |
dc.title | Establishing the Dietary Ideal Amino Acid Pattern for Japanese quail (Coturnix japonica) | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王翰聰;李滋泰;陳志峰 | zh_TW |
dc.contributor.oralexamcommittee | Han-Tsung Wang;Tzu-Tai Lee;Chih-Feng Chen | en |
dc.subject.keyword | 日本鵪鶉,理想胺基酸組成,體氮蓄積率,必需胺基酸, | zh_TW |
dc.subject.keyword | Japanese quail,Ideal amino acid pattern,Nitrogen retention rate,Essential amino acids, | en |
dc.relation.page | 89 | - |
dc.identifier.doi | 10.6342/NTU202303615 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。