Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89031
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源zh_TW
dc.contributor.advisorMing-Yuan Minen
dc.contributor.author張筠zh_TW
dc.contributor.authorYun Changen
dc.date.accessioned2023-08-16T16:50:37Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationAndreas, S., Schwenk, F., Küter-Luks, B., Faust, N., & Kühn, R. (2002). Enhanced efficiency through nuclear localization signal fusion on phage PhiC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic acids research, 30(11), 2299–2306. https://doi.org/10.1093/nar/30.11.2299
Andrews, B. J., Proteau, G. A., Beatty, L. G., & Sadowski, P. D. (1985). The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell, 40(4), 795–803. https://doi.org/10.1016/0092-8674(85)90339-3

Aston-Jones, G. (1985). Behavioral functions of locus coeruleus derived from cellular attributes. Physiological Psychology, 13(3), 118–126. https://doi.org/10.3758/BF03326513

Aston-Jones, G., & Bloom, F. E. (1981a). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1(8), 876–886. https://doi.org/10.1523/JNEUROSCI.01-08-00876.1981

Aston-Jones, G., & Bloom, F. E. (1981b). Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1(8), 887–900. https://doi.org/10.1523/JNEUROSCI.01-08-00887.1981

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual review of neuroscience, 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709

Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological psychiatry, 46(9), 1309–1320. https://doi.org/10.1016/s0006-3223(99)00140-7

Aston-Jones, G., Zhu, Y., & Card, J. P. (2004). Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(9), 2313–2321. https://doi.org/10.1523/JNEUROSCI.5339-03.2004

Basbaum, A. I., & Menetrey, D. (1987). Wheat germ agglutinin-apoHRP gold: a new retrograde tracer for light- and electron-microscopic single- and double-label studies. The Journal of comparative neurology, 261(2), 306–318. https://doi.org/10.1002/cne.902610211

Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain research. Brain research reviews, 42(1), 33–84. https://doi.org/10.1016/s0165-0173(03)00143-7

Borodovitsyna, O., Flamini, M. D., & Chandler, D. J. (2018). Acute Stress Persistently Alters Locus Coeruleus Function and Anxiety-like Behavior in Adolescent Rats. Neuroscience, 373, 7–19. https://doi.org/10.1016/j.neuroscience.2018.01.020

Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. The European journal of neuroscience, 20(3), 791–802. https://doi.org/10.1111/j.1460-9568.2004.03526.x

Bouret, S., & Sara, S. J. (2005). Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends in neurosciences, 28(11), 574–582. https://doi.org/10.1016/j.tins.2005.09.002

Breton-Provencher, V., & Sur, M. (2019). Active control of arousal by a locus coeruleus GABAergic circuit. Nature neuroscience, 22(2), 218–228. https://doi.org/10.1038/s41593-018-0305-z

Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K., & de Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature neuroscience, 13(12), 1526–1533. https://doi.org/10.1038/nn.2682

Chen, T. W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., Schreiter, E. R., Kerr, R. A., Orger, M. B., Jayaraman, V., Looger, L. L., Svoboda, K., & Kim, D. S. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295–300. https://doi.org/10.1038/nature12354

Chiu, T. H., Yang, Y. R., Yang, J. J., & Chen, C. L. (1995). Inhibition of locus coeruleus neurons by serotonin at high doses. The Chinese journal of physiology, 38(3), 153–157.

Clayton, E. C., Rajkowski, J., Cohen, J. D., & Aston-Jones, G. (2004). Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(44), 9914–9920. https://doi.org/10.1523/JNEUROSCI.2446-04.2004

Dahan, L., Astier, B., Vautrelle, N., Urbain, N., Kocsis, B., & Chouvet, G. (2007). Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 32(6), 1232–1241. https://doi.org/10.1038/sj.npp.1301251

Foote, S. L., Aston-Jones, G., & Bloom, F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences of the United States of America, 77(5), 3033–3037. https://doi.org/10.1073/pnas.77.5.3033

Goaillard, J. M., Moubarak, E., Tapia, M., & Tell, F. (2020). Diversity of Axonal and Dendritic Contributions to Neuronal Output. Frontiers in cellular neuroscience, 13, 570. https://doi.org/10.3389/fncel.2019.00570

Ha, G. E., & Cheong, E. (2017). Spike Frequency Adaptation in Neurons of the Central Nervous System. Experimental neurobiology, 26(4), 179–185. https://doi.org/10.5607/en.2017.26.4.179

Hamilton, D. L., & Abremski, K. (1984). Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. Journal of molecular biology, 178(2), 481–486. https://doi.org/10.1016/0022-2836(84)90154-2

Hamos, J. E., Van Horn, S. C., Raczkowski, D., Uhlrich, D. J., & Sherman, S. M. (1985). Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature, 317(6038), 618–621. https://doi.org/10.1038/317618a0

Hurley, L. M., Devilbiss, D. M., & Waterhouse, B. D. (2004). A matter of focus: monoaminergic modulation of stimulus coding in mammalian sensory networks. Current opinion in neurobiology, 14(4), 488–495. https://doi.org/10.1016/j.conb.2004.06.007

Jin, X., Li, S., Bondy, B., Zhong, W., Oginsky, M. F., Wu, Y., Johnson, C. M., Zhang, S., Cui, N., & Jiang, C. (2016). Identification of a Group of GABAergic Neurons in the Dorsomedial Area of the Locus Coeruleus. PloS one, 11(1), e0146470. https://doi.org/10.1371/journal.pone.0146470

Kim, H., Kim, M., Im, S. K., & Fang, S. (2018). Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Laboratory animal research, 34(4), 147–159. https://doi.org/10.5625/lar.2018.34.4.147

Kim, U., & McCormick, D. A. (1998). The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(22), 9500–9516. https://doi.org/10.1523/JNEUROSCI.18-22-09500.1998

Kuo, C. C., Hsieh, J. C., Tsai, H. C., Kuo, Y. S., Yau, H. J., Chen, C. C., Chen, R. F., Yang, H. W., & Min, M. Y. (2020). Inhibitory interneurons regulate phasic activity of noradrenergic neurons in the mouse locus coeruleus and functional implications. The Journal of physiology, 598(18), 4003–4029. https://doi.org/10.1113/JP279557

Levy, S. L., White, J. J., Lackey, E. P., Schwartz, L., & Sillitoe, R. V. (2017). WGA-Alexa Conjugates for Axonal Tracing. Current protocols in neuroscience, 79, 1.28.1–1.28.24. https://doi.org/10.1002/cpns.28

Loizou L. A. (1969). Projections of the nucleus locus coeruleus in the albino rat. Brain research, 15(2), 563–566. https://doi.org/10.1016/0006-8993(69)90185-1

Lucas-Romero, J., Rivera-Arconada, I., Roza, C., & Lopez-Garcia, J. A. (2018). Origin and classification of spontaneous discharges in mouse superficial dorsal horn neurons. Scientific reports, 8(1), 9735. https://doi.org/10.1038/s41598-018-27993-y

Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PloS one, 2(5), e439. https://doi.org/10.1371/journal.pone.0000439

Morgan, J. L., & Lichtman, J. W. (2020). An Individual Interneuron Participates in Many Kinds of Inhibition and Innervates Much of the Mouse Visual Thalamus. Neuron, 106(3), 468–481.e2. https://doi.org/10.1016/j.neuron.2020.02.001

Morilak, D. A., Barrera, G., Echevarria, D. J., Garcia, A. S., Hernandez, A., Ma, S., & Petre, C. O. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in neuro-psychopharmacology & biological psychiatry, 29(8), 1214–1224. https://doi.org/10.1016/j.pnpbp.2005.08.007

Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nature biotechnology, 19(2), 137–141. https://doi.org/10.1038/84397

Perkins K. L. (2006). Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. Journal of neuroscience methods, 154(1-2), 1–18. https://doi.org/10.1016/j.jneumeth.2006.02.010

Saito, Y., & Yanagawa, Y. (2017). Distinct response properties of rat prepositus hypoglossi nucleus neurons classified on the basis of firing patterns. Neuroscience research, 121, 18–28. https://doi.org/10.1016/j.neures.2017.03.003

Sara S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature reviews. Neuroscience, 10(3), 211–223. https://doi.org/10.1038/nrn2573

Sauer B. (1998). Inducible gene targeting in mice using the Cre/lox system. Methods (San Diego, Calif.), 14(4), 381–392. https://doi.org/10.1006/meth.1998.0593

Schwab, M. E., Javoy-Agid, F., & Agid, Y. (1978). Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain research, 152(1), 145–150. https://doi.org/10.1016/0006-8993(78)90140-3

Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B., DeLoach, K. E., Ren, J., Ibanes, S., Malenka, R. C., Kremer, E. J., & Luo, L. (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524(7563), 88–92. https://doi.org/10.1038/nature14600

Sharma, Y., Xu, T., Graf, W. M., Fobbs, A., Sherwood, C. C., Hof, P. R., Allman, J. M., & Manaye, K. F. (2010). Comparative anatomy of the locus coeruleus in humans and nonhuman primates. The Journal of comparative neurology, 518(7), 963–971. https://doi.org/10.1002/cne.22249

Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H., Doi, T., Kawano, K., Inaba, N., Fukushima, K., Kurkin, S., Kurata, K., Taira, M., Tsutsui, K., Komatsu, H., Ogawa, T., Koida, K., Tanji, J., … Toyama, K. (2009). Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS computational biology, 5(7), e1000433. https://doi.org/10.1371/journal.pcbi.1000433

Simko, J., & Markram, H. (2021). Morphology, physiology and synaptic connectivity of local interneurons in the mouse somatosensory thalamus. The Journal of physiology, 599(22), 5085–5101. https://doi.org/10.1113/JP281711

Takeuchi, T., Duszkiewicz, A. J., Sonneborn, A., Spooner, P. A., Yamasaki, M., Watanabe, M., Smith, C. C., Fernández, G., Deisseroth, K., Greene, R. W., & Morris, R. G. (2016). Locus coeruleus and dopaminergic consolidation of everyday memory. Nature, 537(7620), 357–362. https://doi.org/10.1038/nature19325

Tan, S., Mo, X., Qin, H., Dong, B., Zhou, J., Long, C., & Yang, L. (2023). Biocytin-Labeling in Whole-Cell Recording: Electrophysiological and Morphological Properties of Pyramidal Neurons in CYLD-Deficient Mice. Molecules (Basel, Switzerland), 28(10), 4092. https://doi.org/10.3390/molecules28104092

Teplov, I. Y., Zinchenko, V. P., Kosenkov, A. M., Gaidin, S. G., Nenov, M. N., & Sergeev, A. I. (2021). Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochemical and biophysical research communications, 553, 99–106. https://doi.org/10.1016/j.bbrc.2021.02.149

Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., Petreanu, L., Akerboom, J., McKinney, S. A., Schreiter, E. R., Bargmann, C. I., Jayaraman, V., Svoboda, K., & Looger, L. L. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature methods, 6(12), 875–881. https://doi.org/10.1038/nmeth.1398

Uematsu, A., Tan, B. Z., & Johansen, J. P. (2015). Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory. Learning & memory (Cold Spring Harbor, N.Y.), 22(9), 444–451. https://doi.org/10.1101/lm.037283.114

Verstegen, A. M. J., Klymko, N., Zhu, L., Mathai, J. C., Kobayashi, R., Venner, A., Ross, R. A., VanderHorst, V. G., Arrigoni, E., Geerling, J. C., & Zeidel, M. L. (2019). Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Current biology : CB, 29(17), 2775–2789.e7. https://doi.org/10.1016/j.cub.2019.07.009

Verstegen, A. M. J., Vanderhorst, V., Gray, P. A., Zeidel, M. L., & Geerling, J. C. (2017). Barrington's nucleus: Neuroanatomic landscape of the mouse "pontine micturition center". The Journal of comparative neurology, 525(10), 2287–2309. https://doi.org/10.1002/cne.24215

Walling, S. G., Brown, R. A., Miyasaka, N., Yoshihara, Y., & Harley, C. W. (2012). Selective wheat germ agglutinin (WGA) uptake in the hippocampus from the locus coeruleus of dopamine-β-hydroxylase-WGA transgenic mice. Frontiers in behavioral neuroscience, 6, 23. https://doi.org/10.3389/fnbeh.2012.00023

Williams, J. T., Bobker, D. H., & Harris, G. C. (1991). Synaptic potentials in locus coeruleus neurons in brain slices. Progress in brain research, 88, 167–172. https://doi.org/10.1016/s0079-6123(08)63806-6

Yang, M., Logothetis, N. K., & Eschenko, O. (2021). Phasic activation of the locus coeruleus attenuates the acoustic startle response by increasing cortical arousal. Scientific reports, 11(1), 1409. https://doi.org/10.1038/s41598-020-80703-5

Yoshihara Y. (2002). Visualizing selective neural pathways with WGA transgene: combination of neuroanatomy with gene technology. Neuroscience research, 44(2), 133–140. https://doi.org/10.1016/s0168-0102(02)00130-x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89031-
dc.description.abstract藍斑核(locus coeruleus,LC)產生相位性放電(phasic firing)對於動物的行為調控至關重要,但對於藍斑核相位性放電的產生機制目前並不是很清楚,過去我們實驗室發現可以通過阻斷薄腦片中的興奮性和抑制性突觸傳遞來抑制和增強類相位活動(phasic-like activity,PLA),並且在藍斑核旁定位到一群抑制性中間神經元,但其僅占和藍斑核連結的中間神經元中的20%,我們推測可能還存在著一群興奮性中間神經元,和抑制性中間神經元一起調控藍斑核相位式放電的產生。

我利用TH-cre和VGluT2-FLP雜交後代的小鼠搭配小麥胚芽凝集素(wheat germ agglutinin,WGA)逆行追蹤,成功標定出和藍斑核有連結的興奮性中間神經元,其佔和藍斑核連結的中間神經元中的10%,並且這群興奮性中間神經元位於藍斑核的內側。另外,我使用VGluT2-cre的小鼠,利用注射可同時在細胞本體表現綠螢光蛋白(green fluorescent protein,GFP)及在突觸表現mRuby的腺病毒,再次證實這群興奮性中間神經元和藍斑核有連結。

更進一步,我利用膜片鉗記錄(patch clamp recording)這群會產生自主放電的興奮性神經元,這群興奮性神經元的電生理訊號會和鈣離子影像訊號同步,而這群被記錄的興奮性神經元放電模式(firing pattern)大多為adaptive,少部分為delay。同時利用生物素(biocytin)的填充,證實這群VGluT2+神經元的軸突會伸入藍斑核中。

由這些實驗結果可以得到,在藍斑核內側有一群和其連結的興奮性中間神經元,這是一群會產生自發性活動的神經元,並且在結構上可以支持調控藍斑核相位性放電的產生。
zh_TW
dc.description.abstractThe locus coeruleus (LC) is crucially involved in the regulation of animal behavior through its generation of phasic firing. However, the mechanism underlying the generation of phasic firing in the locus coeruleus is currently not well understood. In our laboratory's past experiments, we have observed the suppression and enhancement of phasic-like activity (PLA) can be achieved by blocking excitatory and inhibitory synaptic transmission. We also located a population of inhibitory interneurons adjacent to the locus coeruleus, which accounts for only 20% of the interneurons connected to the locus coeruleus.Based on these findings, we speculate that there might be a population of excitatory interneurons, in addition to the inhibitory interneurons, working together to regulate the generation of phasic firing in the locus coeruleus.

By using TH-cre cross VGluT2-FLP transgenic mice and utilizing wheat germ agglutinin (WGA) tracer, we traced back and successfully labeled a population of excitatory interneurons that connected to the locus coeruleus. These excitatory interneurons accounted for 10% of the interneurons connected to the locus coeruleus and were located on the medial side of the locus coeruleus. Furthermore, using VGluT2-cre mice, we injected adeno-associated viruses expressing green fluorescent protein (GFP) in the soma and expressing mRuby in synaptic and filled with biocytin, confirming that there is a connection between this group of excitatory interneurons and the locus coeruleus again.

In addition, patch clamp recordings revealed that this population of the excitatory neurons which spontaneously generated burst firing exhibited electrophysiological signals that were synchronized with Calcium imaging. Most of these excitatory neurons displayed an adapted firing pattern, while a small part exhibited delayed. Simultaneously, biocytin filling was used to demonstrate that the axons of this group of excitatory neurons extend into the locus coeruleus.

From these experimental results, we can conclude that there is a population of excitatory interneurons located on the medial side of the locus coeruleus. This group consists of neurons that exhibit spontaneous activity and structurally capable of regulating the generation of phasic firing.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:50:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:50:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書i
謝辭 ii
中文摘要 iii
英文摘要 iv
目錄 v
第一章 緒論1
第二章 研究目的與實驗設計6
第一節 研究目的與假說6
第二節 研究實驗設計6
第三章 材料和方法10
第一節 動物10
第二節 病毒注射10
第三節 灌流和切片10
第四節 免疫組織化學染色11
第五節 共軛焦顯微鏡影像13
第六節 電生理13
第四章 結果16
第一節 系統及病毒專一性測試16
第二節 藍斑核前中間神經元約有10%屬於興奮性藍斑核中間神經元,並且其位置主要分布於藍斑核內腹側18
第三節 興奮性藍班核前中間神經元之電生理與型態特性21
第五章 結論24
第一節 藍斑核周圍存在著一群和其有突觸連結的興奮性中間神經元24
第二節 和藍斑核連結的興奮性中間神經元可能不只10%25
第三節 與藍斑核連結之興奮性中間神經元的軸突伸入藍斑核中25
第四節 這群興奮性中間神經元的活動模式大多為adaptive27
第五節 這群興奮性中間神經元擁有自主放電的特性27
第六章 總結29
第七章 參考文獻30
第八章 圖36
圖ㄧ、cre-loxp及FLP-FRT之系統測試36
圖二、cre依賴性及FLP依賴性病毒專一性之測試38
圖三、藍斑核細胞和周圍興奮性中間神經元之共定位40
圖四、標定和藍斑核細胞連結之興奮性中間神經元的分布42
圖五、標定和藍斑核細胞連結之興奮性中間神經元的熱區圖45
圖六、內側興奮性中間神經元投射到藍斑核內47
圖七、自主放電之興奮性中間神經元的電訊號及GCaMP訊號同步49
圖八、檢視和藍斑核細胞內側的興奮性中間神經元之電生理特性51
圖九、檢視藍斑核細胞內側的興奮性中間神經元之之神經纖維53
圖十、細胞膜片鉗記錄興奮性中間神經元的位置分布圖55
第九章 表57
表一、實驗所使用小鼠之資訊57
表二、所使用的 AAV之資訊58
表三、在不同品系中各類型細胞表現顆數60
-
dc.language.isozh_TW-
dc.subject鈣離子影像zh_TW
dc.subject小麥胚芽凝集素zh_TW
dc.subject興奮性中間神經元zh_TW
dc.subject相位性放電zh_TW
dc.subject藍斑核zh_TW
dc.subjectWheat germ agglutininen
dc.subjectexcitatory interneuronsen
dc.subjectCalcium imagingen
dc.subjectLocus coeruleusen
dc.subjectphasic firingen
dc.title定位小鼠中參與藍斑核活性的調節之興奮性中間神經元群體zh_TW
dc.titleIdentification of a Population of Excitatory Interneurons Involved in the Regulation of Locus Coeruleus Activation in Miceen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳瑞芬zh_TW
dc.contributor.coadvisorRuei-Feng Chenen
dc.contributor.oralexamcommittee陳示國;楊琇雯;傅毓秀zh_TW
dc.contributor.oralexamcommitteeShih-Kuo Chen;Hsiu-Wen Yang;Yu-Show Fuen
dc.subject.keyword藍斑核,相位性放電,興奮性中間神經元,小麥胚芽凝集素,鈣離子影像,zh_TW
dc.subject.keywordLocus coeruleus,phasic firing,excitatory interneurons,Wheat germ agglutinin,Calcium imaging,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202303252-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
15.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved