請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89024
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳維婷 | zh_TW |
dc.contributor.advisor | Wei-Ting Chen | en |
dc.contributor.author | 王毓琇 | zh_TW |
dc.contributor.author | Yu-Hsiu Wang | en |
dc.date.accessioned | 2023-08-16T16:48:52Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | Andreae, M. O. (2009). Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmospheric Chemistry and Physics, 9(2), 543-556.
Birch, C. E., Parker, D., Marsham, J., Copsey, D., & Garcia‐Carreras, L. (2014). A seamless assessment of the role of convection in the water cycle of the West African Monsoon. Journal of Geophysical Research: Atmospheres, 119(6), 2890-2912. Birch, C. E., Roberts, M. J., Garcia-Carreras, L., Ackerley, D., Reeder, M. J., Lock, A. P., & Schiemann, R. (2015). Sea-breeze dynamics and convection initiation: The influence of convective parameterization in weather and climate model biases. Journal of Climate, 28(20), 8093-8108. Chang, Y.-H., Chen, W.-T., Wu, C.-M., Moseley, C., & Wu, C.-C. (2021). Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan. Atmospheric Chemistry and Physics, 21(22), 16709-16725. Chang, Y. H., Chen, W. T., Wu, C. M., Kuo, Y. H., & Neelin, J. D. (2023). Identifying the Deep‐Inflow Mixing Features in Orographically‐Locked Diurnal Convection. Geophysical Research Letters, 50(10), e2023GL103107. Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569-585. Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., . . . Betts, A. (1996). Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research: Atmospheres, 101(D3), 7251-7268. Chen, W.-T., Wu, C.-M., & Ma, H.-Y. (2019). Evaluating the bias of South China Sea summer monsoon precipitation associated with fast physical processes using a climate model hindcast approach. Journal of Climate, 32(14), 4491-4507. Chen, W.-T., Wu, C.-M., Tsai, W.-M., Chen, P.-J., & Chen, P.-Y. (2019). Role of coastal convection to moisture buildup during the South China Sea summer monsoon onset. Journal of the Meteorological Society of Japan. Ser. II, 97(6), 1155-1171. Chen, Y. T., & Wu, C. M. (2019). The role of interactive SST in the cloud‐resolving simulations of aggregated convection. Journal of Advances in Modeling Earth Systems, 11(10), 3321-3340. Dai, A. (2001). Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. Journal of Climate, 14(6), 1112-1128. Dai, A., & Trenberth, K. E. (2004). The diurnal cycle and its depiction in the Community Climate System Model. Journal of Climate, 17(5), 930-951. Guo, L., Highwood, E., Shaffrey, L., & Turner, A. (2013). The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmospheric Chemistry and Physics, 13(3), 1521-1534. Hamada, A., Murayama, Y., & Takayabu, Y. N. (2014). Regional characteristics of extreme rainfall extracted from TRMM PR measurements. Journal of Climate, 27(21), 8151-8169. Houze Jr, R. A., Rasmussen, K. L., Zuluaga, M. D., & Brodzik, S. R. (2015). The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Reviews of Geophysics, 53(3), 994-1021. Hsieh, M.-K., Chen, Y.-W., Chen, Y.-C., & Wu, C.-M. (2022). The Roles of Local Circulation and Boundary Layer Development in Tracer Transport over Complex Topography in Central Taiwan. Journal of the Meteorological Society of Japan. Ser. II, 100(3), 555-573. Hsu, T.-H., Chen, W.-T., Wu, C.-M., & Hsieh, M.-K. (2023). The observation-based index to investigate the role of the lee vortex in enhancing air pollution over northwestern Taiwan. Journal of Applied Meteorology and Climatology, 62(3), 427-439. Huang, J. D., & Wu, C. M. (2020). Effects of microphysical processes on the precipitation Spectrum in a strongly forced environment. Earth and Space Science, 7(6), e2020EA001190. Hwang, W.-C., Lin, P.-H., & Yu, H. (2020). The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations. Atmospheric Measurement Techniques, 13(10), 5395-5406. Ichikawa, H., & Yasunari, T. (2006). Time–space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. Journal of Climate, 19(7), 1238-1260. Jian, H.-W., Chen, W.-T., Chen, P.-J., Wu, C.-M., & Rasmussen, K. L. (2021). The synoptically-influenced extreme precipitation systems over Asian-Australian monsoon region observed by TRMM Precipitation Radar. Journal of the Meteorological Society of Japan. Ser. II, 99(2), 269-285. Jung, J.-H., & Arakawa, A. (2008). A three-dimensional anelastic model based on the vorticity equation. Monthly Weather Review, 136(1), 276-294. Krishna, U. M., Das, S. K., Deshpande, S. M., & Pandithurai, G. (2021). Physical processes controlling the diurnal cycle of convective storms in the Western Ghats. Scientific Reports, 11(1), 14103. Kuo, K.-T., & Wu, C.-M. (2019). The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations. Journal of the Meteorological Society of Japan. Ser. II, 97(2), 501-517. Kuo, Y. H., & Neelin, J. D. (2022). Conditions for convective deep inflow. Geophysical Research Letters, 49(20), e2022GL100552. Kuo, Y.-H., Neelin, J. D., & Mechoso, C. R. (2017). Tropical convective transition statistics and causality in the water vapor–precipitation relation. Journal of the Atmospheric Sciences, 74(3), 915-931. Lin, P.-F., Chang, P.-L., Jou, B. J.-D., Wilson, J. W., & Roberts, R. D. (2011). Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Weather and forecasting, 26(1), 44-60. Lin, W. (2012). A study of the cloud condensation nuclei (CCN) activity for urban ambient aerosols. Master's thesis, Department, 535. Lintner, B. R., Holloway, C. E., & Neelin, J. D. (2011). Column water vapor statistics and their relationship to deep convection, vertical and horizontal circulation, and moisture structure at Nauru. Journal of Climate, 24(20), 5454-5466. Mapes, B. E., & Houze Jr, R. A. (1995). Diabatic divergence profiles in western Pacific mesoscale convective systems. Journal of Atmospheric Sciences, 52(10), 1807-1828. Mori, S., Jun-Ichi, H., Tauhid, Y. I., Yamanaka, M. D., Okamoto, N., Murata, F., Sakurai, N., Hashiguchi, H., & Sribimawati, T. (2004). Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Monthly Weather Review, 132(8), 2021-2039. Morrison, H., & Milbrandt, J. A. (2015). Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. Journal of the Atmospheric Sciences, 72(1), 287-311. Murakami, M. (1983). Analysis of the deep convective activity over the western Pacific and southeast Asia Part I: Diurnal variation. Journal of the Meteorological Society of Japan. Ser. II, 61(1), 60-76. Nesbitt, S. W., & Zipser, E. J. (2003). The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. Journal of Climate, 16(10), 1456-1475. Nitta, T., & Sekine, S. (1994). Diurnal variation of convective activity over the tropical western Pacific. Journal of the Meteorological Society of Japan. Ser. II, 72(5), 627-641. Qian, J.-H. (2008). Why precipitation is mostly concentrated over islands in the Maritime Continent. Journal of the Atmospheric Sciences, 65(4), 1428-1441. Randall, D. A., & Tjemkes, S. (1991). Clouds, the Earth's radiation budget, and the hydrologic cycle. Global and Planetary Change, 4(1-3), 3-9. Romatschke, U., & Houze, R. A. (2011). Characteristics of precipitating convective systems in the South Asian monsoon. Journal of Hydrometeorology, 12(1), 3-26. Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., & Andreae, M. O. (2008). Flood or drought: how do aerosols affect precipitation? science, 321(5894), 1309-1313. Saito, K., Keenan, T., Holland, G., & Puri, K. (2001). Numerical simulation of the diurnal evolution of tropical island convection over the Maritime Continent. Monthly Weather Review, 129(3), 378-400. Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., & Wang, Y. (2009). Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. Journal of Climate, 22(18), 4809-4826. Savazzi, A. C., Jakob, C., & Siebesma, A. P. (2021). Convective Mass‐Flux From Long Term Radar Reflectivities Over Darwin, Australia. Journal of Geophysical Research: Atmospheres, 126(19), e2021JD034910. Schiro, K. A., Ahmed, F., Giangrande, S. E., & Neelin, J. D. (2018). GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proceedings of the National Academy of Sciences, 115(18), 4577-4582. Schumacher, C., & Houze Jr, R. A. (2003). Stratiform rain in the tropics as seen by the TRMM precipitation radar. Journal of Climate, 16(11), 1739-1756. Su, C.-Y., Chen, W.-T., & Wu, C.-M. (2022). Object-based evaluation of tropical precipitation systems in DYAMOND simulations over the Maritime Continent. Journal of the Meteorological Society of Japan. Ser. II, 100(4), 647-659. Tian, Y., Zhang, Y., & Klein, S. A. (2022). What determines the number and the timing of pulses in afternoon precipitation in the Green Ocean Amazon (GoAmazon) observations? Geophysical Research Letters, 49(2), e2021GL096075. Whitby, K. T. (1978). The physical characteristics of sulfur aerosols. In Sulfur in the Atmosphere (pp. 135-159): Elsevier. Wu, C. M., & Arakawa, A. (2011). Inclusion of surface topography into the vector vorticity equation model (VVM). Journal of Advances in Modeling Earth Systems, 3(2). Wu, C.-M., & Chen, P.-Y. (2021). Idealized cloud-resolving simulations of land-atmosphere coupling over tropical islands. Terrestrial, Atmospheric & Oceanic Sciences, 32(2). Wu, C.-M., Lin, H.-C., Cheng, F.-Y., & Chien, M.-H. (2019). Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55, 701-717. Wu, P., Manabu, D. Y., & Matsumoto, J. (2008). The formation of nocturnal rainfall offshore from convection over western Kalimantan (Borneo) Island. 気象集誌. 第 2 輯, 86, 187-203. Yuan, J., & Houze, R. A. (2010). Global variability of mesoscale convective system anvil structure from A-Train satellite data. Journal of Climate, 23(21), 5864-5888. Zhuang, Y., Fu, R., Marengo, J. A., & Wang, H. (2017). Seasonal variation of shallow‐to‐deep convection transition and its link to the environmental conditions over the Central Amazon. Journal of Geophysical Research: Atmospheres, 122(5), 2649-2666. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89024 | - |
dc.description.abstract | 本研究提供了一個概念框架用以了解在複雜地形下由局地環流主導的日夜對流現象,從對流的深層入流混合(deep-inflow mixing)角度進行分析,重點關注來自上游高濕靜能(MSE)傳送的非局部動力效應以及相關的對流強度。我們使用渦度向量方程雲解析模式(VVM)對臺灣附近典型弱綜觀條件下在山地島嶼上的日夜對流進行了模擬,通過修改中對流層相對濕度(RH)和雲凝結核(CCN)濃度進行兩組敏感性實驗,以研究環境變異度的影響。在所有模擬中,日夜降水在時間上呈現多個降水峰值並且降水熱點受到地形鎖定於山區。前兩波降水與海陸山谷風的演進密切相關,降水強度與對流可用位能(CAPE)呈現負相關,並且展示出深層入流混合的特徵:在高度約6公里以下的上升氣流強度隨高度呈線性增加,表明存在一個深厚的橫向入流層,傳送環境的MSE進入對流,貢獻了對流浮力所需的能量。這個過程受到局地環流驅動1公里以下的上游MSE傳送所主導,其主導程度取決於背景環境條件和局地環流結構的完整性。較早發生的對流調整了環境的能量和水氣,增加了低層上游MSE輸送估計對流強度的能力。此外,隨著局地環流的進一步發展,更強的低層入流增強了上游MSE的傳送,進而增加了降水強度。修改中對流層RH的敏感性實驗表明,在較乾燥的模擬中,相同的低層MSE傳送可以貢獻較強的對流強度;而修改CCN濃度的敏感性實驗則表明,增加CCN濃度,低層MSE傳送對對流強度的貢獻程度並不受影響,但可以增加低層的MSE傳送。未來,我們將重點分析冷池的強度,以進一步研究第一和第二波降水之間的相互作用。 | zh_TW |
dc.description.abstract | This study provides a conceptual framework to understand the diurnal convection dominated by local circulation over complex topography. The results are analyzed from the perspective of deep-inflow mixing of convection, focusing on the non-local dynamic in entraining high upstream moist static energy (MSE) and its related convective strength. We use the Vector Vorticity equation cloud resolving Model (VVM) to simulate diurnal convection over an idealized mountainous island under typical weak synoptic conditions near Taiwan. Two sets of sensitivity experiments are conducted with idealized environmental conditions by modifying the free atmosphere relative humidity (RH) and cloud condensation nuclei (CCN) concentration to investigate the effects of environmental variabilities. In all simulations, the diurnal precipitation exhibits multiple peaks in time and its hotspots are orographically locked in the mountain areas. The first two peaks, in which the developments are closely related to the evolution of sea-valley breeze circulations, show negative relationships between precipitation intensity and convective available potential energy (CAPE). Both peaks demonstrate deep-inflow mixing features. The linear increase of updrafts below about 6 km denotes the presence of a deep layer of lateral inflow, with entrained MSE contributing to convective buoyancy. This process is dominated by the local circulation-driven upstream MSE transport below 1 km, with its contribution to convective strength dependent on the background environmental conditions and the scale of the established local circulation. Moreover, the earlier precipitation peaks modulate the environmental moisture, magnifying the influence of low-level upstream MSE transport on estimating convection strength. Furthermore, as the local circulation develops further, stronger inflow enhances upstream MSE transport, resulting in increased precipitation intensity. The sensitivity experiment with modifying the free atmosphere RH indicates that the same low-level MSE transport in drier simulation contributes to stronger convective strength. On the other hand, the sensitivity experiment with increasing CCN concentration shows that while higher CCN concentration does not affect the contribution of low-level MSE transport to convective strength, it enhances the MSE transport in the lower atmosphere. In the future, we will focus on analyzing cold pool strength to gain further insights into the interaction between the first two precipitation peaks. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:48:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T16:48:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 i
摘要 iii Abstract v 目錄 Contents vii Figure Captions ix Table Captions xv 1. Introduction 1 2. Model Description and Experimental Setup 7 2.1 Vector Vorticity Equation Cloud-Resolving Model (VVM) 7 2.2 Model configuration 8 2.3 Sensitivity Experiments 10 3. Simulation Results 13 3.1 Control simulation 13 3.1.1 Convection and local circulation characteristics 13 3.1.2 Deep-inflow mixing features 16 3.2 Sensitivity experiment of changing free atmosphere moisture 20 3.2.1 Convection, local circulation, and deep-inflow mixing features 20 3.2.2 Upstream MSE transport by local circulation 23 3.3 Sensitivity experiment of changing CCN concentration 25 3.3.1 Convection, local circulation, and deep-inflow mixing features 26 3.3.2 Upstream MSE transport by local circulation 27 4. Discussions 29 4.1 Association of current results with TaiwanVVM and observations 29 4.2 Horizontal scale of simulations 30 4.3 Effects on extreme precipitation 31 4.4 Suppression of later pulse of precipitation 32 4.5 Invigoration effects of increasing ice particles 33 5. Summaries 35 References 41 Figures 47 Tables 67 Appendices 69 Appendix A. Extreme Events Definition 69 Appendix B. Quantitative Analysis on Upstream MSE Transport 72 Appendix C. MSE Budget Analysis 77 Appendix D. Average Analysis of Precipitation Hotspots 79 | - |
dc.language.iso | en | - |
dc.title | 透過雲解析模式VVM探討複雜地形下日夜對流的新分析觀點 | zh_TW |
dc.title | Novel Perspectives on Diurnal Convection over Complex Topography through VVM Simulations | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳健銘;黃彥婷;王懌琪 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Ming Wu;Yen-Ting Hwang;Yi-Chi Wang | en |
dc.subject.keyword | 日夜對流,複雜地形,深厚入流混和,局地環流,雲解析模式VVM, | zh_TW |
dc.subject.keyword | diurnal convection,complex topography,deep-inflow mixing,local circulation,cloud-resolving model VVM, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202303535 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 大氣科學系 | - |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。