Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89021Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鐘嘉德 | zh_TW |
| dc.contributor.advisor | Char-Dir Chung | en |
| dc.contributor.author | 陳信宏 | zh_TW |
| dc.contributor.author | Hsin-Hung Chen | en |
| dc.date.accessioned | 2023-08-16T16:48:08Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., San Francisco, CA, USA, Mar. 2017, pp. 1–6.
[2] R. Hadani et al., Orthogonal Time Frequency Space Modulation. Accessed: Aug. 2018. [Online]. Available: https://arxiv.org/pdf/ 1808.00519.pdf [3] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Tech., vol. 68, no. 1, pp. 957–961, Jan. 2019. [4] P. Raviteja et al., “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018. [5] P. Raviteja et al., “Low-complexity iterative detection for orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., Barcelona, Apr. 2018, pp. 1–6. [6] S. Tiwari, S. S. Das, and V. R. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205– 2209, Dec. 2019. [7] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Transmitter and receiver win-dow designs for orthogonal time-frequency space modulation,” IEEE Trans. Com-mun., vol. 69, no. 4, pp. 2207–2223, Apr. 2021. [8] P. Raviteja, K. T. Phan and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906-4917, May 2019. [9] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Performance analysis and win-dow design for channel estimation of OTFS modulation,” in Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada, Jun. 2021, pp. 1-7. [10] S. Wang, J. Guo , X. Wang, W. Yuan, and Z. Fei, “Pilot design and optimization for OTFS modulation,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1742-1746, Aug. 2021. [11] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Off-grid channel estimation with sparse Bayesian learning for OTFS systems,” IEEE Trans. Wireless Commun., early access. doi: 10.1109/TWC.2022.3158616. [12] F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts,” IEEE Trans. Commun., vol. 20, no. 12, pp. 7773-7785, Dec. 2021. [13] M. K. Ramachandran and A. Chockalingam, “MIMO-OTFS in highdoppler fading channels: Signal detection and channel estimation,” in Proc. IEEE Global Commun. Conf., Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 206-212. [14] O. K. Rasheed, G. D. Surabhi, and A. Chockalingam, “Sparse delay-Doppler chan-nel estimation in rapidly time-varying channels for multiuser OTFS on the uplink,” in Proc. IEEE Veh. Technol. Conf., Antwerp, Belgium, May 2020, pp. 1-5. [15] S. Srivastava, R. K. Singh, A. K. Jagannatham, and L. Hanzo, “Bayesian learning aided simultaneous row and group sparse channel estimation in orthogonal time fre-quency space modulated MIMO systems,” IEEE Trans. Commun., vol. 70, no. 1, pp. 635-648, Jan. 2022. [16] S. Srivastava, R. K. Singh, A. K. Jagannatham, and L. Hanzo, “Bayesian learning aided sparse channel estimation for orthogonal time frequency space modulated sys-tems,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8343-8348, Aug. 2021. [17] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, “Channel estimation for orthogonal time frequency space (OTFS) massive MIMO,” IEEE Trans. Sig. Process., vol. 67, no. 16, pp. 4204-4217, Aug. 2019. [18] M. Li, S. Zhang, F. Gao, P. Fan, and O. A. Dobre, “A new path division multiple access for the massive MIMO-OTFS networks,” IEEE J. Select. Areas Commun., vol. 39, no. 4, pp. 903-918, Apr. 2021. [19] N. Hashimoto, N. Osawa, K. Yamazaki, and S. Ibi, “Channel estimation and equali-zation for CP-OFDM-based OTFS in fractional Doppler channels,” in Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada, Jun. 2021, pp. 1-7. [20] D. Shi et al., “Deterministic pilot design and channel estimation for downlink mas-sive MIMO OTFS systems in presence of the fractional Doppler,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7151- 7165, Nov. 2021. [21] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008. [22] D. A. Shnidmen, “The calculation of the probability of detection and the generalized Marcum Q-function,” IEEE Trans Inform. Theory, vol. 35, pp. 389-400, Mar. 1989. [23] H. L. Van Trees, Detection, Estimation, and Modulation Theory. John Wiley & Sons, 1968. [24] F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE, vol. 66, no. 1, pp. 51-83, Jan. 1978. [25] C.-D. Chung, C.-C. Wang, and W.-C. Chen, “Sequential channel estimation for OTFS systems,” IEEE Trans. Veh. Technol., submitted for publication. [26] X. Wang, W. Shen, C. Xing, J. An and L. Hanzo, "Joint Bayesian channel estima-tion and data detection for OTFS systems in LEO satellite communications," IEEE Trans. Commun., vol. 70, no. 7, pp. 4386-4399, Jul. 2022. [27] Y. Liang, Q. Wang and P. Fan, "Pilot-Aided channel estimation scheme based on frank array for OTFS under rapidly time-varying channels," in Proc. IEEE Veh. Technol. Conf., Helsinki, Finland, Jun. 2022, pp. 1-6. [28] J. Francis and V. P. Reddy, "Delay-Doppler channel estimation in OTFS systems using DoA estimation techniques," in Proc. IEEE Veh. Technol. Conf., Helsinki, Finland, Jun. 2022, pp. 1-5 [29] K. Shu, X. He, L. Shi and N. Chen, "An OTFS channel estimation scheme based on efficient sparse Bayesian learning," in Proc. IEEE Int. Conf. Commun. China Workshops, Foshan, China, Aug. 2022, pp. 150-155. [30] Z. Li, W. Yuan and L. Zhou, "UAMP-based channel estimation for OTFS in the presence of the fractional Doppler with HMM prior," in Proc. IEEE Int. Conf. Commun. China workshops, Foshan, China, Aug. 2022, pp. 304-308. [31] Q. Wang, Y. Liang, Z. Zhang and P. Fan, "2D off-grid decomposition and SBL combination for OTFS channel estimation," IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3084-3098, May. 2023. [32] Z. Huang, W. She, Y. Wang, Q. Zhao, Z. Li and J. Fan, "Rapid time-varying chan-nel estimation scheme based on OTFS and OFDM signals," in Proc. IEEE Adv. In-form. Technol. Electronic and Automation Control Conf., Beijing, China, Oct. 2022, pp. 1679-1683. [33] H. Zhang, J. Li, T. Zhang and X. Zhu, "An efficient channel estimation scheme for short frame OTFS using impulse-train pilots," in Proc. IEEE Global Commun. Conf., Rio de Janeiro, Brazil, Dec. 2022, pp. 5929-5934. [34] W. Liu, L. Zou, B. Bai and T. Sun, "Low PAPR channel estimation for OTFS with scattered superimposed pilots," China Commun., vol. 20, no. 1, pp. 79-87, Jan. 2023. [35] S. P. Muppaneni, S. R. Mattu and A. Chockalingam, "Channel and radar parameter estimation with fractional delay-Doppler using OTFS," IEEE Commun. Lett., vol. 27, no. 5, pp. 1392-1396, May. 2023. [36] Y. Wu, C. Han and Z. Chen, "DFT-spread orthogonal time frequency space system with superimposed pilots for Terahertz integrated sensing and communication," IEEE Trans. Wireless Commun., early access. doi: 10.1109/TWC.2023.3250267. [37] S. Kumari, M. K. Dikkala, S. Mukhopadhyay and H. B. Mishra, "Two choice hard thresholding pursuit (TCHTP) for delay-Doppler channel estimation in OTFS," IEEE Wireless Commun. Lett., vol. 12, no. 6, pp. 1032-1036, Jun. 2023. [38] P. Priya, C. S. Reddy and D. Sen, "Channel estimator and nonlinear detector for mmwave beamformed OTFS systems in High Mobility Scenarios," IEEE Trans. Veh. Technol., early access. doi: 10.1109/TVT.2023.3266481. [39] X. He, P. Fan and Q. Wang, "A two-stage channel estimation algorithm for OTFS in fractional Doppler channels," IEEE Commun. Lett., vol. 27, no. 7, pp. 1839-1843, Jul. 2023. [40] A. S. Bondre, C. D. Richmond, A. Alkhateeb and N. Michelusi, "Sparse de-lay-Doppler channel estimation for OTFS modulation using 2D-Music," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. Rhodes Island, Greece, Jun. 2023, pp. 1-5. [41] I. A. Khan and S. K. Mohammed, "A low complexity OTFS channel estimation method for fractional delay-Doppler scenarios," IEEE Wireless Commun. Lett., early access. doi: 10.1109/LWC.2023.3274936. [42] Z. Li, W. Yuan, C. You and Y. Cui, "Efficient channel estimation for OTFS systems in the presence of fractional Doppler," in Proc. IEEE Wireless Commun. Netw. Conf., Glasgow, Scotland, UK., Mar. 2023, pp. 1-5. [43] B. Jia, P. Fan and Q. Wang, "Low complexity doubly fractional OTFS channel es-timation based on L-BFGS method," in Proc. IEEE Wireless Commun. Netw. Conf., Glasgow, Scotland, UK., Mar. 2023, pp. 1-6. [44] O. Zacharia and M. Vani Devi, "Fractional delay and doppler estimation for OTFS based ISAC systems," in Proc. IEEE Wireless Commun. Netw. Conf., Glasgow, Scotland, UK., Mar. 2023, pp. 1-6. [45] F. Jesbin, S. Rao Mattu and A. Chockalingam, "Sparse superimposed pilot based channel estimation in OTFS systems," in Proc. IEEE Wireless Commun. Netw. Conf., Glasgow, Scotland, UK., Mar. 2023, pp. 1-6. [46] H. -T. Sheng and W. -R. Wu, "Time-frequency domain channel estimation for OTFS systems," IEEE Trans. Wireless Commun., early access. doi: 10.1109/TWC.2023.3283578. [47] X. Wei, L. Li and Y. Jin, "Channel estimation based on compressed sensing and iter-ative detection for zero-padded OTFS," in Proc. Inform. Commun. Technol. Conf., Nanjing, China, May. 2023, pp. 34-39. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89021 | - |
| dc.description.abstract | 對於在延遲–都卜勒(delay-Doppler)通道上運作的正交時頻空間調變(orthogonal time frequency space modulation)來說,為了實現數據決策(data decision),延遲–都卜勒網格上的通道矩陣(delay-Doppler channel matrix, DD-CM)估測非常關鍵。然而,由於環境設定的不同,適用方法有很大的變化,且DD-CM的通道響應(channel responses)是由DD網格上的延遲位移(delay shifts)、都卜勒位移(Doppler shifts)和路徑響應(path responses)非線性組成,因此,DD-CM估測是非常有挑戰性的。本文論文看見前人的序列性通道估測(sequential channel estimation, SCE)在於高速度通訊環境下效能變差的問題,針對其進行改良,提出一種新型的改良型序列性通道估測(modified sequential channel estimation, MSCE),通過分開傳送的均勻間隔的領航符元幀,依序執行延遲位移、路徑位移和都卜勒位移的估計,然後再補充上牛頓化正交匹配追蹤(Newtonized orthogonal matching pursuit, NOMP)方案,最後形成DD-CM的估測。MSCE方法在現有使用分離領航幀(separate pilot frames, SPF)的通道估測(channel estimation)方法中,擁有高精確度的DD-CM估計且低計算複雜度(computational complexity)的優勢,相較於前人的序列性通道估測,擁有著更低的誤碼率以及估測精準度,並適用於更高速度的通訊環境。 | zh_TW |
| dc.description.abstract | The estimation of delay-Doppler channel matrix (DD-CM) on the delay-Doppler grid is crucial for the data decision in orthogonal time frequency space (OTFS) systems which operate over delay-Doppler channel. However, because of the differences in the setting of the communication environment, there could be many applicable estimation methods. Moreover, DD-CM consists of delay shifts, Doppler shifts and path responses on the re-ceive DD grid nonlinearly. To solve the problem of sequential channel estimation (SCE) scheme that performances break down in high mobility environment. Modified sequential channel estimation (MSCE) scheme is proposed in this thesis. Through the separately transmitted uniformly spaced pilot frame, MSCE implement the estimation of delay shifts, path responses and Doppler shifts sequentially and carry out additional Newtonized or-thogonal matching pursuit (NOMP) method to enhance the accuracy. In the end, compose the DD-CM estimate indirectly. MSCE scheme provide accurate DD-CM estimation and employ the advantage of low computational complexity. Compared with SCE scheme, MSCE scheme shows lower bit-error rate and DD-CM NMSE and applicable for higher mobility environment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:48:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:48:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要…………………………….........................................i
Abstract……………………………………………………..…ii 目錄……………………………………………………………iii 圖片列表……………………………………………………….vi 表格列表…………………………………………………..…...ix 第1章 緒論 1 1.1 OTFS系統回顧 1 1.1.1 塊保護OTFS 2 1.1.2 幀保護OTFS 2 1.2 通道特性回顧 2 1.3 領航輔助的通道估測回顧 2 1.3.1 方法學 3 1.3.2 領航擺置 3 1.3.3 序列性通道估測方案回顧 6 1.4 都卜勒位移與環境速度之關聯 6 1.5 論文動機及貢獻 7 第2章 分離領航幀前綴OTFS 9 2.1 傳送訊號模型 9 2.2 接收訊號模型 11 2.3 領航幀前處理 13 2.4 數據幀前處理 14 第3章 改良型序列性通道估測 16 3.1 改良型序列性通道估測方案 17 3.1.1 偵測{〖L^((d)), λ〗_(L^((d)) )} 18 3.1.2 估測h_(L^((d) ))^((d)) 19 3.1.3 估測β_(L^((d)))^((d)) 20 3.1.4 精煉β ̂_(L ̂^((d) ))^((d,nt) ) (h ̂_(L ̂^((d)) )) 22 3.1.5 混合NOMP方案 23 第4章 通道估測性能 24 4.1 隨機通道參數設定 24 4.2 改良型序列性通道估測的性能特性 26 4.2.1 錯誤決策機率 26 4.2.2 通道矩陣的正規化均方根誤差 28 4.3 與不同通道估測方案的性能比較 28 4.3.1 分離領航幀牛頓化正交匹配追蹤方案回顧 28 4.3.2 分離領航幀貝氏學習方案回顧 30 4.3.3 通道矩陣的正規化方均誤差 32 4.3.4 誤碼率 39 4.3.5 計算複雜度分析………………………………..44 第5章 結論 45 參考書目………………………………………………………47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 領航 | zh_TW |
| dc.subject | 正交時頻空間調變 | zh_TW |
| dc.subject | 通道估測 | zh_TW |
| dc.subject | 延遲–都卜勒通道 | zh_TW |
| dc.subject | pilot | en |
| dc.subject | delay-Doppler channel | en |
| dc.subject | channel estimation | en |
| dc.subject | orthogonal time frequency space modulation | en |
| dc.title | OTFS系統中基於分離領航幀的改良型序列性通道估測 | zh_TW |
| dc.title | Modified Sequential Channel Estimation With Separate Pilot Frame for OTFS Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳維昌 | zh_TW |
| dc.contributor.coadvisor | Wei-Chang Chen | en |
| dc.contributor.oralexamcommittee | 古孟霖;李穎;謝欣霖 | zh_TW |
| dc.contributor.oralexamcommittee | Meng-Lin Ku;Ying Li;Shin-Lin Shieh | en |
| dc.subject.keyword | 通道估測,領航,正交時頻空間調變,延遲–都卜勒通道, | zh_TW |
| dc.subject.keyword | channel estimation,pilot,orthogonal time frequency space modulation,delay-Doppler channel, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202303274 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 1.6 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
