請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88998
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡志宏 | zh_TW |
dc.contributor.advisor | Zse-Hong Tsai | en |
dc.contributor.author | 藍翊銘 | zh_TW |
dc.contributor.author | Yi-Ming Lan | en |
dc.date.accessioned | 2023-08-16T16:42:18Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | [1] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge computing: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2131–2165, 2021.
[2] P. Wang, Z. Zheng, B. Di, and L. Song, “Hetmec: Latency-optimal task assignment and resource allocation for heterogeneous multi-layer mobile edge computing,” IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp. 4942–4956, 2019. [3] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge computing for latency minimization,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 5031–5044, 2019. [4] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 2, pp. 624– 634, 2021. [5] T. M. Cover and J. A. Thomas, Elements of information theory (2. ed.). Wiley, 2006. [6] Y. Deng, Z. Chen, X. Yao, S. Hassan, and A. M. A. Ibrahim, “Parallel offloading in green and sustainable mobile edge computing for delay-constrained iot system,” IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12 202–12 214, 2019. [7] Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. B. Letaief, “Uav-assisted wireless powered cooperative mobile edge computing: Joint offloading, cpu control, and trajectory optimization,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2777–2790, 2020. [8] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint multi-user computation offloading and data caching for hybrid mobile cloud/edge computing,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 11 018–11 030, 2019. [9] X. Wan, P. Zhong, and W. Ma, “Using pyomo and ipopt for optimization of reservoir flood control operation,” in 2013 Sixth International Conference on Business Intelligence and Financial Engineering, 2013, pp. 49–52. [10] A. B. A. Fahri, R. S. Wibowo, and N. K. Aryani, “Optimal power and natural gas integrated system considering energy storage using interior point optimization (ipopt),” in 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2022, pp. 401–406. [11] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading scheduling and power allocation for mobile edge computing systems,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774–6785, 2019. [12] C. Canali and R. Lancellotti, “Gasp: Genetic algorithms for service placement in fog computing systems,” Algorithms, vol. 12, no. 10, 2019. [13] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. N. Xiong, and J. Lloret Mauri, “A timedriven data placement strategy for a scientific workflow combining edge computing and cloud computing,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4254–4265, 2019. [14] Z. Chen, J. Hu, G. Min, and X. Chen, “Effective data placement for scientific workflows in mobile edge computing using genetic particle swarm optimization,” Concurrency and Computation: Practice and Experience, vol. 33, 07 2019 [15] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Joint container placement and task provisioning in dynamic fog computing,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 028–10 040, 2019. [16] M. Aibin and K. Walkowiak, “Simulated annealing algorithm for optimization of elastic optical networks with unicast and anycast traffic,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–4 [17] C. Maranas and A. Zomorrodi, Optimization Methods in Metabolic Networks. Wiley, 2016. [18] J. Fan, X. Wei, T. Wang, T. Lan, and S. Subramaniam, “Deadline-aware task scheduling in a tiered iot infrastructure,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1–7. [19] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular edge computing framework with aco-based scheduling,” IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10 660–10 675, 2017. [20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. [21] R. Eglese, “Simulated annealing: A tool for operational research,” European Journal of Operational Research, vol. 46, no. 3, pp. 271–281, 1990. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88998 | - |
dc.description.abstract | 本論文旨在解決終端-邊緣-雲端協同系統中的延遲優化挑戰。儘管移動設備、邊緣伺服器和雲端伺服器的整合共構提供了高效率低延遲的計算服務,但最小化延遲對於延遲時間敏感的任務仍然是一個關鍵議題。
為了應對這一挑戰,本研究提出了一種混合計算系統,結合了序列運算和平行運算的優勢。這個系統利用序列運算的可預測性和可靠性,以及平行運算的效率,從而優化了任務完成的延遲時間。我們所提出的系統模型還包括任務分割和部分卸載策略,並構造成一個具有最小化-最大化目標函數的非線性最佳化問題。為了解決此最佳化問題,我們將使用一種基於模擬退火最佳化技術的元啟發式演算法,此演算法生成的可行解將迭代地進行精煉與優化,以達到最佳化目標。 本研究的實驗結果將通過與現有的序列運算和平行運算系統進行比較以評估所提出系統的性能。這些權衡將利用任務完成延遲時間與資源利用率等評估指標,並與其他模型的性能進行比較,例如:隨機資源分配方案與固定分割比例方案。 總體而言,本論文所提出的系統模型在模擬退火演算法的運作下,使用較短的求解時間來獲得性能更好的解,提升用戶體驗,對於終端-邊緣-雲端協同系統的延遲最佳化展現顯著的貢獻。通過結合任務分割和部分卸載策略,以及序列運算與平行運算,此系統確認具有更高的響應性和效率。尤其對於延遲時間敏感的任務,本研究採用最小化-最大化目標函數與模擬退火啟發式演算法來解決問題,並從模擬結果中驗證其在提升系統性能具有明顯效益。 | zh_TW |
dc.description.abstract | This thesis aims to address the challenge of latency optimization in end-edge-cloud collaborative computing systems. While the integration of mobile devices, edge servers, and the cloud server has provided efficient and low-latency computing services, minimizing latency remains a critical issue, especially for latency-sensitive tasks.
To address this challenge, a hybrid computing system that combines the strengths of both sequential and parallel computing is proposed. This system leverages the predictability and reliability of sequential computing and the efficiency of parallel computing to optimize the delay associated with task completion. The proposed system model also includes task splitting and partial offloading strategies which is formulated as a nonlinear optimization problem with a min-max objective function. To solve this optimization problem, a metaheuristic algorithm utilizing the simulated annealing optimization technique will be employed. This metaheuristic algorithm generates initial feasible solutions that can be further refined and optimized to achieve the objective. The experimental results of this thesis include a comparison of the proposed hybrid system with existing sequential and parallel computing systems. The performance of the proposed system will be evaluated in terms of task completion time and resource utilization. These results will be used to compare the performance of the proposed system with other models, such as a random allocation scheme and the fixed splitting ratios scheme. In summary, the proposed system model, operating under the simulated annealing algorithm, achieves better performing solutions in a shorter resolution time, enhancing user experience and providing significant contributions to latency optimization in end-edge-cloud collaborative systems. By utilizing a combination of task splitting and partial offloading strategies, as well as sequential and parallel computing, the proposed system is shown to be more responsive and efficient, particularly for latency-sensitive tasks. Validated by the simulation results, we conclude that the use of a min-max objective function and the simulated annealing heuristic algorithm is able to improve the performance of the system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:42:18Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T16:42:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 中文摘要 v ABSTRACT vii CONTENTS ix LIST OF FIGURES xiii LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . 4 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 The End-Edge-Cloud Collaborative System 9 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Shannon Capacity . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Delay Formula . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Introduction of Task Type . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 IP Video Task . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Interactive Response (AI-Assisted) Task . . . . . . . . . . . . 16 2.2.3 Comparison of Task Characteristics . . . . . . . . . . . . . . 17 2.2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Latency of Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Latency in Local Segment . . . . . . . . . . . . . . . . . . . 19 2.3.2 Latency in Offloading Segment . . . . . . . . . . . . . . . . 20 2.3.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 3 An Optimization Algorithm Based on Simulated Annealing 29 3.1 Methods for Solving Non-Convex Problems . . . . . . . . . . . . . . 29 3.2 The Simulated Annealing Process . . . . . . . . . . . . . . . . . . . 32 3.2.1 Initialization Procedure . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 The Annealing Process . . . . . . . . . . . . . . . . . . . . . 37 3.2.3 Output of the SA Process . . . . . . . . . . . . . . . . . . . . 40 3.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter 4 Simulation and Analysis 43 4.1 Parameter Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 4D Scatter Plot of Decision Variables in SA Optimization . . 46 4.2.2 Relationship between Latency and Decision Variables . . . . 47 4.2.3 Optimal Splitting Ratio and Latency in SA Optimization . . . 49 4.2.4 The Progress of Simulated Annealing Optimization . . . . . . 51 4.2.5 Energy and Temperature Variation during SA Optimization . . 53 4.2.6 Temperature and Acceptance Probability Variation in SA . . . 54 4.2.7 Comparison of Solution Methods . . . . . . . . . . . . . . . 55 4.3 Comparison of System Performance under Different Task Splitting Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Experiment 1: Comparison among SA, Random Allocation and Fixed α Scheme . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2 The Relationship between System Latency and Number of Tasks in Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.3 The Relationship between System Latency and Number of BSs in Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 60 4.4 Comparison of System Performance under Different Task Allocation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.1 Experiment 2: Comparison among Collaborative System, Sequential Only and Parallel Only Models . . . . . . . . . . . . 62 4.4.2 Detailed Observation of Task Splitting Ratios among Three Models in Experiment 2 . . . . . . . . . . . . . . . . . . . . 66 4.4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 70 4.5 The Enhanced Collaborative System via Trimming . . . . . . . . . . 72 4.5.1 Experiment 3: Results of the Enhanced Collaborative System 74 4.5.2 Experiment 4: Results of the Enhanced Sequential Only Model 75 4.5.3 Experiment 5: The Relationship between System Latency and Number of Tasks among Three Models . . . . . . . . . . . . 78 4.5.4 Experiment 6: The Relationship between System Latency and Number of BSs among Three Models . . . . . . . . . . . . . 80 4.5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 5 Conclusions and Future Work 85 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 REFERENCE 91 APPENDIX – LIST OF NOTATION 95 | - |
dc.language.iso | en | - |
dc.title | 終端-邊緣-雲端協同系統計算資源分配之啟發式最佳化演算法 | zh_TW |
dc.title | A Heuristic Optimization Algorithm for Computation Resource Allocation in End-Edge-Cloud Collaborative System | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林風;馮輝文;鍾耀梁 | zh_TW |
dc.contributor.oralexamcommittee | Phone Lin;Huei-Wen Ferng;Yao-Liang Chun | en |
dc.subject.keyword | 邊緣雲端運算,任務分割,部分卸載,資源分配,平行運算,模擬退火法,延遲最佳化, | zh_TW |
dc.subject.keyword | Edge-Cloud Computing,Task Splitting,Partial Offloading,Resource Allocation,Parallel Computing,Simulated Annealing,Latency Optimization, | en |
dc.relation.page | 98 | - |
dc.identifier.doi | 10.6342/NTU202303386 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 6.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。