Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8893
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾仁賜(Ren-Shih Chung)
dc.contributor.authorChu-Chung Chenen
dc.contributor.author陳柱中zh_TW
dc.date.accessioned2021-05-20T20:03:32Z-
dc.date.available2009-08-20
dc.date.available2021-05-20T20:03:32Z-
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citation李興進。2004。青脆枝栽培簡介。青脆枝產業現況與發展研討會手冊,pp. 11-12。嘉義,臺灣。
江瑞拱。2003。抗癌植物~青脆枝。農業世界,pp. 57-60。臺中,臺灣。
何政坤,張淑華。2007。利用青脆之優良種苗枝葉生產喜樹鹼。林業研究專訊 14: 35。
吳天賞。2004。青脆枝之天然物成分研究。青脆枝產業現況與發展研討會手冊,pp. 17。嘉義,臺灣。
吳伃雯。2008。氮肥用量對青脆枝新梢枝葉養分及喜樹鹼含量周年變化的影響。國立臺灣大學研究所碩士論文。臺北,臺灣。
吳妍儒。2006。不同牛糞堆肥對青脆枝生長及生理營養的影響。國立臺灣大學研究所碩士論文。臺北,臺灣。
莊道揚、傳傑偉。2005。花東地區常見藥用植物,pp. 46。臺東,臺灣。
徐原田、林俊義、陳源俊、陳忠川。2006。藥用保健植物種原保存開發與利用,pp. 330。臺中,臺灣。
章錦瑜。1991。彩色圖鑑景觀植物 (4),pp. 16-17。臺北,臺灣。
楊士平、李慶國。2009。喜樹檢及其衍生物的歷史回顧及展望。化學,67: 45-60。
Aert, B.J. and V. De Luca. 1992. Phytochrome is involved in the light-regulation of vindoline biosynthesis in Cathranthus. Plant Physiol. 100: 1029-1032.
Aimi, N., M. Nishimura, A. Miwa, H. Hoshino, S.I. Sakai, and J. Haginiwa. 1989. Pumiloside and deoxypumiloside; plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett. 30: 4991-4994.
Aiyama, R., H. Nagai, K. Nokata, C. Shinohara, and S. Sawada. 1988. A camptothecin derivative from Nothapodytes foetida. Phytochem. 27: 3661-3664.
Ball, D.F. 1964. Loss-on ignition as estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 15: 84-92.
Barker, A.V., and G.M. Bryson. 2007. Nitrogen. pp. 21-50. In Barker, A.V. and D.J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Bate, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for sater-stress studies. Plant Soil 39: 205-207.
Blacquière, T., R. Hofstra, and I. Stolen. 1987. Ammonium and nitrate nutrition in Plantago lanceolate and Plantago major L. ssp. Major. I. Aspects of growth, chemical composition and root respiration. Plant Soil 104: 129-141.
Bremner, J.M. and C.S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite. pp. 621-622. In A. L. Page (ed.) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties 2nd (ed.). Academic Press, New York, USA.
Broaddus, G.M., J.E. York, and J.M. Hoseley. 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tob. Sci. 9: 149-157.
Bryant J.P., F.S. Chapin III, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357-368.
Cao, W. and T.W. Tibbitts. 1992. Growth, carbon dioxide exchange and mineral accumulation in potatoes grown at different magnesium concentration. J. Plant Nutr. 15: 1359-1371.
Charles, A.S. 2007. Phosphorus. pp. 51-90. In Barker, A.V. and D.J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Clark, R.B. 1983. Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. pp. 49-70. In R. Saric and B.C. Loughaman (eds.) Genetic aspects of plant nutrition. Martinus Nijhoff, Boston, USA.
De Luca, V. Balsevich, R.T. Tyler, U. Eilert, B.D. Panchuk, and W.G.W. Kurz. 1986. Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J. Plant Physiol. 125: 147-156.
Erskine, P.D., G.R. Stewart, S. Schmidt, M.H. Turnbull, M. Unkovich, and J.S. Pate. 1996. Water availability- a physiological constraint on nitrate utilization in plant of Australian semi-arid mulga woodlands. Plant Cell Environ. 19: 1149-1159.
Fulzele, D.P. and R.K. Satdive. 2004. Comparison of techniques for the extraction of the anti-cancer drug camptothecin from Nothapodytes foetida. J. Chromatogr. A 1063: 9-13.
Fulzele, D.P., R.K. Satdive, and B.B. Pol. 2002. Untransformed root cultures of Nothapodytes foetida and production of camptothecin. Plant Cell Tissue Organ Cult. 69: 285-288.
Fulzele, D.P. and R.K. Satdive. 2005. Distribution of anticancer drug camptothecin in Nothapodytes foetida. Fitoterapia 76:643-648.
Facchini, P.J., A.G. Johnson, J. Poupart, and V. De Luca. 1966. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures. Plant Physiol. 111: 687-697.
Gaudreau, L., J. Charbonneau, L.P. Vezina, and A. Gosselin. 1995. effects of photoperiod and phtotsynthetic phton flux on nitrate content and nitrate reductase activity in greenhouse grown lettuce. J. Plant Nutr. 18: 437-453.
Gunes, A., W.N.K. Post, E.A. Kirkby, and M. Aktas. 1994. Influence of partial replacement of nitrate by amino acid nitrogen or urea in the nutrient medium on nitrate accumulation in NFT grown winter lettuce. J. Plant Nutr. 17: 1929-1938.
Govindachari, T.R. and V. Viswanathan. 1972. Alkaloids of Mappia foetida. Phytochem. 11: 3529-3531.
Gzik, A. 1996. Accumulation of proline and pattern of α-amino acids in sugar beet plant in response to osmotic, water and salt stress. Environ. Exp. Bot. 36: 29-38.
Hellburst, J.A. and R.G.S. Bidwell. 1963. Protein turnover in wheat and snapdragon leaves. Can. J. Bot. 41: 961-983.
Heuer, B., Z. Plaut, and E. Federman. 1979. Nitrate and nitrite reduction in wheat leaves as affected by different types of water stress. Physiol. Plant. 46: 318-323.
Hill, J., A.D. Robson, and J.F. Loneragan. 1979. The effects of copper supply and shading on retranslocation of copper from mature wheat leaves. Ann. Bot. 43: 449-457.
Hsiang, Y. H., R. Hertzberg, S. Hecht, and L.F. Liu. 1985. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260: 14873-14878.
Humphries, J.M., J.C.R. Stangoulis, and R.D. Graham. Manganese. 2007. pp. 351-374. In Barker, A.V., and D.J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Hutchinson, C.R., A.H. Hechendorf, J.L., Straughn, P.E. Daddona, and D.E. Cane. 1979. Biosynthesis of camptothecin: III. Definition of strictosamide as the penultimate biosynthetic precursor assisted by carbon-13 and deuterium NMR spectroscopy. J. Am. Chem. Soc. 101: 3358-3369.
Izzo, F.N., and N. Rascio. 1999. Plant response to water-deficit condition. pp. 231- 270. In Pessarakli, M. (ed.) Handbook of plant and crop stress 2nd (ed). Marcel Dekker, New York.
Jallel, C.A., B. Sankar, P.V. Murali, M. Gomathinayagam, G.M.A. Lakshmanan, and R. Panneerselvam. 2008. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids Surf. B Biointerfaces 62: 105-111.
Jallel, C.A., P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi, R. Somasundaram, and R. Panneerselvam. 2007. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B Biointerfaces 60: 201-206.
Jallel, C.A., P. Manivannan, A. Kishorekumar, B. Sankar, R. Gopi, R. Somasundaram, and R. Panneerselvam. 2007. Alterations in osmoregulation, antioxidant enzymes and indole alkaloids levels in Catharanthus roseus exposed to water deficit. Colloids Surf B Biointerfaces 59: 150-157.
Jallel, C.A., P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi, R. Somasundaram, and R. Panneerselvam. 2007. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf. B Biointerfaces 60: 110-116.
Kai, G.Y., L.M. Dai, X.Y. Mei, J.G. Zheng, W. Wang, Y. Lu, Z.Y. Qiang, and G.Y. Zhou. 2008. In vitro plant regeneration from leaf explants of Ophiorrhiza japonica. Biol. Plant. 52: 557-560.
Keeney, D.R. and D.W. Nelson. 1982. Modified Griess-Ilosvay method. pp. 684-687. In A. L. Page (ed.) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties 2nd (ed.). Academic Press, New York, USA.
Kitajima, M., S. Masumoto, H. Takayama, and N. Aimi. 1997. Isolation and partial synthesis of 3(R)- and 3(S)-deoxypumiloside; structural revision of the key metabolite from the camptothecin producing plant, Ophiorrhiza pumila. Tetrahedron Lett. 38: 4255-4258.
Kuchbuch, R., N. Classen, and A. Jungk. 1986. Potassium availability in relation to soil moisture. Plant Soil 95: 233-243.
Kutchan, T.M. 1993. 12-Oxo-phytodienoid acid induces accumulation of berberine bridge enzyme transcript in a manner analogous to methyl jasmonate. J. Plant Physiol. 142: 502-505.
Lasa, B.S.F., M. Aleu, B. González-Moro, C. Lamsfus, and P.M. Aparicio-Tejo. 2000. Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil 225: 167-174.
Li, H.L. 1977. pp.648. In Flora of Taiwan. Editorial Committee of the Flora of Taiwan, Taipei, Taiwan.
Li, Z. and Z. Liu. 2005. Camptothecin production in Camptotheca acuminata cultured hydroponically and with nitrogen enrichments. Can. J. Plant Sci. 85: 447-452.
Li, C.Y., C.H. Lin, and T.S. Wu. 2005. Quantitative analysis of camptothecin derivatives in Nothapodytes foetida using 1H-NMR. Chem. Pharm. Bull. 53: 349-349.
Lillo, C. 1994. Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 90: 616-620.
Liu, Z. 2000. Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata. Physiol. Plant. 110: 483-488.
Liu, W.Z. 2004. Secretory structures and their relationship to accumulation of camptothecin in Camptotheca acuminata (Nyssaceae). Acta Bot. Sin. 46: 1242-1248.
López-Meyer, M., C.L. Nessler, and T.D. McKnight. 1994. Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med. 60: 558-560.
Lorence, A. and C.L. Nessler. 2004. Camptothecin, over four decades of surprising findings. Phytochem. 65: 2735-2749.
Lu, Y., H. Wang, W. Wang, Z. Qizn, L. Li, J. Wang, G. Zhou, and G. Kai. 2008. Molecular characterization and expression analysis of a new cDNA encoding strictosidine synthase from Ophirrhiza japonica. Mol. Biol. Rep. 55: 670-675.
Maldonado, C.A., G.E. Zuñiga, L.J. Corcuera, and M. Alberdi. 1997. Effect of water stress on frost resistance of oak leaves. Environ. Exp. Bot. 38: 99-107.
Mehlich, A. 1985. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409-1416.
McCoy, E. and S.E. O’Connor. 2008. Natural products from plant cell cultures. Prog. Drug Res. 65: 330-370.
McLean, E.O. 1982. Soil pH and lime requirement. pp. 199-224. In A. L. Page (ed.) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties 2nd (ed.). Academic Press, New York, USA.
Merhart, D.J. 2007. Magnesium. pp. 145-181. In Barker, A.V. and D.J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Mengel, K. 2007. Potassium. pp. 91-120. In Barker, A.V. and D.J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Monreal, J.A., E.T. Jiménez, E. Remesal, R.M. Velarde, S.G. Mauriño, and C. Echevarría. 2007. Proline content of sugar beet storage root: Response to water deficit and nitrogen fertilization at field condition. Environ. Exp. Bot. 60: 257-267.
Morilla, C., J.S. Boyer, and R.H. Hageman. 1973. Nitrate reductase activity and polyribosomal content of corn (Zea mays L.) having low leaf water potentials. Plant Physiol. 51: 817-824.
Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate n natural waters. Anal. Chim. Acta 27: 31-46
Nambiar, E.K.S. 1977. The effects of drying of the topsoil and of micronutrients in the subsoil on micronutrient uptake by an intermittently defoliated ryegrass. Plant Soil 46: 185-193.
Namdeo, A.G., A. Sharma, and K.R. Mahadik. 2008. Some observations on Nothapodytes foetida: An overview. Phcog. Rev. 2: 110-115.
Osorio, E.J., S.M. Robledo, and J. Bastida. 2008. Alkaloids with antiprotozoal activity. pp. 113-190. In G.A. Cordell. (ed.) The Alkaloids Chemistry and Biology. Elsevier, Burlinton, USA.
Padmanabha, B.V., M. Chandrashekar, B.T. Ramesha, H.C.H. Gowda, R.P. Gunaga, S. Suhas, R. Vasudeva, K.N. Ganeshaiah, and R.U. Shaanker. 2006. Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham., in the Western Ghats, India: Implications for identifying high-yielding sources of the alkaloid. Curr. Sci. 90: 95-100.
Peñalosa J.M., M.D. Cácerea, and M.J. Sarro. 1995. Nutrtion of bean plants in sand culture: influence of calcium/potassium ratio in the nutrient solution. J. Plant Nutr. 18: 2023-2032.
Pilbeam, D.J. and P.S. Morley. Calsium. 2007. pp. 121-144. In Barker, A.V. and D.J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Puri, S.C., G. Handa, B.A. Bhat, V.K. Gupta, T. Amna, N. Verma. R. Anand, K.L. Dhar, and G.N. Qazi. 2005. Separation of 9-methoxycamptothecin and camptothecin from Nothapodytes foetida by semipreparative HPLC. J. Chromatogr. Sci. 43: 348-350.
Racusen, D. and M. Foote. 1960. Protein turnover rate in bean leaf discs. Plant Physiol. 37: 640-642.
Rhoades, J.D. 1982. Soluble salts. pp. 167-178. In A. L. Page (ed.) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties 2nd (ed.). Academic Press, New York, USA.
Roewer, I., N. Cloutier, C.L. Nessler, and V. De Luca. 1992. Transient induction of tryptophan decarboxylase (TDC) and strictosidine synthase (SS) genes in cell suspension cultures of Catharanthus roseus. Plant Cell Rep. 11: 86-89.
Römheld, V. and M. Nikolic. 2007. Iron. pp.329-350. In Barker, A.V. and D.J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Sakato, K., H. Tanaka, N. Mukai and M. Misawa. 1974. Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agr. Biol. Chem. 38. 217-218.
Salimi, A.U. and D.G. Kenfick. 1970. Stimulation of grown in zinc-deficient corn seedlings by the addition of tryptophan. Crop Sci. 10: 291-294.
Sarker, B.S., M. Hara, and M. Uemura. 2005. Proline synthesis, physiological responses and biomass yield of eggplant during and after repetitive soil moisture stress. Sci. Hortic. 103: 387-402.
Schewartz, S. and B. Bar-Yosef. 1983. Magnesium uptake by tomato plants as affected by Mg and Ca concentration in solution culture and plant age. J. Agron. 75: 267-272.
Schröder, G., E. Untervusch, M. Kaltenbach, J. Schmidt, D. Strack, V. De Luca, and J. Schröder. Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett. 458: 97-102.
Storey, J.B. 2007. Zinc. pp. 411-436. In Barker, A. V. and D. J. Pilbeam (eds.) Handbook of Plant Nutrition. Taylor & Francis, Boca Raton, London, UK.
Strivastava, V., A.S. Negi, J.K. Kumar, M.M. Gupta, and S.P.S. Khanuja. 2005. Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorgan. Med. Chem. 13: 5892-5908.
Singh, M. 1981. Effects of zinc, phosphorus, and nitrogen on tryptophan concenrtion in rice grains grown on limed and un-limed soil. Plant Soil 62: 305-308.
Silverstrini, A., G. Pasqua, B. Botta, B. Monacelli, R. van der Heijden, and R. Verpoorte. 2002. Effects of alkaloid precursor feeding on a Camptotheca acuminata cell line. Plant Physiol. Biochem. 40: 749-753.
Tanguilig, V.C., E.B. Yambao, J.C. O’Toole, and S.K. DeDatta. 1987. Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean. Plant Soil 103: 155-168.
Vazquez-Flota, F.A. and V. De Luca. 1998. Developmental and light regulation of desacetoxyvindoline 4-hydroxylase in Catharanthus roseus (L.) G. Don. Plant Physiol. 117: 1351-1361.
Wall, M.E., M.C. Wani, C.E. Cook, K.H. Palmer, A.T. McPhail, and G.A. Sim. 1966. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 88: 3888-3890.
Wu, T.S., Y.L. Leu, H.C. Hsu, L.F. Ou, C.C. Chen, C.F. Chen, J.C. Ou, and Y.C. Wu. 1995. Constituents and cytotoxic principles of Nothapodytes foetida. Phytochem. 2: 383-385.
Wu, T.S., Y.Y. Chan, Y.L. Leu, C.Y. Chern, and C.F. Chen. 1996. Nothpodytines A and B from Nothapodytes foetida. Phytochem. 42: 907-908.
Wang, Y., S.J. Dai, and X.F. Yan. 2004. Effects of light intensity on secondary metabolite camptothecin production in leaves of Camptotheca acuminata seedlings. Acta Ecologica Sinica 6: 1118-1112.
Yamazaki, Y., A. Urano, H. Sudo, M. Kitajima, H. Takayama, M. Yamazaki, N. Aimi, and K. Saito. 2003. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochem. 62: 461-470.
Yamazaki, Y., M. Kitajima, M. Arita, H. Takayama, H. Sudo, M. Yamazaki, N. Aimi, and K. Saito. 2004. Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]glucose. Plant Physiol. 134: 161-170.
Zhou, B.N., J.M. Hoch, R.K. Johnson, M.R. Mattern, W.K. Eng, J. Ma, S.M. Hecht, D.J. Newman, and D.G.I. Kinston. 2000. Use of COMPARE analysis to discover new natural product drugs: isolation of camptothecin and 9-methoxycamptothecin from a new source. J. Nat. Prod. 63: 1273-1276.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8893-
dc.description.abstract喜樹鹼及其衍生物可抑制癌細胞之生長,已有兩種衍生物實際運用於癌症之治療。從植物中萃取是生產喜樹鹼的主要方法,青脆枝為能產生喜樹鹼的主要植物之一,而青脆枝栽培之研究甚少被關注。本研究探討缺水及遮蔭兩種環境因子及兩種施氮量對於青脆枝生長、養分吸收及喜樹鹼產量與分布之影響。本研究於臺灣大學農場溫室進行盆栽試驗,設計為逢機完全區集排列,材料為三年生之青脆枝,試驗前裁剪去所有枝條留下部份主幹,自2008年5月24日主幹開始抽芽,自此進行兩個月的培植與一個月的處理。培植期間每株以尿素為氮肥施入2 g氮,同時以過磷酸鈣與氯化鉀提供磷與鉀,每株施0.25 g的磷與鉀;之後進行一個月處理,少氮處理者 (2N) 不再施入氮肥,多氮 (3N)、缺水 (3ND) 及遮蔭處理者 (3NS) 皆再施入1 g氮,遮蔭處理者以黑色塑膠網遮去2/3日照,乾旱處理者以目視判斷,待葉片出現下垂徵狀一小時後澆水,重複缺水與供水,為期一個月。8月24日進行第一次採樣,留下一個枝條之葉提供後續生長所需能量,再次進行培植及處理,於12月20日採收土壤與所有植體。兩次採樣所有枝條從頂芽算起五公分之莖葉歸類為嫩莖及嫩葉,其餘者為成熟莖與成熟葉。結果顯示,所有處理之青脆枝地上部乾重無顯著差異,而乾旱可增加地下部乾重。各部位總氮、硝酸態氮與可溶性還原態氮濃度隨施氮量增加而升高,乾旱處理會減低根的錳濃度,遮蔭處理則增加全株的硝酸態氮濃度;施氮量不同對於喜樹鹼濃度無顯著差異之影響,乾旱處理可增加根部喜樹鹼濃度及產量,遮蔭處理可提高主幹的喜樹鹼濃度。青脆枝各器官喜樹鹼濃度的高低順序為根 > 主幹 > 莖 > 葉,嫩莖及嫩葉的喜樹鹼濃度較成熟部位低。zh_TW
dc.description.abstractCamptothecin and its analogues are potent anticancer agents, and two of its semi-synthetic derivatives are now applied to clinical treatment for cancer. Most camptothecin was extracted from camptothecin-containing plants. High concentration of camptothecin alkaloids presents in Nothapodytes foetida, however, only few researches concentrated on the effects of cultivation on the camptothecin production in N. foetida. The objective of this study was to investigate the effect of nitrogen (N) application rate, water stress, and shading on the growth, nutrient uptake, and the production of camptothecin in N. foetida. The studied plants were three-year-old N. foetida, grown in the greenhouse of farm of National Taiwan University. The treatments contained low and high N application rates (2N & 3N), water stress (3ND) and shading (3NS). All treatments were replicated four times and were arranged in randomized complete block design. All shoots were cut off from the 37 cm in height above ground on May 9, 2008, and all plants sprouted on May 24, 2008. Two months of cultivation and one month of treatments were conducted after budding. Two grams of urea-N, 0.25 g superphosphate-P and 0.25 g KCl-K per plant were applied on May 24, 2004. Later one gram urea-N per plant was applied to each plant except the 2N treatment on July 8, 2004. For water stress treatment, the plants were withheld water until leaf wilting. After one jour of the leaf wilting, the plants were watered and a new drought cycle started. The shading treatment was processed with a black shade cloth that reduces 66% full sunlight. On October 24, all shoots were harvested with one shoot remaining. Then another treatment cycle was conducted. The whole plants were harvested after the second treatments. Five centimeter from the top of each shoot was defined as young leaves and young stems, and the remaining parts were mature leaves and mature stems.
The results showed that treatments had no significant effect on the dry weight of the upper parts of plants; however, water stress treatment resulted in increase in the dry weight of root. The higher rate of N application resulted in increase in the concentration of total N, nitrate-N, and soluble reduced N of plants. There was no significant effect of treatment on the camptothecin concentration. Water stress resulted in decrease in the manganese concentration of the root, and increase in the amount and concentration of camptothecin of the root. Shading resulted in increase in the concentrations of the nitrate-N of all parts of plants and camptothecin of the trunk. The camptothecin concentration in different parts of plants decreased in following order: root > trunk > stem > leaf. The camptothecin concentrations were lower in young leaves and young stems than that in mature parts.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:03:32Z (GMT). No. of bitstreams: 1
ntu-98-R96623020-1.pdf: 1404029 bytes, checksum: be074b4caddcd7329b7ef0b75eceaf5a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents謝 誌 I
摘 要 III
ABSTRACT IV
目 錄 VI
圖 目 錄 VII
表 目 錄 VIII
附 表 目 錄 IX
附 圖 目 錄 X
前 言 1
前 人 研 究 3
材料與方法 11
結 果 23
一、青脆枝收穫後土壤基本性質 23
二、青脆枝生長、養分吸收與分布 27
三、喜樹鹼的產量與分佈 53
討 論 58
一、 栽培後土壤的基本性質 58
二、 青脆枝的生長及營養狀態 58
三、 處理對青脆枝生長的影響 61
四、 喜樹鹼在青脆枝的分布 64
結 論 67
參 考 文 獻 68
附 錄 78
dc.language.isozh-TW
dc.title乾旱遮蔭及施氮量對青脆枝養分及喜樹鹼含量的影響zh_TW
dc.titleEffect of water stress, shading and nitrogen application rate on nutrient and camptothecin contents of Nothapodytes foetidaen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建德(Chien-Ten Chen),黃良得(Lean-Teik Ng),陳仁炫(Jen-Hsuan Chen),黃裕銘(Yuh-Ming Huang)
dc.subject.keyword青脆枝,喜樹鹼,施氮量,乾旱,遮蔭,zh_TW
dc.subject.keywordN. foetida,Camptothecin,Nitrogen application rate,Water stress,Shading,en
dc.relation.page93
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved