Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟zh_TW
dc.contributor.advisorJaw-Lin Wangen
dc.contributor.author盧鈺臻zh_TW
dc.contributor.authorYU-CHEN LUen
dc.date.accessioned2023-08-16T16:25:47Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationCook, S. G., Rumian, N. L., & Bayer, K. U. (2022). CaMKII T286 phosphorylation has distinct essential functions in three forms of long-term plasticity. The Journal of biological chemistry, 298(9), 102299. https://doi.org/10.1016/j.jbc.2022.102299
Diazgranados, N., Ibrahim, L., Brutsche, N. E., Newberg, A., Kronstein, P., Khalife, S., Kammerer, W. A., Quezado, Z., Luckenbaugh, D. A., Salvadore, G., Machado-Vieira, R., Manji, H. K., & Zarate, C. A., Jr (2010). A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Archives of general psychiatry, 67(8), 793–802. https://doi.org/10.1001/archgenpsychiatry.2010.90
Fomenko, A., Neudorfer, C., Dallapiazza, R. F., Kalia, S. K., & Lozano, A. M. (2018). Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications. Brain stimulation, 11(6), 1209–1217. https://doi.org/10.1016/j.brs.2018.08.013
Friedrich M. J. (2017). Depression Is the Leading Cause of Disability Around the World. JAMA, 317(15), 1517. https://doi.org/10.1001/jama.2017.3826
Gao, X., Wang, H., Cai, S., Saadatzadeh, M. R., Hanenberg, H., Pollok, K. E., Cohen-Gadol, A. A., & Chen, J. (2014). Phosphorylation of NMDA 2B at S1303 in human glioma peritumoral tissue: implications for glioma epileptogenesis. Neurosurgical focus, 37(6), E17. https://doi.org/10.3171/2014.9.FOCUS14485
Huang, Y. Z., Lu, M. K., Antal, A., Classen, J., Nitsche, M., Ziemann, U., Ridding, M., Hamada, M., Ugawa, Y., Jaberzadeh, S., Suppa, A., Paulus, W., & Rothwell, J. (2017). Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 128(11), 2318–2329. https://doi.org/10.1016/j.clinph.2017.09.007
Incontro, S., Díaz-Alonso, J., Iafrati, J., Vieira, M., Asensio, C. S., Sohal, V. S., Roche, K. W., Bender, K. J., & Nicoll, R. A. (2018). The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms. Nature communications, 9(1), 2069. https://doi.org/10.1038/s41467-018-04439-7
Legon, W., Sato, T. F., Opitz, A., Mueller, J., Barbour, A., Williams, A., & Tyler, W. J. (2014). Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nature neuroscience, 17(2), 322–329. https://doi.org/10.1038/nn.3620
Lim, J., Tai, H. H., Liao, W. H., Chu, Y. C., Hao, C. M., Huang, Y. C., Lee, C. H., Lin, S. S., Hsu, S., Chien, Y. C., Lai, D. M., Chen, W. S., Chen, C. C., & Wang, J. L. (2021). ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. eLife, 10, e61660. https://doi.org/10.7554/eLife.61660
Lim, J., Chu, Y. C., Tai, H. H., Chien, A., Huang, S. S., Chen, C. C., & Wang, J. L. (2022). Auditory independent low-intensity ultrasound stimulation of mouse brain is associated with neuronal ERK phosphorylation and an increase of Tbr2 marked neuroprogenitors. Biochemical and biophysical research communications, 613, 113–119. https://doi.org/10.1016/j.bbrc.2022.04.123
Lang, U. E., & Borgwardt, S. (2013). Molecular mechanisms of depression: perspectives on new treatment strategies. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 31(6), 761–777. https://doi.org/10.1159/000350094
Nelson, T.R., et al., Ultrasound biosafety considerations for the practicing sonographer and sonologist. 2009.
Shimokawa, H., Shindo, T., Ishiki, A., Tomita, N., Ichijyo, S., Watanabe, T., Nakata, T., Eguchi, K., Kikuchi, Y., Shiroto, T., Takahashi, J., Yasuda, S., & Arai, H. (2022). A Pilot Study of Whole-Brain Low-Intensity Pulsed Ultrasound Therapy for Early Stage of Alzheimer's Disease (LIPUS-AD): A Randomized, Double-Blind, Placebo-Controlled Trial. The Tohoku journal of experimental medicine, 258(3), 167–175. https://doi.org/10.1620/tjem.2022.J078
Seo, J. G., Cho, Y. W., Kim, K. T., Kim, D. W., Yang, K. I., Lee, S. T., Byun, J. I., No, Y. J., Kang, K. W., Kim, D., & Drug Committee of Korean Epilepsy Society (2020). Pharmacological Treatment of Epilepsy in Elderly Patients. Journal of clinical neurology (Seoul, Korea), 16(4), 556–561. https://doi.org/10.3988/jcn.2020.16.4.556
Shi, X., Zhang, Q., Li, J., Liu, X., Zhang, Y., Huang, M., Fang, W., Xu, J., Yuan, T., Xiao, L., Tang, Y. Q., Wang, X. D., Luo, J., & Yang, W. (2021). Disrupting phosphorylation of Tyr-1070 at GluN2B selectively produces resilience to depression-like behaviors. Cell reports, 36(8), 109612. https://doi.org/10.1016/j.celrep.2021.109612
Tullis, J. E., Buonarati, O. R., Coultrap, S. J., Bourke, A. M., Tiemeier, E. L., Kennedy, M. J., Herson, P. S., & Bayer, K. U. (2021). GluN2B S1303 phosphorylation by CaMKII or DAPK1: no indication for involvement in ischemia or LTP. iScience, 24(10), 103214. https://doi.org/10.1016/j.isci.2021.103214
Xiao, G., Wu, Y., Yan, Y., Gao, L., Geng, Z., Qiu, B., Zhou, S., Ji, G., Wu, X., Hu, P., & Wang, K. (2022). Optimized Magnetic Stimulation Induced Hypoconnectivity Within the Executive Control Network Yields Cognition Improvements in Alzheimer's Patients. Frontiers in aging neuroscience, 14, 847223. https://doi.org/10.3389/fnagi.2022.847223
劉禹呈, 超音波與壓電刺激對人體間質幹細胞遷移與軟骨細胞聚合、重排的影響. 2022, 國立台灣大學碩士論文
戴小芯, 腦神經細胞對微能量超音波刺激之反應. 2021, 國立台灣大學碩士論文.
何建穎,適用於動物及細胞實驗之超音波探頭設計.2022, 國立台灣大學碩士論文
林宇宣,超音波刺激裝置設計與模擬.2021, 國立台灣大學碩士論文
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88935-
dc.description.abstract在過去幾年,有開發許多非侵入式穿顱刺激的裝置。研究指出穿顱磁刺激會造成神經表面古安酸受體的突觸,加速神經的傳遞。透過服用鈣離子與NMDAR相關藥物可以抑制穿顱磁刺激的結果。相關的人體實驗,在日本東北大學,對患有阿茲海默症的病人進行頭部刺激,與未刺激組進行比較,發現經過刺激的病人皆有好轉的情況。可見非侵入式經顱刺激是可以對退化神經的連結,達到一定的影響。
因為於人體實驗中發現超音波對於神經退化的疾病,可以達到其治療作用,所以希望對於其內部的蛋白質運作機制有所探討,先前的研究認為ASIC1為接收超音波受器其一,但因為還可以看到其超音波刺激對於少部分ERK的磷酸化反應,推測還有其他接受超音波受體的蛋白,於是透過液相-層析質譜儀在分子調控中心發現NMDAR 與CaMKII,透過文獻相關回顧可以發現NMDAR 與CaMKII的活化與學習、情緒、記憶相關,在大腦內的功能運作佔很重要的一部分。
研究目的為觀察超音波刺激對於海馬迴內NMDAR與CaMKII磷酸化的反應,本次實驗使用實驗室開發的超音波刺激裝置,水為傳遞的介質,減少擔心升溫的問題也透過優化裂解液去偵測磷酸化蛋白反應。
在本次實驗中可以觀察到超音波刺激確實造成NMDAR與CaMKII的磷酸化反應,只是不同位點被活化的刺激能量參數不同,CaMKII T286對於刺激時間較於敏感,CaMKII Y231則是對於低能量的刺激較敏感,NMDAR S1303的磷酸化則是需要在較高電壓下刺激才能觀察到反應,而NMDAR磷酸化對神經傳遞的方式與速度有一定的影響。至於NMDAR與CaMKII磷酸化對大腦所造成後續的機制作用與傳遞的速度,還是要透過相關實驗去驗證。
zh_TW
dc.description.abstractIn the past few years, there have been many devices developed for non-invasive transcranial stimulation. Studies have pointed out that transcranial magnetic stimulation can cause synapses of glutamate receptors on the nerve surface and accelerate neurotransmission. The results of transcranial magnetic stimulation can be inhibited by taking calcium ions and NMDAR-related drugs. At Tohoku University in Japan, the human experiment, patients with Alzheimer's disease were stimulated, and compared with the unstimulated patients. It was found that the stimulated patients all improved. From this, it can be seen that non-invasive transcranial stimulation have a certain connection of degenerative nerves.
It was found that in human experiments, ultrasound can achieve its therapeutic effect on neurodegenerative diseases. Therefore, we explore operation mechanism of internal protein. Previous studies believed that ASIC1 is one of the receptors of ultrasound. However, it can be seen that the small part phosphorylation of ERK is stimulated by ultrasound, so our team speculated that there are other proteins relate to ultrasound. Through the ultrasound stimulation, NMDAR and CaMKII were found in the molecular regulation center through liquid chromatography-mass spectrometry. Most of literature review found that the activation of NMDAR and CaMKII is related to learning, emotion, and memory, and the important functional operation in the brain.
The purpose of the study is observing the phosphorylation response of ultrasonic stimulation of NMDAR and CaMKII in the hippocampus. In this experiment, it can be observed that ultrasonic stimulation causes the phosphorylation of NMDAR and CaMKII. CaMKII T286 is more sensitive to stimulation time, while CaMKII Y231 has suitable stimulation parameter. As for the phosphorylation of NMDAR S1303 be stimulated at a higher voltage to activated it, and the phosphorylation of NMDAR has a certain influence on the mode and speed of neurotransmission. As for the subsequent mechanism and transmission speed of NMDAR and CaMKII phosphorylation on the hippocampus, it still needs to be verified through relevant experiments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:25:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:25:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
摘要 v
Abstract vii
發表著作 ix
圖目錄 xii
表目錄 xiv
第 1 章 緒論 1
1.1腦內疾病研究背景 1
1.2 穿顱刺激治療研究 2
1.3 研究背景 4
1.4研究目的 6
1.5 超音波參數能量 7
1.6 神經細胞突觸與其傳遞方式 9
1.7檢測的蛋白通道 11
1.7.1 N-甲基-D天門冬氨酸受體(N-methyl-D-aspartate receptor) 11
1.7.2 Ca2+/calmodulin-dependent protein kinase II 13
1.8實驗目的 14
第 2 章 材料與方法 16
2.1 研究方法介紹 16
2.2 崽鼠海馬迴組織實驗 17
2.2.1蛋白質樣本準備 17
2.3 超音波刺激之裝置 19
2.3.1超音波刺激系統校正 20
2.3.2 超音波能量量測 22
2.3.3 能量量測與電場模擬(由台大醫工所林宇宣提供) 25
2.4 蛋白質檢測法 - 西方墨點法 27
2.5分析方法 30
第 3 章 實驗結果與討論 31
3.1 海馬迴組織NMDAR 蛋白實驗 31
3.1.1 低電壓(600mVpp)磷酸化結果 32
3.1.2高電壓(900mVpp)磷酸化結果 32
3.2 海馬迴組織CaMKII Y231蛋白實驗 33
3.2.1佔空比 33
3.2.2時間比 34
3.3海馬迴組織CaMKII T286 實驗 36
3.3.1 佔空比 36
3.3.2時間差 38
第 4 章 結論、討論、未來展望 40
4-1結論 40
4-1-1海馬迴組織NMDAR Y1070/S1303蛋白實驗 40
4-1-2海馬迴組織CaMKII Y231蛋白實驗 40
4-1-3 海馬迴組織CaMKII T286蛋白實驗 41
4-2討論 41
4-2-1海馬迴組織NMDAR蛋白實驗 42
4-2-2海馬迴組織CaMKII蛋白實驗 43
4-3未來展望 44
第 5 章 參考文獻 45
-
dc.language.isozh_TW-
dc.title探討海馬迴內NMDAR與CaMKII經超音波刺激後磷酸化的反應zh_TW
dc.titleExploring the phosphorylation response of NMDAR and CaMKII in hippocampus following ultrasound stimulationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊世斌;林靜嫻;陳志成zh_TW
dc.contributor.oralexamcommitteeShi-Bing Yang;Chin-Hsien Lin;Chih-Cheng Chenen
dc.subject.keyword超音波刺激,海馬迴,磷酸化,NMDAR2B,CaMKIIa,谷氨酸受體,zh_TW
dc.subject.keywordNMDAR2B,CaMKIIa,hippocampus,ultrasound stimulation,phosphorylation,glutamate receptor,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202302932-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
7.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved