Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬zh_TW
dc.contributor.advisorYi-Pin Linen
dc.contributor.author許聖翔zh_TW
dc.contributor.authorSheng Hsiang Hsuen
dc.date.accessioned2023-08-16T16:18:57Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationAlimi, O. S., Claveau-Mallet, D., Kurusu, R. S., Lapointe, M., Bayen, S., & Tufenkji, N. (2022). Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing? Journal of hazardous materials, 423, 126955.
Almond, J., Sugumaar, P., Wenzel, M. N., Hill, G., & Wallis, C. (2020). Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers, 20(1), 369-381.
Anbumani, S., & Kakkar, P. (2018). Ecotoxicological effects of microplastics on biota: a review. Environmental Science and Pollution Research, 25(15), 14373-14396.
Andrady, A. L. (2011). Microplastics in the marine environment. Marine pollution bulletin, 62(8), 1596-1605.
Andrady, A. L. (2017). The plastic in microplastics: A review. Marine pollution bulletin, 119(1), 12-22.
APHA, AWWA, & WEF. (2017). Standard methods for the examination of water and wastewater, 23rd.
Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environment international, 102, 165-176.
Bredács, M., Frank, A., Bastero, A., Stolarz, A., & Pinter, G. (2018). Accelerated aging of polyethylene pipe grades in aqueous chlorine dioxide at constant concentration. Polymer Degradation and Stability, 157, 80-89.
Browne, M. A. (2015). Sources and pathways of microplastics to habitats. Marine anthropogenic litter, 229-244.
Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: a review. Marine pollution bulletin, 62(12), 2588-2597.
Ding, L., Mao, R., Ma, S., Guo, X., & Zhu, L. (2020). High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water research, 174, 115634.
Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water research, 75, 63-82.
Elizalde-Velázquez, G. A., & Gómez-Oliván, L. M. (2021). Microplastics in aquatic environments: A review on occurrence, distribution, toxic effects, and implications for human health. Science of the total environment, 780, 146551.
Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but found with Nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environmental Science & Technology, 51(23), 13641-13648.
Fischer, J., Mantell, S. C., Bradler, P. R., Wallner, G. M., & Lang, R. W. (2019). Effect of aging in hot chlorinated water on the mechanical behavior of polypropylene grades differing in their stabilizer systems. Materials Today: Proceedings, 10, 385-392.
Frank, A., Pinter, G., & Lang, R. (2009). Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use. Polymer Testing, 28(7), 737-745.
Fu, Z., Hua, F., Yang, S., Wang, H., & Cheng, Y. (2023). Evolution of light olefins during the pyrolysis of polyethylene in a two-stage process. Journal of Analytical and Applied Pyrolysis, 169, 105877.
Fujii, T., Matsui, Y., Hirabayashi, H., Igawa, K., Okada, S., Honma, H., Nishimura, H., & Yamada, K. (2019). Influence of residual chlorine and pressure on degradation of polybutylene pipe. Polymer Degradation and Stability, 167, 1-9.
Gray, N. F. (2014). Ozone disinfection. In Microbiology of waterborne diseases (pp. 599-615). Elsevier.
Greenspan, P., & Fowler, S. D. (1985). Spectrofluorometric studies of the lipid probe, nile red. Journal of lipid research, 26(7), 781-789.
Heim, T. H., & Dietrich, A. M. (2007). Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe. Water research, 41(4), 757-764.
Ivleva, N. P. (2021). Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives. Chemical Reviews, 121(19), 11886-11936.
Jee, A.-Y., Park, S., Kwon, H., & Lee, M. (2009). Excited state dynamics of Nile Red in polymers. Chemical Physics Letters, 477(1-3), 112-115.
Johnson, A. C., Ball, H., Cross, R., Horton, A. A., Jurgens, M. D., Read, D. S., Vollertsen, J., & Svendsen, C. (2020). Identification and quantification of microplastics in potable water and their sources within water treatment works in England and Wales. Environmental Science & Technology, 54(19), 12326-12334.
Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez, V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., & Royer, S.-J. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine pollution bulletin, 127, 704-716.
Khan, I. A., Lee, K. H., Lee, Y.-S., & Kim, J.-O. (2022). Degradation analysis of polymeric pipe materials used for water supply systems under various disinfectant conditions. Chemosphere, 291, 132669.
Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water research, 155, 410-422.
Konde, S., Ornik, J., Prume, J. A., Taiber, J., & Koch, M. (2020). Exploring the potential of photoluminescence spectroscopy in combination with Nile Red staining for microplastic detection. Marine pollution bulletin, 159, 111475.
Laskar, N., & Kumar, U. (2019). Plastics and microplastics: A threat to environment. Environmental Technology & Innovation, 14, 100352.
Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., Shi, H., Raley-Susman, K. M., & He, D. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Science of the total environment, 619, 1-8.
Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water research, 137, 362-374.
Li, X., Li, M., Mei, Q., Niu, S., Wang, X., Xu, H., Dong, B., Dai, X., & Zhou, J. L. (2021). Aging microplastics in wastewater pipeline networks and treatment processes: Physicochemical characteristics and Cd adsorption. Science of the total environment, 797, 148940.
Li, Y., Li, W., Jarvis, P., Zhou, W., Zhang, J., Chen, J., Tan, Q., & Tian, Y. (2020). Occurrence, removal and potential threats associated with microplastics in drinking water sources. Journal of Environmental Chemical Engineering, 8(6), 104527.
Liu, G., Wang, J., Wang, M., Ying, R., Li, X., Hu, Z., & Zhang, Y. (2022). Disposable plastic materials release microplastics and harmful substances in hot water. Science of the total environment, 818, 151685.
Liu, X., Deng, Q., Zheng, Y., Wang, D., & Ni, B. J. (2022). Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. Water research, 221, 118780.
Luo, H., Zhao, Y., Li, Y., Xiang, Y., He, D., & Pan, X. (2020). Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids. Science of the total environment, 714, 136862.
Majewski, K., Mantell, S., & Bhattacharya, M. (2020). Relationship between morphological changes and mechanical properties in HDPE films exposed to a chlorinated environment. Polymer Degradation and Stability, 171, 109027.
Mintenig, S., Löder, M., Primpke, S., & Gerdts, G. (2019). Low numbers of microplastics detected in drinking water from ground water sources. Science of the total environment, 648, 631-635.
Mintenig, S. M., Int-Veen, I., Löder, M. G., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water research, 108, 365-372.
Mitroka, S. M., Smiley, T. D., Tanko, J., & Dietrich, A. M. (2013). Reaction mechanism for oxidation and degradation of high density polyethylene in chlorinated water. Polymer Degradation and Stability, 98(7), 1369-1377.
Moldovan, A., Buican, R., Patachia, S., & Tierean, M. (2012). Characterization of polyolefins wastes by FTIR spectroscopy. Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, 5(2), 65.
Nizamuddin, S., Boom, Y. J., & Giustozzi, F. (2021). Sustainable polymers from recycled waste plastics and their virgin counterparts as bitumen modifiers: A comprehensive review. Polymers, 13(19), 3242.
Ono, K., & Yamaguchi, M. (2009). Thermal and mechanical modification of LDPE in single‐screw extruder. Journal of applied polymer science, 113(3), 1462-1470.
Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of the total environment, 643, 1644-1651.
Salehi, M., Jafvert, C. T., Howarter, J. A., & Whelton, A. J. (2018). Investigation of the factors that influence lead accumulation onto polyethylene: Implication for potable water plumbing pipes. Journal of hazardous materials, 347, 242-251.
Shim, W. J., Song, Y. K., Hong, S. H., & Jang, M. (2016). Identification and quantification of microplastics using Nile Red staining. Marine pollution bulletin, 113(1-2), 469-476.
Stark, N. M., & Matuana, L. M. (2004). Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polymer Degradation and Stability, 86(1), 1-9.
Tong, H., Jiang, Q., Hu, X., & Zhong, X. (2020). Occurrence and identification of microplastics in tap water from China. Chemosphere, 252, 126493.
Vethaak, A. D., & Legler, J. (2021). Microplastics and human health. Science, 371(6530), 672-674.
von Sonntag, C., & von Gunten, U. (2012). Chemistry of ozone in water and wastewater treatment. IWA publishing.
Wang, Z., Lin, T., & Chen, W. (2020). Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Science of the total environment, 700, 134520.
Weber, F., Kerpen, J., Wolff, S., Langer, R., & Eschweiler, V. (2021). Investigation of microplastics contamination in drinking water of a German city. Science of the total environment, 755, 143421.
Wu, X., Zhao, X., Chen, R., Liu, P., Liang, W., Wang, J., Teng, M., Wang, X., & Gao, S. (2022). Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. Water research, 221, 118825.
Xu, Z., Bai, X., & Ye, Z. (2021). Removal and generation of microplastics in wastewater treatment plants: A review. Journal of Cleaner Production, 291, 125982.
Yaranal, N. A., Subbiah, S., & Mohanty, K. (2021a). Distribution and characterization of microplastics in beach sediments from Karnataka (India) coastal environments. Marine pollution bulletin, 169, 112550.
Yaranal, N. A., Subbiah, S., & Mohanty, K. (2021b). Identification, extraction of microplastics from edible salts and its removal from contaminated seawater. Environmental Technology & Innovation, 21, 101253.
Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020). A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science & Technology, 54(7), 3740-3751.
Zhang, X., Lin, T., & Wang, X. (2022). Investigation of microplastics release behavior from ozone-exposed plastic pipe materials. Environmental Pollution, 296, 118758.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88909-
dc.description.abstract高密度聚乙烯(High-density polyethylene, HDPE)管因其化學穩定性和物理特性為水處理和輸送中會使用到的管線材料。近年來,人們對於HDPE管在使用過程中釋放塑膠微粒(Microplastics, MPs)的關注日益增加。因為塑膠微粒可能對環境和人體健康造成影響,了解HDPE管在不同老化條件下釋放的塑膠微粒是重要的課題。本研究的目的是要探討HDPE管在臭氧、氯、加熱老化條件下所釋放塑膠微粒的情形,藉由靜態老化和循環沖刷實驗來模擬HDPE管在不同老化條件下釋放塑膠微粒。透過分析塑膠微粒的數量、粒徑分佈和表面形態的變化,評估了在臭氧、氯和加熱老化對塑膠微粒釋放的影響。研究結果顯示,隨著老化條件的增強,HDPE管塑膠微粒的釋放數量增加。在臭氧老化下,靜態老化和循環沖刷實驗中,塑膠微粒釋放數量分別從控制實驗的654 #/L和82 #/L上升到受30 mg/L 臭氧老化的1180 #/L和177 #/L。在氯老化下,靜態老化和循環沖刷實驗中,塑膠微粒釋放數量分別從控制實驗的528 #/L和103 #/L上升到受260 mg/L氯老化的933 #/L和118 #/L。而在加熱老化下,靜態老化和循環沖刷實驗中,塑膠微粒釋放數量分別從控制實驗的433 #/L和65 #/L上升到受80°C老化的932 #/L和173 #/L。臭氧老化會增加 <10 m和10 m-50 m塑膠微粒的釋放。氯老化會增加<10 m塑膠微粒的釋放。加熱老化會增加所有粒徑塑膠微粒的釋放。HDPE管表面的裂痕數量隨著三種老化條件的增強而增加,從而導致塑膠微粒的釋數量增加。總體而言,根據本研究結果,在靜態老化和循環沖刷實驗中,隨著臭氧濃度、氯濃度和加熱老化的提高會增加HDPE管釋放塑膠微粒的數量。zh_TW
dc.description.abstractHigh-density polyethylene (HDPE) pipes are used for water treatment and water transit due to their excellent chemical stability and physical properties. In recent years, the release of microplastics (MPs) from HDPE pipes has gained increasing attention due to their potential environmental and human health risks. This study investigated the release of MPs from HDPE pipes under three different aging conditions, including ozonation, chlorination, and heating. Both stagnant and circulating experiments were conducted. The impact of ozonation, chlorination, and heating aging on the release of MPs was assessed by analyzing the MPs concentration, size distributions, and surface morphology. The results showed that the release of MPs from HDPE pipes increased with enhanced aging. In ozonation, the release of MPs increased from 654 #/L and 82 #/L in the control experiment to 1180 #/L and 177 #/L under 30 mg/L ozone in the stagnant and circulating experiments, respectively. In chlorination, the release of MPs increased from 528 #/L and 103 #/L in the control experiment to 933 #/L and 118 #/L under 260 mg/L chlorine in the stagnant and circulating experiments, respectively. In heating aging, the release of MPs increased from 433 #/L and 65 #/L in the control experiment to 932 #/L and 173 #/L under 80°C in the stagnant and circulating experiments, respectively. Ozonation significantly enhanced the release of MPs with a size of <10 m and 10 m-50 m. Chlorination significantly enhanced the release of MPs with a size of <10 m. Heating aging had a significant impact on the release of MPs of all sizes. The surface of HDPE pipes exhibited intensified cracks with enhanced aging, which likely contributed to the increased release of MPs. In summary, the results from this study indicated that enhanced aging with ozone, chlorine, and heating could lead to a greater release of MPs from HDPE pipes in both stagnant and circulating experiments.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:18:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:18:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
Contents VII
List of Figures IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research objectives 2
Chapter 2 Literature Review 3
2.1 Microplastics 3
2.2 Aging of plastic pipes 4
2.3 Detection of MPs 6
Chapter 3 Materials and Method 9
3.1 Research framework 9
3.2 Chemicals and reagents 11
3.3 Experiment solutions 11
3.4 Aging of HDPE pipes 13
3.5 Release of MPs from HDPE Pipes After Aging in Flowing Water 15
3.6 Quantification of MPs 16
3.7 Analytical methods 18
Chapter 4 Results and Discussion 21
4.1. The influence of ozonation on MPs release from HDPE pipe 21
4.2. The influence of chlorination on MPs release from HDPE pipe 26
4.3. The influence of heating on MPs release from HDPE pipe 30
4.4 Characterization of HDPE pipes before and after aging by ATR-FTIR and SEM 34
Chapter 5 Conclusions and Recommendations 44
5.1 Conclusions 44
5.2 Recommendations 45
References 46
-
dc.language.isoen-
dc.subject臭氧zh_TW
dc.subject氯zh_TW
dc.subject塑膠微粒zh_TW
dc.subject加熱zh_TW
dc.subject老化zh_TW
dc.subject高密度聚乙烯zh_TW
dc.subjectmicroplasticsen
dc.subjectagingen
dc.subjectozonationen
dc.subjectchlorinationen
dc.subjectheatingen
dc.subjectHigh-density polyethyleneen
dc.title高密度聚乙烯管在臭氧、氯和加熱老化後釋放的塑膠微粒zh_TW
dc.titleRelease of microplastic from High-density polyethylene pipes after ozonation, chlorination, and heating agingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王根樹;童心欣zh_TW
dc.contributor.oralexamcommitteeGen-Shuh Wang;Hsin-Hsin Tungen
dc.subject.keyword高密度聚乙烯,塑膠微粒,老化,臭氧,氯,加熱,zh_TW
dc.subject.keywordHigh-density polyethylene,microplastics,aging,ozonation,chlorination,heating,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202302642-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved