請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88904
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱士維 | zh_TW |
dc.contributor.advisor | Shi-Wei Chu | en |
dc.contributor.author | 曾柏學 | zh_TW |
dc.contributor.author | Po-Hsueh Tseng | en |
dc.date.accessioned | 2023-08-16T16:17:33Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | Alexoudi, T., Kanellos, G. T. & Pleros, N. Optical RAM and integrated optical memories: a survey. Light Sci Appl 9, 91 (2020).
2. Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Toward nonvolatile switching in silicon photonic devices. Laser Photon. Rev. 15, 2000501 (2021). 3. Gosciniak, J., Hu, Z., Thomaschewski, M., Sorger, V. J. & Khurgin, J. B. Bistable all‐optical devices based on nonlinear epsilon‐near‐zero (ENZ) materials. Laser Photon. Rev. 17, (2023). 4. Almeida, V. R. & Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 29, 2387–2389 (2004). 5. Powell, K. et al. Optical bi-stability in cubic silicon carbide microring resonators. Opt. Express 30, 34149–34158 (2022). 6. Parsamyan, H., Sahakyan, K. & Nerkararyan, K. Analysis of bistability at the coupling between waveguide and whispering gallery modes of a nonlinear hemicylinder. J. Phys. D Appl. Phys. 55, 165102 (2022). 7. Rashidi, A., Hatef, A. & Namdar, A. Modeling photothermal induced bistability in vanadium dioxide/1D photonic crystal composite nanostructures. Appl. Phys. Lett. 113, 101103 (2018). 8. Dehghan, M., Moravvej-Farshi, M. K., Jabbari, M., Darvish, G. & Ghaffari-Miab, M. Bistable Terahertz Switch Designed by Integration of a Graphene Plasmonic Crystal into Fabry-Perot Resonator. IEEE J. Sel. Top. Quantum Electron. 27, 1–6 (2021). 9. Grieco, A. et al. Optical Bistability in a Silicon Waveguide Distributed Bragg Reflector Fabry–Pérot Resonator. J. Lightwave Technol. 30, 2352–2355 (2012). 10. Zhang, Y. et al. Low Power and Large Modulation Depth Optical Bistability in an Si Photonic Crystal L3 Cavity. IEEE Photonics Technol. Lett. 26, 2399–2402 (2014). 11. Notomi, M. et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005). 12. Nandi, R., Goswami, A. & Das, B. K. Phase Controlled Bistability in Silicon Microring Resonators for Nonlinear Photonics. IEEE J. Sel. Top. Quantum Electron. 27, 1–9 (2021). 13. Chen, Y. et al. Optical Bistability in a Tunable Gourd-Shaped Silicon Ring Resonator. Nanomaterials (Basel) 12, (2022). 14. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics 4, 535–544 (2010). 15. Duh, Y.-S. et al. Giant photothermal nonlinearity in a single silicon nanostructure. Nat. Commun. 11, 4101 (2020). 16. Zhang, Y., Samanta, A., Shang, K. & Yoo, S. J. B. Scalable 3D Silicon Photonic Electronic Integrated Circuits and Their Applications. IEEE J. Sel. Top. Quantum Electron. 26, 1–10 (2020). 17. Ashtiani, F. & Aflatouni, F. Coherent Multilayer Photonic Nanoantenna Array with off-Aperture Phase Adjustment. ACS Photonics 8, 3433–3439 (2021). 18. Pinhas, H. et al. Plasma dispersion effect based super-resolved imaging in silicon. Opt. Express 26, 25370–25380 (2018). 19. Wang, B. et al. Cylindrical vector beam revealing multipolar nonlinear scattering for superlocalization of silicon nanostructures. Photon. Res., PRJ 9, 950–957 (2021). 20. Orfanos, I. et al. Non-linear processes in the extreme ultraviolet. J. Phys. Photonics 2, 042003 (2020). 21. Denkova, D. et al. 3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters. Nat. Commun. 10, 3695 (2019). 22. Zhang, T. et al. Anapole mediated giant photothermal nonlinearity in nanostructured silicon. Nat. Commun. 11, 3027 (2020). 23. Tzang, O., Pevzner, A., Marvel, R. E., Haglund, R. F. & Cheshnovsky, O. Super-resolution in label-free photomodulated reflectivity. Nano Lett. 15, 1362–1367 (2015). 24. He, G. Nonlinear Optics and Photonics. (Oxford University Press, 2014). 25. Li, C. Optical Bistability and Its Instability. in Nonlinear Optics: Principles and Applications (ed. Li, C.) 215–250 (Springer Singapore, 2017). 26. Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017). 27. Bogdanov, A. A. et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime. AP 1, 016001 (2019). 28. Shilkin, D. A., Lyubin, E. V., Shcherbakov, M. R., Lapine, M. & Fedyanin, A. A. Directional Optical Sorting of Silicon Nanoparticles. ACS Photonics vol. 4 2312–2319 Preprint at https://doi.org/10.1021/acsphotonics.7b00574 (2017). 29. Zograf, G. P. et al. Stimulated Raman Scattering from Mie-Resonant Subwavelength Nanoparticles. Nano Lett. 20, 5786–5791 (2020). 30. Makarov, S. V. et al. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles. Nano Lett. 17, 3047–3053 (2017). 31. Zograf, G. P., Petrov, M. I., Makarov, S. V. & Kivshar, Y. S. All-dielectric thermonanophotonics. Advances in Optics and Photonics vol. 13 643 Preprint at https://doi.org/10.1364/aop.426047 (2021). 32. Horvath, C., Bachman, D., Indoe, R. & Van, V. Photothermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator. Opt. Lett. 38, 5036–5039 (2013). 33. Hoyland, J. D. & Sands, D. Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating. J. Appl. Phys. 99, 063516 (2006). 34. Tsoulos, T. V. & Tagliabue, G. Self-induced thermo-optical effects in silicon and germanium dielectric nanoresonators. Nanophotonics 9, 3849–3861 (2020). 35. Lugiato, L. A. Optical bistability. Contemporary Physics 24, 333–371 (1983). 36. Yang, C.-Y. et al. Nonradiating Silicon Nanoantenna Metasurfaces as Narrowband Absorbers. ACS Photonics 5, 2596–2601 (2018). 37. Lide, D. R. CRC handbook of chemistry and physics, 89th edition. (Taylor & Francis, 2008). 38. 陳育傑, "奈米晶矽方塊之光熱效應致雙穩態散射," 碩士, 物理學研究所, 國立臺灣大學, 臺北市, 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88904 | - |
dc.description.abstract | 近年來,有許多研究投入光學的雙穩態系統,以應用於積體光學元件的開發。挾帶奈米結構的製造優勢以及高折射率,以矽為材料的波導搭配矽本身光學非線性特質的光學雙穩態系統具有製造技術成熟的優勢,成為目前市面上積體光學常見的元件。由波導組成的膜態與足夠大的非線性效應是組成光學雙穩態的必要條件,然而矽材料本身克爾效應的非線性特質並不明顯,約 10-9 µm2/mW。因此其光學雙穩態系統傳統上利用高品質因子的波導,品質因子甚至可高至數百萬,用以增幅元件的非線性特質,進而形成雙穩態。但是高品質因子波導之邊長大小至少有微米層級,並不容易縮減到奈米層級,使得元件大小成為矽光學雙穩態系統的一大劣勢。不過在我們先前的研究中,發現了矽的奈米方塊邊長約 100 nm且品質因子低於十,卻能透過光熱效應的升溫回饋改變自身的光學性質,累積出巨大的等效非線性達 10-1 µm2/mW。這篇研究利用此巨大非線性擺脫了傳統對高品質因子波導的仰賴,同時運用在超線性提升解析度的影像技術。更進一步透過穩態間急劇的轉換,產生的散射強度相依性相當於 10 次方函數,此非線性應用至奈米結構的超解析影像技術,將雷射掃描顯微系統的解析度提升了 3 倍。 | zh_TW |
dc.description.abstract | Optical bistability plays an indispensable role in the field of photonic integrated circuits. With the advantage of mature manufacturing skills in nanostructure and high refractive index, silicon waveguides with optical nonlinearity are promising optical bistable devices. The prerequisite condition for optical bistability is a resonant cavity plus enough nonlinear feedback. Conventionally, because the intrinsic nonlinearity of silicon is as low as 10-9 µm2/mW via the Kerr effect, silicon-based bistable devices require a high-Q cavity, such as ring resonator or photonic crystal cavity, whose Q-factor is as high as million, but the size becomes difficult to decrease to the nanometer scale. Recently, we found that silicon nanoblock Mie resonators show a giant nonlinearity (10-1 µm2/mW) enhanced by photo-thermo-optical reactions. In this work, we take advantage of the giant nonlinearity of nano-silicon to produce optical bistability in a single silicon Mie resonator, whose size is 100 nm and whose Q-factor is less than 10. Both size and Q-factor are record-low in the field of optical bistability. Moreover, we propose a novel application of optical bistability toward enhancing microscopic resolution. It is known that super-linear power dependency offers point spread function reduction of laser scanning microscopy. The higher the super-linearity order, the better the resolution enhancement. Here we demonstrate that the nano-silicon bistability state transition provides a super-linear jump whose slope is equivalent to the 10th order of nonlinear response. The unprecedentedly large nonlinearity leads to a 3-fold resolution enhancement in a densely packed periodic silicon nanocuboid array. This research suggests the potential of optical signal modulation in a nanoscale device and sets a benchmark for label-free silicon nanostructure inspection. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:17:32Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T16:17:33Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iv Abstract v Contents vi Figure list vii Table list vii Chapter 1. Introduction 1 1.1 Optical Bistability of Silicon 1 1.2 Super-resolution by Nonlinearity of Nanosilicon 3 Chapter 2. Principles 6 2.1 Optical Bistability Generation 6 2.1.1 Optical Bistability of Silicon Waveguides 6 2.1.2 Mie Resonances 10 2.1.3 Photo-thermo-optical Bistability of Silicon Mie Resonator 12 2.2 Imaging 19 2.2.1 Laser Scanning Microscopy 19 2.2.2 Super-resolution with Super-linear Power Dependency 21 2.2.3 Dark-field Microscopy 22 Chapter 3. Method 24 3.1 Optical Setup 24 3.2 Sample Preparation 25 3.3 Simulation Conditions 26 Chapter4. Results 28 4.1 Bistable Scattering 28 4.1.1 Calculated Scattering Intensity Dependency 28 4.1.2 Experimental Measured Scattering Intensity Dependency 32 4.2 Super-resolution 34 Chapter 5. Discussion and Conclusion 37 5.1 Hysteresis Effect on Scanning Process 37 5.2 Image line profiles with different scanning speeds 38 5.3 Conclusion 40 References 42 | - |
dc.language.iso | en | - |
dc.title | 奈米非晶矽之光熱效應致光學雙穩態及其超解析技術應用 | zh_TW |
dc.title | Photo-thermo-optical bistablility of amorphous silicon nanostructures and super-resolution application | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張之威;陳國平;呂宥蓉 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Wei Chang;Kuo-Ping Chen;Yu-Jung Lu | en |
dc.subject.keyword | 光學雙穩態,矽光子學,米氏散射,光學非線性,光熱效應,超解析度成像, | zh_TW |
dc.subject.keyword | optical bistability,silicon photonics,Mie scattering,optical nonlinearity,photothermal effect,super-resolution imaging, | en |
dc.relation.page | 45 | - |
dc.identifier.doi | 10.6342/NTU202302757 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 2.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。