Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88901
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭斯彥zh_TW
dc.contributor.advisorSy-Yen Kuoen
dc.contributor.author鄭凱鴻zh_TW
dc.contributor.authorKai-Hung Chengen
dc.date.accessioned2023-08-16T16:16:38Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-16-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationZ. Abohashima, M. Elhosen, E. H. Houssein, and W. M. Mohamed. Classification with quantum machine learning: A survey, 2020.
T. Achache, L. Horesh, and J. Smolin. Denoising quantum states with quantum autoencoders – theory and applications, 2020.
M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini. Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4):043001, nov 2019.
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learning. Nature, 549(7671):195–202, sep 2017.
D. Bondarenko and P. Feldmann. Quantum autoencoders to denoise quantum data.Phys. Rev. Lett., 124:130502, Mar 2020.
N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks, 2017.
I. Cong, S. Choi, and M. D. Lukin. Quantum convolutional neural networks. Nature Physics, 15(12):1273–1278, aug 2019.
P.­L. Dallaire­Demers and N. Killoran. Quantum generative adversarial networks. Physical Review A, 98(1), jul 2018.
C. Dwork. Differential privacy. pages 1–12, 06 2006.
E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algo­ rithm, 2014.
E. Farhi and H. Neven. Classification with quantum neural networks on near term processors, 2018.
S. Foulds, V. Kendon, and T. Spiller. The controlled swap test for determining quan­ tum entanglement. Quantum Science and Technology, 6, 02 2021
W. Gong, D. Yuan, W. Li, and D.­L. Deng. Enhancing quantum adversarial robust­ness by randomized encodings, 2022.
I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples, 2015.
J. Guan, W. Fang, and M. Ying. Robustness verification of quantum classifiers. In Computer Aided Verification, pages 151–174. Springer International Publishing, 2021.
V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta. Supervised learning with quantum-­enhanced feature spaces. Nature, 567(7747):209–212, mar 2019.
H.­L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M.­H. Hsieh, H. Deng, H. Rong, C.­Z. Peng, C.­Y. Lu, Y.­A. Chen, D. Tao, X. Zhu, and J.­W. Pan. Experimental quantum generative adversarial networks for image generation. Physical Review Applied, 16(2), aug 2021.
L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar. Adversarial ma­ chine learning. In Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, AISec ’11, page 43–58, New York, NY, USA, 2011. Association for Computing Machinery.
A. King, J. Raymond, T. Lanting, S. Isakov, M. Mohseni, G. Poulin­Lamarre, S. Ejtemaee, W. Bernoudy, I. Ozfidan, A. Smirnov, M. Reis, F. Altomare, M. Bab­ cock, C. Baron, A. Berkley, K. Boothby, P. Bunyk, H. Christiani, C. Enderud, and M. Amin. Scaling advantage over path­-integral monte carlo in quantum simulation of geometrically frustrated magnets. Nature Communications, 12, 02 2021.
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–44, 05 2015.
S. Lu, L.­M. Duan, and D.­L. Deng. Quantum adversarial machine learning. Phys. Rev. Res., 2:033212, Aug 2020.
J. R. McClean, J. Romero, R. Babbush, and A. Aspuru­Guzik. The theory of varia­tional hybrid quantum-­classical algorithms. New Journal of Physics, 18(2):023023, feb 2016.
S. Oh, J. Choi, and J. Kim. A tutorial on quantum convolutional neural networks (qcnn), 2020.
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting, 2016.
P. Rebentrost, M. Mohseni, and S. Lloyd. Quantum support vector machine for big data classification. Physical Review Letters, 113(13), sep 2014.
J. Romero, J. P. Olson, and A. Aspuru­Guzik. Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology, 2(4):045001, aug 2017.
A. Sahdev and M. Kumar. Adversarial robustness based on randomized smoothing in quantum machine learning, 2023.
M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe. Circuit­-centric quantum classifiers. Physical Review A, 101(3), mar 2020.
M. Sharif, L. Bauer, and M. Reiter. On the suitability of lp-norms for creating and preventing adversarial examples. pages 1686–16868, 06 2018.
K. Sooksatra, P. Rivas, and J. Orduz. Evaluating accuracy and adversarial robustness of quanvolutional neural networks. pages 152–157, 12 2021.
J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, oct 2019.
M. Weber, N. Liu, B. Li, C. Zhang, and Z. Zhao. Optimal provable robustness of quantum classification via quantum hypothesis testing. npj Quantum Information, 7(1), may 2021.
X. Yuan, P. He, Q. Zhu, R. Bhat, and X. Li. Adversarial examples: Attacks and defenses for deep learning. 12 2017.
L. Zhou, S.T. Wang, S. Choi, H. Pichler, and M. D. Lukin. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X, 10:021067, Jun 2020.
L. Zhou and M. Ying. Differential privacy in quantum computation. pages 249–262, 08 2017.
J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative visual manipulation on the natural image manifold, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88901-
dc.description.abstract量子計算是近年來科學的里程碑,不但引起相當大的關注且廣泛應用於許多領域。然而,目前的噪聲中規模量子裝置(NISQ)容易受到周遭環境、缺陷結構甚至蓄意攻擊的干擾。雖然一些研究表明噪音可以增強微弱信號並保護數據隱私,但我們著重於消除攻擊者刻意製造的噪音以防止意外事件發生。
我們實作三種不同類型的量子自動編碼器。第一種類似於傳統程序將數據的維度降低,然後重新恢復回原始的大小。第二種利用額外的量子位元建立更加彈性的空間使模型能夠探索、發現並有效利用數據中隱藏的關聯性。第三種則是對生成的向量進行額外的操作。一般而言,降低數據的維度可以比擬為壓縮的過程,因為在經過充分訓練後,模型可以藉其完全恢復至原先的狀態。此外,模型也可以檢測並去除數據中存在的噪音或誤導模型的擾動而使其回復至無噪音的狀態。
我們使用結構相似性指數(SSIM)和量子支持向量機(QSVM)評估三種量子自動編碼器的表現和性能並展示其可以藉由受干擾和帶有噪音的數據以進行正確的分類與防止惡意的攻擊。
zh_TW
dc.description.abstractQuantum computing, a landmark in modern science, has garnered significant attention and is widely used for many applications. However, current Noisy Intermediate-Scale Quantum (NISQ) devices are susceptible to noise from the surrounding environment, defective structure and even deliberate attacks. Although some research has revealed that noise can enhance weak signals and protect the privacy of data, our focus is on eliminating noise crafted by attackers to prevent unexpected events.
We conducted an investigation and implemented three different types of quantum autoencoders. The first type follows the conventional procedure of reducing the dimension of the data and then reconstructing it back to its original size. The second type utilizes additional qubits to provide a larger latent space, allowing the model to explore and discover implicit relationships hidden within the data. The third type performs additional operations on the generated relationships. Typically, the data with reduced dimensions can be treated as a compressed state since the model can perfectly recover them after being well-trained. Moreover, if the noise or some perturbations that aim to mislead the model are present in the data, they can be detected and subsequently removed, leaving the state noiseless.
We then use structural similarity index measure (SSIM) value and the quantum support vector machines (QSVMs) to evaluate the performance and the robustness of the proposed quantum autoencoders, demonstrating that the perturbed and noised data can now be correctly classified, preventing the model from malicious attacks.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:16:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-16T16:16:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsPage
Verification Letter from the Oral Examination Committee I
Acknowledgements II
摘要 III
Abstract IV
Contents VI
List of Figures VIII
List of Tables IX
Chapter 1 Introduction 1
Chapter 2 Background and Related Works 3
2.1 Quantum Operation 3
2.2 Cycle­Consistent Adversarial Network (CycleGAN) 5
2.3 Adversarial Attack 6
2.4 Robustness and Differential Privacy 8
2.5 Patch Method 9
2.6 Enhanced Feature Quantum Autoencoder(EF­QAE) 10
2.7 Swap Test 10
2.8 Quantum neural networks and Quantum Support Vector Machine 12
2.9 Quantum Machine Learning 13
Chapter 3 Proposed Algorithms and Experiments 15
3.1 Intuition 15
3.2 Proposed Quantum Autoencoder 16
3.3 Experiment 18
3.3.1 Notation 18
3.3.2 Data Processing 19
3.3.3 Structure of cycleGAN 21
3.3.4 Quantum Autoencoder 21
3.3.5 Metrics 22
Chapter 4 Result and Analysis 24
Chapter 5 Conclusion 28
References 30

List of Figures
2.1 Bloch Sphere 4
2.2 Basic Scheme of CycleGAN 5
2.3 Update Procedure of EF­QAE 11
2.4 Swap Test 11
3.1 Structure of QAE (First Scheme) 16
3.2 Second Scheme 16
3.3 Different Part of Second and Third Scheme 16
3.4 ZZfeaturemap 22

List of Tables
3.1 Notation of QAE 21
4.1 First Scheme 24
4.2 Second Scheme 24
4.3 Third Scheme 25
4.4 Reference represents Srikumar, Hill and Hollenberg's work 27
-
dc.language.isoen-
dc.title強化聯合量子自動編碼器的穩健性zh_TW
dc.titleRobustness of Reinforced Patch Quantum Autoencodersen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee雷欽隆;游家牧;顏嗣鈞;黃士嘉zh_TW
dc.contributor.oralexamcommitteeChin-Laung Lei;Chia-Mu Yu;Hsu-chun Yen;Shih-Chia Huangen
dc.subject.keyword量子計算,量子機器學習,量子自動編碼器,去噪,對抗式攻擊,分類穩健性,zh_TW
dc.subject.keywordquantum machine learning,denoising,quantum autoencoder,adversarial attack,robustness,classification,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202302674-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved