請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88894
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單秋成 | zh_TW |
dc.contributor.advisor | Chow-Shing Shin | en |
dc.contributor.author | 呂芊邑 | zh_TW |
dc.contributor.author | CHIEN-YI LU | en |
dc.date.accessioned | 2023-08-16T16:14:40Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-16 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | [1] 3D 列印的生活應用與未來趨勢,模具與成型智慧工廠雜誌,2020.9 3D 列印的生活應用與未來趨勢 - SMARTMolding
[2] 適用於醫療產業之3D 列印技術介紹,模具與成型智慧工廠雜誌,2021.5 適用於醫療產業之3D 列印技術介紹 - SMARTMolding [3] 超高精密3D列印製造領軍全球企業,國際領先的2μm 精度「PμSL光固化3D列印」技術: 微米高精密3D列印技術 - 智觀智造 (makerwisdom.com) [4] 材料「尺寸效應」實現對微納3D列印結構的力學性能調控: 材料「尺寸效應」實現對微納3D列印結構的力學性能調控 - 智觀智造 (makerwisdom.com) [5] Nakanishi S.; Shoji S.; Kawata S.; Sun H.-B. Giant elasticity of photopolymer nanowires. Applied Physics Letters, 2007, 91, 063112-063112-3. [6] D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab & C. Monroe,”iron trap in a semiconductor chip”,Nature Physics 2006:p36-39. [7] Guo, N. and M.C. Leu, Additive manufacturing: technology, applications, and research needs. Frontiers of Mechanical Engineering, 2013. 8(3): p.215-243. [8] 經濟部技術處: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=101 [9] 沈育芳、謝明佑、陳怡文,3D成型技術之介紹與應用,科儀新知219期,108.6:p90-98. [10] 葉雲鵬、鄭正元,智慧機械與數位製造3D列印的發展,科儀新知222期,2020: p. 101-102. [11] Zhang, A.P., et al., Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography.AdvancedMaterials, 2012. 24(31): p. 4266-4270. [12] Urey, H., S. Madhavan, and M. Brown, MEMS Microdisplays, in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, Editors. 2012, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 2067-2080. [13] Costa, C., et al., Modeling of video projectors in OpenGL for implementing a spatial augmented reality teaching system for assembly operations. 2019. 9. [14] Liu, H., and B. Bhushan, Nanotribological Characterization of Digital Micromirror Devices Using Atomic Force Microscope. Ultramicroscopy, 2004. 100(3): p. 391-412 [15] Hornbeck, L., Projection Displays and MEMS: Timely Convergence for a Bright Future. Micromachining and Micromachining. Vol. 2640. 1995: SPIE. [16] Hornbeck, L.J., From Cathode Rays to Digital Micromirrors — A Historical of Electronic Projection Display Technology. Texas Instruments Technical Journal, 1998. 15: p.7-46. [17] Hornbeck, L.J., Digital Light Processing for High Brightness High Resolution Applications. Display III in Projection. 1997. [18] 蔡福森, DLP投影 [19] James V. Crivello and Elsa Reichmanis,Photopolymer Materials and Processes for Advanced Technologies,Chemistry of Materials: Photopolymer Materials and Processes for Advanced Technologies | Chemistry of Materials (acs.org) [20] 維基百科-光聚合物https://zh.wikipedia.org/wiki/%E5%85%89%E8%81%9A%E5%90%88%E7%89%A9 [21] 優褅股份有限公司-產品說明: https://www.eutec.com.tw/zh-TW/article/detail/57 [22] 何志松、王維廷,探討聚酯壓克力樹酯配方對性質之影響,科學與工程技術期刊,第十三卷,第二期,民國106年:p.33~43. [23] 楊日昌, ”可視化DLP列印系統開發與探討” 國立台灣大學機械工程學系研究所,2022. [24] LIQCREAT公司官網:树脂 3D 打印:Ec、Dp、固化深度等解释 (liqcreate.com) [25] 普羅森科技(Phrozen)官網:Onyx Rigid Pro410 – 普羅森科技 光固化3D列印機 (phrozen3d.com.tw) [26] 陳亮嘉、林宗毅、張奕威、林世聰,線型彩色共焦三維形貌顯微術,科儀新知,第三十四卷。第二期,民國101年10月:p.55~64 [27] 大永真空設備股份有限公司,智庫文章,濺鍍(Sputtering)原理 [28] Phil Mooney, Projection Micro Stereolithography 3D Printing, JULY 9, 2020:https://bmf3d.com/blog/projection-micro-stereolithography-3d-printing/ [29] Mo, Jianhua & Groot, Mattijs & Boer, Johannes. (2013). Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography. Optics express. 21. 10048-61. https://doi.org/10.1364/OE.21.010048 [30] Hur, Jungyu, and Seo, Manseung. Optical Proximity Corrections for Digital Micromirror Device-Based Maskless Lithography.” J. Optical Soc of Korea, 16, 3, Sept. 2012, pp. 221–227. https://doi.org/10.3807/JOSK.2012.16.3.221 [31] Z. Xiong, H. Liu, R. Chen, J. Xu, Q. Li, J. Li, and W. Zhang, "Illumination uniformity improvement in digital micromirror device based scanning photolithography system," Opt. Express 26, 18597-18607, 2018. https://doi.org/10.1364/OE.26.018597 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88894 | - |
dc.description.abstract | 在光固化積層製造中,適當的單層固化厚度影響了整體結構的穩定度與外觀,尤其是桁架結構。如果單層固化厚度不足,易造成鏤空空結構不穩定;相反的,過度單層固化厚度,會導致鏤空結構,變成實心之立方體。因此,在列印過程中,除了會以列印載台的步進量控制樹酯流入載台的厚度外,同時也要避免,因為光能量穿透所導致深度方向多餘的固化。
本研究係在探討如何運用調整樹酯配方、降低曝光能量、改變給予光能量的方式……等方式,精確地控制光敏樹酯固化厚度。先以列印單層的方式,找出若干變因與層厚之間的理論關係,接著將這些方法實際運用於鏤空結構列印 ― 井字結構。藉由量測結構中的鏤空樓板厚度,觀察是否有改善吊床現象。 | zh_TW |
dc.description.abstract | In the manufacture of vat polymerization, the appropriate single-layer curing thickness affects the stability and appearance of the whole structure, especially the truss structure. If the single-layer curing thickness is insufficient, it will easily cause the hollow structure to be unstable; on the contrary, if the single-layer curing thickness is too high, the hollow structure will become a solid cube. Therefore, in the process, in addition to controlling the thickness of the resin flowing into the printing carrier by the moving amount of the printing carrier, it is also necessary to avoid excess curing in the depth direction due to the penetration of light energy.
The purpose of this study is to explore how to use methods of adjusting the resin formula, reducing the exposure energy, changing the way of light energy, etc., to precisely control the curing thickness of the photosensitive resin. First, by printing a single layer, find out the theoretical relationship between several variations and layer thickness, and then apply these methods to the hollow structure - the Tac-toe structure. By measuring the thickness of the hollow floor slab in the structure, observe whether the hammock phenomenon has been improved. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:14:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-16T16:14:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章、緒論 1 1.1前言 1 1.2研究動機 2 1.3章節簡述 3 第二章、文獻回顧 4 2.1 DLP列印技術(digital light processing) 4 2.1.1 DLP投影機 4 2.1.2 DMD (Digital Micro-mirror Device)晶片 5 2.1.4 DLP技術微型化 6 2.2 樹酯光固化與層厚 8 2.2.1光敏樹酯固化原理 8 2.2.2光起始劑與光抑制劑對固化深度之影響 8 2.2.3光能量穿透對固化深度之影響 9 2.2.4 像素光場疊加 9 2.3總結 10 第三章、實驗設備與材料 11 3.1即時監測3D列印設備 11 3.1.1投影機 11 3.1.2 CMOS即時監測系統 12 3.1.3光路系統 12 3.2列印材料與相關設備 12 3.2.1 列印材料 12 3.2.2 相關設備 14 3.2.3樹酯命名 14 3.3實驗量測設備 15 3.3.1立體顯微鏡 15 3.3.2電子掃描顯微鏡(SEM) 15 3.3.3 白金濺鍍機 15 3.3.4 彩色共軛焦表面輪廓量測儀 16 第四章、實驗方法與流程 17 4.1實驗理論與方法說明 17 4.2研究流程 19 4.2.1 結構設計 20 4.2.2切層 20 4.2.3調整參數 21 4.2.4對焦 25 4.2.5列印 26 4.2.6清洗與觀測 26 4.2.7鍍白金與厚度量測 26 4.2.8樓板量測方式 27 4.3列印單層方法 28 第五章、實驗結果與討論 29 5.1 不同樹酯配方結果 29 5.1.1 GS光敏樹酯 29 5.1.2 ONYX光敏樹酯 41 5.1結論 52 5.2 灰階法 54 5.3 改變給予能量方式實驗結果 56 5.3.1 GS-0.15S-10DB 56 5.3.2 ONYX-0.5S 60 5.3.3 改變能量給予方式實驗結論 64 5.4 電極法 66 5.5 綜合與應用 67 5.5.1 整合單層列印 67 5.5.2井字結構應用 68 第六章、結論與未來展望 72 6.1結論 72 6.2未來展望 73 參考資料 74 附錄 77 | - |
dc.language.iso | zh_TW | - |
dc.title | DLP列印單層厚度控制探討 | zh_TW |
dc.title | Study on the Single Layer Thickness Control of Digital Light Processing | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林志郎;韓斌 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Lang LIN;Pin Han | en |
dc.subject.keyword | 單層,厚度,桁架結構,光能量, | zh_TW |
dc.subject.keyword | single layers,thickness,truss structure,light energy, | en |
dc.relation.page | 81 | - |
dc.identifier.doi | 10.6342/NTU202302313 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 3.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。