請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆 | zh_TW |
| dc.contributor.advisor | Feipei Lai | en |
| dc.contributor.author | 林穎 | zh_TW |
| dc.contributor.author | Ying Lin | en |
| dc.date.accessioned | 2023-08-16T16:05:32Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | 1. Ojehagen, A., M. Danielsson, and L. Träskman-Bendz, Deliberate self-poisoning: treatment follow-up of repeaters and nonrepeaters. Acta Psychiatr Scand, 1992. 85(5): p. 370-5.
2. Bachmann, S., Epidemiology of Suicide and the Psychiatric Perspective. Int J Environ Res Public Health, 2018. 15(7). 3. Ferrari, A.J., et al., The burden attributable to mental and substance use disorders as risk factors for suicide: findings from the Global Burden of Disease Study 2010. PLoS One, 2014. 9(4): p. e91936. 4. Cheng, A.T., et al., Psychosocial and psychiatric risk factors for suicide. Case-control psychological autopsy study. Br J Psychiatry, 2000. 177: p. 360-5. 5. Bertolote, J.M., et al., Psychiatric diagnoses and suicide: revisiting the evidence. Crisis, 2004. 25(4): p. 147-55. 6. Bender, D.S., et al., Treatment utilization by patients with personality disorders. Am J Psychiatry, 2001. 158(2): p. 295-302. 7. Lieb, K., et al., Borderline personality disorder. Lancet, 2004. 364(9432): p. 453-61. 8. Van Orden, K.A., et al., The interpersonal theory of suicide. Psychol Rev, 2010. 117(2): p. 575-600. 9. Mann, J.J. and M.M. Rizk, A Brain-Centric Model of Suicidal Behavior. Am J Psychiatry, 2020. 177(10): p. 902-916. 10. Lee, H., et al., The influence of poverty attribution on attitudes toward suicide and suicidal thought: A cross-national comparison between South Korean, Japanese, and American populations. Compr Psychiatry, 2021. 109: p. 152259. 11. van Heeringen, K., Stress–Diathesis Model of Suicidal Behavior, in The Neurobiological Basis of Suicide, Y. Dwivedi, Editor. 2012, CRC Press/Taylor & Francis© 2012 by Taylor & Francis Group, LLC.: Boca Raton (FL). 12. Isometsä, E., Suicidal behaviour in mood disorders--who, when, and why? Can J Psychiatry, 2014. 59(3): p. 120-30. 13. McHugh, C.M., et al., Association between suicidal ideation and suicide: meta-analyses of odds ratios, sensitivity, specificity and positive predictive value. BJPsych Open, 2019. 5(2): p. e18. 14. Strosahl, K.D., M.M. Linehan, and J.A. Chiles, Will the real social desirability please stand up? Hopelessness, depression, social desirability, and the prediction of suicidal behavior. J Consult Clin Psychol, 1984. 52(3): p. 449-57. 15. Klonsky, E.D., A.M. May, and B.Y. Saffer, Suicide, Suicide Attempts, and Suicidal Ideation. Annu Rev Clin Psychol, 2016. 12: p. 307-30. 16. Wu, C.Y., et al., Validation of the Chinese SAD PERSONS Scale to predict repeated self-harm in emergency attendees in Taiwan. BMC Psychiatry, 2014. 14: p. 44. 17. Lin, C.J., et al., The characteristics, management, and aftercare of patients with suicide attempts who attended the emergency department of a general hospital in northern Taiwan. J Chin Med Assoc, 2014. 77(6): p. 317-24. 18. Turecki, G. and D.A. Brent, Suicide and suicidal behaviour. Lancet, 2016. 387(10024): p. 1227-39. 19. Wu, C.Y., et al., The impact of quality and quantity of social support on help-seeking behavior prior to deliberate self-harm. Gen Hosp Psychiatry, 2011. 33(1): p. 37-44. 20. Chen, I.M., et al., Risk factors of suicide mortality among multiple attempters: A national registry study in Taiwan. J Formos Med Assoc, 2016. 115(5): p. 364-71. 21. Meerwijk, E.L., et al., Direct versus indirect psychosocial and behavioural interventions to prevent suicide and suicide attempts: a systematic review and meta-analysis. Lancet Psychiatry, 2016. 3(6): p. 544-54. 22. Storebø, O.J., et al., Psychological therapies for people with borderline personality disorder. Cochrane Database Syst Rev, 2020. 5(5): p. Cd012955. 23. Linehan, M.M., Cognitive-behavioral treatment of borderline personality disorder. 1993, New York, NY: Guilford Publications. 24. Chang, T.H., et al., Adapting dialectical behavior therapy in Mandarin-speaking Chinese patients with borderline personality disorder: An open pilot trial in Taiwan. Asia Pac Psychiatry, 2022. 14(1): p. e12451. 25. Stoffers-Winterling, J.M., et al., Perspectives on Dialectical Behavior Therapy and Mentalization-Based Therapy for Borderline Personality Disorder: Same, Different, Complementary? Psychol Res Behav Manag, 2022. 15: p. 3179-3189. 26. de Aguiar, K.R., et al., The impact of mindfulness on suicidal behavior: a systematic review. Trends Psychiatry Psychother, 2022. 44: p. e20210316. 27. Nayda, D.M. and M.K.T. Takarangi, The cost of being absent: Is meta-awareness of mind-wandering related to depression symptom severity, rumination tendencies and trauma intrusions? J Affect Disord, 2021. 292: p. 131-138. 28. Harned, M.S., K.E. Korslund, and M.M. Linehan, A pilot randomized controlled trial of Dialectical Behavior Therapy with and without the Dialectical Behavior Therapy Prolonged Exposure protocol for suicidal and self-injuring women with borderline personality disorder and PTSD. Behav Res Ther, 2014. 55: p. 7-17. 29. Harned, M.S., et al., Does Adding the Dialectical Behavior Therapy Prolonged Exposure (DBT PE) Protocol for PTSD to DBT Improve Outcomes in Public Mental Health Settings? A Pilot Nonrandomized Effectiveness Trial With Benchmarking. Behav Ther, 2021. 52(3): p. 639-655. 30. Kuhfuß, M., et al., Somatic experiencing - effectiveness and key factors of a body-oriented trauma therapy: a scoping literature review. Eur J Psychotraumatol, 2021. 12(1): p. 1929023. 31. Payne, P., P.A. Levine, and M.A. Crane-Godreau, Somatic experiencing: using interoception and proprioception as core elements of trauma therapy. Front Psychol, 2015. 6: p. 93. 32. Nutt, D., S. Wilson, and L. Paterson, Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci, 2008. 10(3): p. 329-36. 33. Hsiao, S.H., et al., Persistent Depressive Disorder-Related Effect of Sleep Disorder on the Highest Risk of Suicide in Taiwan, 2000-2015. Int J Environ Res Public Health, 2022. 19(20). 34. Indic, P., et al., Multi-scale motility amplitude associated with suicidal thoughts in major depression. PLoS One, 2012. 7(6): p. e38761. 35. McGowan, N.M., et al., Actigraphic patterns, impulsivity and mood instability in bipolar disorder, borderline personality disorder and healthy controls. Acta Psychiatr Scand, 2020. 141(4): p. 374-384. 36. Rumble, M.E., et al., The relationship of person-specific eveningness chronotype, greater seasonality, and less rhythmicity to suicidal behavior: A literature review. J Affect Disord, 2018. 227: p. 721-730. 37. Rumble, M.E., et al., An exploratory analysis of the association of circadian rhythm dysregulation and insomnia with suicidal ideation over the course of treatment in individuals with depression, insomnia, and suicidal ideation. J Clin Sleep Med, 2020. 16(8): p. 1311-1319. 38. Ballard, E.D., et al., Nocturnal Wakefulness Is Associated With Next-Day Suicidal Ideation in Major Depressive Disorder and Bipolar Disorder. J Clin Psychiatry, 2016. 77(6): p. 825-31. 39. Bernert, R.A., et al., Objectively Assessed Sleep Variability as an Acute Warning Sign of Suicidal Ideation in a Longitudinal Evaluation of Young Adults at High Suicide Risk. J Clin Psychiatry, 2017. 78(6): p. e678-e687. 40. Kim, H.G., et al., Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig, 2018. 15(3): p. 235-245. 41. McFarlane, A., et al., Effect of sertraline on the recovery rate of cardiac autonomic function in depressed patients after acute myocardial infarction. Am Heart J, 2001. 142(4): p. 617-23. 42. Porges, S.W., Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 1995. 32(4): p. 301-18. 43. Geisler, F.C., et al., Cardiac vagal tone is associated with social engagement and self-regulation. Biol Psychol, 2013. 93(2): p. 279-86. 44. Adolph, D., et al., High frequency heart rate variability: Evidence for a transdiagnostic association with suicide ideation. Biol Psychol, 2018. 138: p. 165-171. 45. Rottenberg, J., et al., Cardiac vagal control in the severity and course of depression: the importance of symptomatic heterogeneity. J Affect Disord, 2007. 103(1-3): p. 173-9. 46. Kemp, A.H., et al., Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry, 2010. 67(11): p. 1067-74. 47. Gupta, M.A., Review of somatic symptoms in post-traumatic stress disorder. Int Rev Psychiatry, 2013. 25(1): p. 86-99. 48. Bryant, R.A., et al., Posttraumatic intrusive symptoms across psychiatric disorders. J Psychiatr Res, 2011. 45(6): p. 842-7. 49. Kapfhammer, H.P., Acute and long-term mental and physical sequelae in the aftermath of traumatic exposure - some remarks on "the body keeps the score". Psychiatr Danub, 2018. 30(3): p. 254-272. 50. Spiller, T.R., et al., Symptoms of posttraumatic stress disorder in a clinical sample of refugees: a network analysis. Eur J Psychotraumatol, 2017. 8(sup3): p. 1318032. 51. Boffa, J.W., et al., Investigating the role of hopelessness in the relationship between PTSD symptom change and suicidality. J Affect Disord, 2018. 225: p. 298-301. 52. Panagioti, M., P. Gooding, and N. Tarrier, Post-traumatic stress disorder and suicidal behavior: A narrative review. Clin Psychol Rev, 2009. 29(6): p. 471-82. 53. Agorastos, A. and M. Olff, Traumatic stress and the circadian system: neurobiology, timing and treatment of posttraumatic chronodisruption. Eur J Psychotraumatol, 2020. 11(1): p. 1833644. 54. Thome, J., et al., Contrasting Associations Between Heart Rate Variability and Brainstem-Limbic Connectivity in Posttraumatic Stress Disorder and Its Dissociative Subtype: A Pilot Study. Front Behav Neurosci, 2022. 16: p. 862192. 55. Davoudi, M., et al., Association of suicide with short-term exposure to air pollution at different lag times: A systematic review and meta-analysis. Sci Total Environ, 2021. 771: p. 144882. 56. Maes, M., et al., Synchronized annual rhythms in violent suicide rate, ambient temperature and the light-dark span. Acta Psychiatr Scand, 1994. 90(5): p. 391-6. 57. Akkaya-Kalayci, T., et al., The effect of seasonal changes and climatic factors on suicide attempts of young people. BMC Psychiatry, 2017. 17(1): p. 365. 58. Lee, H.C., et al., Suicide rates and the association with climate: a population-based study. J Affect Disord, 2006. 92(2-3): p. 221-6. 59. Lin, H.C., et al., Seasonality and climatic associations with violent and nonviolent suicide: a population-based study. Neuropsychobiology, 2008. 57(1-2): p. 32-7. 60. Tsai, J.F. and W. Cho, Temperature change dominates the suicidal seasonality in Taiwan: a time-series analysis. J Affect Disord, 2012. 136(3): p. 412-8. 61. Tsai, S.S., et al., Association between ozone air pollution levels and hospitalizations for depression in Taipei: a time-stratified case-crossover study. J Toxicol Environ Health A, 2020. 83(17-18): p. 596-603. 62. Yang, C.Y., Y.T. Huang, and H.F. Chiu, Does ambient ozone air pollution trigger suicide attempts? A case cross-over analysis in Taipei. J Toxicol Environ Health A, 2019. 82(10): p. 638-644. 63. Beck, A.T. and M.E. Weishaar, Suicide risk assessment and prediction. Crisis, 1990. 11(2): p. 22-30. 64. Joiner, T.E., Jr. and M.D. Rudd, Disentangling the interrelations between hopelessness, loneliness, and suicidal ideation. Suicide Life Threat Behav, 1996. 26(1): p. 19-26. 65. Lamis, D.A., et al., Nightmares and suicide risk in psychiatric patients: The roles of hopelessness and male depressive symptoms. Psychiatry Res, 2018. 264: p. 20-25. 66. Roeder, K.M. and D.A. Cole, Simultaneous Longitudinal Examination of Hopelessness, Thwarted Belongingness, and Perceived Burdensomeness as Predictors of Suicide Ideation. Suicide Life Threat Behav, 2019. 49(4): p. 1058-1071. 67. Chiu, Y.C., et al., The Psychometric Properties in the Chinese Version of the Reasons for Living Inventory and the Relationship with Suicidal Behaviors Among Psychiatric Patients in Taiwan. Behav Med, 2019. 45(3): p. 197-209. 68. Wang, Y.C., et al., Coping Card Usage can Further Reduce Suicide Reattempt in Suicide Attempter Case Management Within 3-Month Intervention. Suicide Life Threat Behav, 2016. 46(1): p. 106-20. 69. Orbach, I., et al., Mental pain: a multidimensional operationalization and definition. Suicide Life Threat Behav, 2003. 33(3): p. 219-30. 70. Verrocchio, M.C., et al., Mental Pain and Suicide: A Systematic Review of the Literature. Front Psychiatry, 2016. 7: p. 108. 71. Holmes, E.A., et al., Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry, 2020. 7(6): p. 547-560. 72. Gunnell, D., et al., Suicide risk and prevention during the COVID-19 pandemic. Lancet Psychiatry, 2020. 7(6): p. 468-471. 73. Zalsman, G., et al., Suicide prevention strategies revisited: 10-year systematic review. Lancet Psychiatry, 2016. 3(7): p. 646-59. 74. Vallance, J.K., et al., Associations of objectively-assessed physical activity and sedentary time with depression: NHANES (2005-2006). Prev Med, 2011. 53(4-5): p. 284-8. 75. Schuch, F., et al., Physical activity and sedentary behavior in people with major depressive disorder: A systematic review and meta-analysis. J Affect Disord, 2017. 210: p. 139-150. 76. Kleiman, E.M., et al., Digital phenotyping of suicidal thoughts. Depress Anxiety, 2018. 35(7): p. 601-608. 77. Sels, L., et al., SIMON: A Digital Protocol to Monitor and Predict Suicidal Ideation. Front Psychiatry, 2021. 12: p. 554811. 78. McGillivray, L., et al., Three-arm randomised controlled trial of an m-health app and digital engagement strategy for improving treatment adherence and reducing suicidal ideation in young people: study protocol. BMJ Open, 2022. 12(5): p. e058584. 79. Büscher, R., et al., Internet-Based Cognitive Behavioral Therapy to Reduce Suicidal Ideation: A Systematic Review and Meta-analysis. JAMA Netw Open, 2020. 3(4): p. e203933. 80. Pospos, S., et al., Web-Based Tools and Mobile Applications To Mitigate Burnout, Depression, and Suicidality Among Healthcare Students and Professionals: a Systematic Review. Acad Psychiatry, 2018. 42(1): p. 109-120. 81. Firth, J., et al., Can smartphone mental health interventions reduce symptoms of anxiety? A meta-analysis of randomized controlled trials. J Affect Disord, 2017. 218: p. 15-22. 82. Witt, K., et al., Effectiveness of online and mobile telephone applications ('apps') for the self-management of suicidal ideation and self-harm: a systematic review and meta-analysis. BMC Psychiatry, 2017. 17(1): p. 297. 83. Torok, M., et al., Suicide prevention using self-guided digital interventions: a systematic review and meta-analysis of randomised controlled trials. Lancet Digit Health, 2020. 2(1): p. e25-e36. 84. Franklin, J.C., et al., Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychol Bull, 2017. 143(2): p. 187-232. 85. Passos, I.C., et al., Identifying a clinical signature of suicidality among patients with mood disorders: A pilot study using a machine learning approach. J Affect Disord, 2016. 193: p. 109-16. 86. Bernert, R.A., et al., Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations. Int J Environ Res Public Health, 2020. 17(16). 87. Haines-Delmont, A., et al., Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study. JMIR Mhealth Uhealth, 2020. 8(6): p. e15901. 88. Cho, S.E., Z.W. Geem, and K.S. Na, Development of a Suicide Prediction Model for the Elderly Using Health Screening Data. Int J Environ Res Public Health, 2021. 18(19). 89. Kim, S. and K. Lee, The Effectiveness of Predicting Suicidal Ideation through Depressive Symptoms and Social Isolation Using Machine Learning Techniques. J Pers Med, 2022. 12(4). 90. Bar, M., Predictions in the brain using our past to generate a future / edited by Moshe Bar. 2011, New York ;: Oxford University Press. 91. Dayan, P., et al., The Helmholtz machine. Neural Comput, 1995. 7(5): p. 889-904. 92. Mazzaglia, P., et al., The Free Energy Principle for Perception and Action: A Deep Learning Perspective. Entropy (Basel), 2022. 24(2). 93. Allen, M. and M. Tsakiri, The body as first prior: Interoceptive predictive processing and the primacy of self-models, in The interoceptive mind: From homeostasis to awareness. 2019, Oxford University Press: New York, NY, US. p. 27-45. 94. Rao, R.P. and D.H. Ballard, Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci, 1999. 2(1): p. 79-87. 95. Parr, T. and K.J. Friston, The Anatomy of Inference: Generative Models and Brain Structure. Frontiers in Computational Neuroscience, 2018. 12. 96. Parr, T., G. Rees, and K.J. Friston, Computational Neuropsychology and Bayesian Inference. Front Hum Neurosci, 2018. 12: p. 61. 97. Sedley, W., et al., An Integrative Tinnitus Model Based on Sensory Precision. Trends Neurosci, 2016. 39(12): p. 799-812. 98. Hullfish, J., W. Sedley, and S. Vanneste, Prediction and perception: Insights for (and from) tinnitus. Neurosci Biobehav Rev, 2019. 102: p. 1-12. 99. Hauke, G. and C. Lohr, Piloting the Update: The Use of Therapeutic Relationship for Change - A Free Energy Account. Front Psychol, 2022. 13: p. 842488. 100. Barrett, L.F., Emotions are real. Emotion, 2012. 12(3): p. 413-29. 101. Barrett, L.F. and A.B. Satpute, Historical pitfalls and new directions in the neuroscience of emotion. Neurosci Lett, 2019. 693: p. 9-18. 102. Shaffer, C., et al., Allostasis, Action, and Affect in Depression: Insights from the Theory of Constructed Emotion. Annu Rev Clin Psychol, 2022. 18: p. 553-580. 103. Friston, K., The free-energy principle: a unified brain theory? Nat Rev Neurosci, 2010. 11(2): p. 127-38. 104. Holmes, J. and T. Nolte, "Surprise" and the Bayesian Brain: Implications for Psychotherapy Theory and Practice. Front Psychol, 2019. 10: p. 592. 105. Demekas, D., T. Parr, and K.J. Friston, An Investigation of the Free Energy Principle for Emotion Recognition. Front Comput Neurosci, 2020. 14: p. 30. 106. Neal, R.M. and G.E. Hinton, A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants, in Learning in Graphical Models, M.I. Jordan, Editor. 1998, Springer Netherlands: Dordrecht. p. 355-368. 107. Carhart-Harris, R.L. and K.J. Friston, REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacol Rev, 2019. 71(3): p. 316-344. 108. Cieri, F., et al., Brain Entropy During Aging Through a Free Energy Principle Approach. Front Hum Neurosci, 2021. 15: p. 647513. 109. McEwen, B.S. and J.C. Wingfield, What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav, 2010. 57(2): p. 105-11. 110. McEwen, B.S. and J.C. Wingfield, The concept of allostasis in biology and biomedicine. Horm Behav, 2003. 43(1): p. 2-15. 111. Schulkin, J. and P. Sterling, Allostasis: A Brain-Centered, Predictive Mode of Physiological Regulation. Trends Neurosci, 2019. 42(10): p. 740-752. 112. Buckwalter, J.G., et al., Allostatic Load as a Complex Clinical Construct: A Case-Based Computational Modeling Approach. Complexity, 2016. 21(Suppl 1): p. 291-306. 113. Seeman, T.E., et al., Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4770-5. 114. Guidi, J., et al., Allostatic Load and Its Impact on Health: A Systematic Review. Psychotherapy and Psychosomatics, 2020. 90(1): p. 11-27. 115. Danese, A. and B.S. McEwen, Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 2012. 106(1): p. 29-39. 116. Harvey, A.R., Injury, illness, and emotion: A review of the motivational continuum from trauma through recovery from an ecological perspective. Brain Behav Immun Health, 2023. 27: p. 100586. 117. Guidi, J. and G.A. Fava, The Clinical Science of Euthymia: A Conceptual Map. Psychother Psychosom, 2022. 91(3): p. 156-167. 118. Kim, D.J. and B.K. Min, Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J, 2020. 18: p. 1761-1773. 119. Lanius, R.A., B.A. Terpou, and M.C. McKinnon, The sense of self in the aftermath of trauma: lessons from the default mode network in posttraumatic stress disorder. Eur J Psychotraumatol, 2020. 11(1): p. 1807703. 120. Redshaw, J. and P.A. Ganea, Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny. Philos Trans R Soc Lond B Biol Sci, 2022. 377(1866): p. 20210333. 121. Raichle, M.E., The brain's default mode network. Annu Rev Neurosci, 2015. 38: p. 433-47. 122. Dohmatob, E., G. Dumas, and D. Bzdok, Dark control: The default mode network as a reinforcement learning agent. Hum Brain Mapp, 2020. 41(12): p. 3318-3341. 123. Satpute, A.B. and K.A. Lindquist, The Default Mode Network's Role in Discrete Emotion. Trends Cogn Sci, 2019. 23(10): p. 851-864. 124. Vago, D.R. and F. Zeidan, The brain on silent: mind wandering, mindful awareness, and states of mental tranquility. Ann N Y Acad Sci, 2016. 1373(1): p. 96-113. 125. Lejeune, A., et al., Artificial intelligence and suicide prevention: a systematic review. Eur Psychiatry, 2022. 65(1): p. 1-22. 126. Tsai, C.H., et al., Panic Attack Prediction Using Wearable Devices and Machine Learning: Development and Cohort Study. JMIR Med Inform, 2022. 10(2): p. e33063. 127. Harrison, K., Compassion Fatigue: Understanding Empathy. Vet Clin North Am Small Anim Pract, 2021. 51(5): p. 1041-1051. 128. Isobel, S. and G. Angus-Leppan, Neuro-reciprocity and vicarious trauma in psychiatrists. Australas Psychiatry, 2018. 26(4): p. 388-390. 129. Marshall, M., Long COVID: answers emerge on how many people get better. Nature, 2023. 619(7968): p. 20. 130. Boldrini, M., P.D. Canoll, and R.S. Klein, How COVID-19 Affects the Brain. JAMA Psychiatry, 2021. 78(6): p. 682-683. 131. Hampshire, A., et al., Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine, 2021. 39: p. 101044. 132. Lin, Y., et al., Neurobiological mechanisms of dialectical behavior therapy and Morita therapy, two psychotherapies inspired by Zen. Journal of Neural Transmission, 2023. 133. Chien, C.-p., The Cognitive Group Therapy for Panic Disorder Patients in Taiwan : Commonality with Morita Therapy. 森田療法学会雑誌 = Journal of Morita therapy, 2000. 11(1): p. 96-101. 134. Wu, Y.-C. and H.-W. Teng, Tropics, Neurasthenia, and Japanese Colonizers: The Psychiatric Discourses in Late Colonial Taiwan. Taiwan: A Radical Quarterly in Social Studies, 2004(54): p. 61-103. 135. Nakamura, M., H. Niimura, and K. Kitanishi, A century of Morita therapy: What has and has not changed. Asia-Pacific Psychiatry. n/a(n/a): p. e12511. 136. Cohen, H., et al., Impaired heart rate variability in euthymic bipolar patients. Bipolar Disord, 2003. 5(2): p. 138-43. 137. Rottenberg, J., et al., Respiratory sinus arrhythmia as a predictor of outcome in major depressive disorder. J Affect Disord, 2002. 71(1-3): p. 265-72. 138. Rottenberg, J., et al., RSA fluctuation in major depressive disorder. Psychophysiology, 2007. 44(3): p. 450-8. 139. Howells, F.M., et al., Mindfulness based cognitive therapy may improve emotional processing in bipolar disorder: pilot ERP and HRV study. Metab Brain Dis, 2014. 29(2): p. 367-75. 140. Kang, G.E., et al., Objective measurement of sleep, heart rate, heart rate variability, and physical activity in suicidality: A systematic review. J Affect Disord, 2020. 273: p. 318-327. 141. Wilson, S.T., et al., Heart rate variability and suicidal behavior. Psychiatry Res, 2016. 240: p. 241-247. 142. Hopp, H., et al., High cardiac vagal control protects against future depressive symptoms under conditions of high social support. Biol Psychol, 2013. 93(1): p. 143-9. 143. van Hoorn, A.C., Could affect regulation via vagal nerve self- stimulation be a maintaining factor in non-suicidal self-harm? Med Hypotheses, 2020. 136: p. 109498. 144. Porges, S.W., The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med, 2009. 76 Suppl 2(Suppl 2): p. S86-90. 145. Porges, S.W., The polyvagal perspective. Biol Psychol, 2007. 74(2): p. 116-43. 146. Porges, S.W., Polyvagal Theory: A Science of Safety. Front Integr Neurosci, 2022. 16: p. 871227. 147. Bao, W., et al., Alterations in large-scale functional networks in adult posttraumatic stress disorder: A systematic review and meta-analysis of resting-state functional connectivity studies. Neurosci Biobehav Rev, 2021. 131: p. 1027-1036. 148. Barredo, J., et al., Translating Interventional Neuroscience to Suicide: It's About Time. Biol Psychiatry, 2021. 89(11): p. 1073-1083. 149. Nowak, U., et al., Using the Ball-in-Bowl Metaphor to Outline an Integrative Framework for Understanding Dysregulated Emotion. Front Psychiatry, 2021. 12: p. 626698. 150. Singleton, S.P., et al., Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain's control energy landscape. Nat Commun, 2022. 13(1): p. 5812. 151. Carhart-Harris, R., et al., The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience, 2014. 8. 152. Candia-Rivera, D., et al., Cardiac sympathetic-vagal activity initiates a functional brain-body response to emotional arousal. Proc Natl Acad Sci U S A, 2022. 119(21): p. e2119599119. 153. Josselyn, S.A. and S. Tonegawa, Memory engrams: Recalling the past and imagining the future. Science, 2020. 367(6473): p. eaaw4325. 154. Wilkinson, S., G. Dodgson, and K. Meares, Predictive Processing and the Varieties of Psychological Trauma. Frontiers in Psychology, 2017. 8. 155. Linson, A. and K. Friston, Reframing PTSD for computational psychiatry with the active inference framework. Cogn Neuropsychiatry, 2019. 24(5): p. 347-368. 156. Linson, A., T. Parr, and K.J. Friston, Active inference, stressors, and psychological trauma: A neuroethological model of (mal)adaptive explore-exploit dynamics in ecological context. Behav Brain Res, 2020. 380: p. 112421. 157. Krupnik, V., Trauma or Drama: A Predictive Processing Perspective on the Continuum of Stress. Front Psychol, 2020. 11: p. 1248. 158. Kube, T., et al., Rethinking post-traumatic stress disorder – A predictive processing perspective. Neuroscience & Biobehavioral Reviews, 2020. 113: p. 448-460. 159. Khalsa, S.S. and J.S. Feinstein, The somatic error hypothesis of anxiety, in The Interoceptive Mind: From Homeostasis to Awareness, M. Tsakiris and H. De Preester, Editors. 2018, Oxford University Press. p. 0. 160. Leone, G., et al., Altered predictive control during memory suppression in PTSD. Nature Communications, 2022. 13(1): p. 3300. 161. Corlett, P.R., et al., Hallucinations and Strong Priors. Trends in Cognitive Sciences, 2019. 23(2): p. 114-127. 162. Lyndon, S. and P.R. Corlett, Hallucinations in posttraumatic stress disorder: Insights from predictive coding. J Abnorm Psychol, 2020. 129(6): p. 534-543. 163. Levine, P.A., In an unspoken voice : how the body releases trauma and restores goodness / Peter A. Levine ; foreword by Gabor Maté. How the body releases trauma and restores goodness. 2010, Berkeley, California: North Atlantic Books. 164. Levine, P.A., Trauma and Memory: Brain and Body in a Search for the Living Past: A Practical Guide for Understanding and Working with Traumatic Memory. 2015: North Atlantic Books. 165. Levine, P.A. and A. Frederick, Waking the Tiger: Healing Trauma: The Innate Capacity to Transform Overwhelming Experiences. 1997: North Atlantic Books. 166. Lin, Y., et al., Resting respiratory sinus arrhythmia is related to longer hospitalization in mood-disordered repetitive suicide attempters. World J Biol Psychiatry, 2015. 16(5): p. 323-33. 167. Brian, R.M. and D. Ben-Zeev, Mobile health (mHealth) for mental health in Asia: objectives, strategies, and limitations. Asian J Psychiatr, 2014. 10: p. 96-100. 168. Smith, R., K.J. Friston, and C.J. Whyte, A step-by-step tutorial on active inference and its application to empirical data. J Math Psychol, 2022. 107. 169. Su, Y., et al., A deep hierarchy of predictions enables online meaning extraction in a computational model of human speech comprehension. PLoS Biol, 2023. 21(3): p. e3002046. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88861 | - |
| dc.description.abstract | 自殺問題是社會、國家及全球的重要挑戰。治療有自殺意圖或行為的個案是臨床上的挑戰。由於其高度複雜性,預測自殺的因子在短期風險上預測能力並不佳。本計畫將以改善自殺病患照護為研究目標,透過行動科技,機器學習與臨床結合,以降低自殺發生。
生理活動與情緒之間的關聯,在神經科學中,近年來由人工智慧演算法得到了不同的啟發,人類大腦不停產生預測模型,並且將此預測與實際收到的感官經驗進行抽樣觀測及比較。大腦會擷取環境中的統計規律性,形成貝氏機率模型,此種預測編碼亦會影響到代謝需求的預測,Karl Friston之自由能計算理論對神經科學帶來影響,本研究亦嘗試將理論帶到臨床,解釋心理治療之神經機制。 本研究與醫院自殺防治中心團隊協同合作,運用穿戴式裝置收集個案的生理數據與生活型態相關資料,進行數據分析及AI技術研發,並進行個案追蹤。建置資料庫之軟體及硬體資源,發展自殺防治輔助決策系統,使照護團隊得以有效照顧病人並與個案維持良好治療關係。 初步結果探討重複自殺住院病人的自主神經系統,靜止時,迷走神經活性與貝克自殺意念指數 (Beck suicide scale index) 呈正相關 (r = 0.33 P = .019)。控制其他變數後,靜止迷走神經活性與住院天數相關 (beta coefficient = 3.00; P = .030).在長期住院病人 (大於30天),有更高的迷走神經活性 (odds ratio 5.08, P = .017)。另外,亦發現治療者迷走神經活性在治療自殺個案時有更高的活性。 提出之假設用長新冠症狀 (long COVID) 造成之憂鬱自殺個案為例,活動的減少與日夜節律的變化可能與腦中預測代謝能量的失調有關。我們同時用大腦的預測編碼模型說明辯證行為治療的機轉。大腦的網路,包含預設模式網路(Default Mode Network, DMN)、杏仁核、恐懼迴路及酬賞迴路,都與大腦預測的生成相關,治療的過程以預測錯誤 (prediction errors) 信號回饋,逐步修正腦中酬賞反應及預測模型。 使用人工智慧以辨識台灣自殺個案之特徵。將建立模型以預防重複自殺,幫助臨床人員長期追蹤並掌握個案。研究者預計設計「緊急救生包」手機應用程式,在個案面臨緊急狀況時,減輕壓力與負面情緒。應用程式可進行心情及自殺意念回報,亦可提供資源,使用情形也將進行資料收集。 我們希望藉由分析遠距醫療平台的資料,可以對自殺背後複雜的神經生物學機制與因子間的互動進行闡釋,提出理論。期望此臨床研究能帶動人工智慧與自殺防治研究的創新。 | zh_TW |
| dc.description.abstract | The issue of suicide is a major challenge faced by the society, the country and the whole world. Treating patients with ideations or attempts of suicide is a clinical demanding work. Due to the high complexity of suicide, factors predicting long-term suicide risk had poor performance in predicting short-term risk. The purpose of this project is to improve the quality of medical care with smart technology. It is expected that the combination of information communication technology, machine learning and clinical work will save lives.
The neuroscientific association between physiological activity and emotions are inspired by recent progress in Artificial Intelligence and algorithms. The human brain keeps generating prediction models and simultaneously sampling, comparing with the incoming sensory information and experiences. The brain will take the statistical predictability of the environments and build a Bayesian model. The predictive coding process also participates in expecting the metabolic need. The free energy principle proposed by Karl Friston has brought great influence on neuroscience. This study also attempts to apply it to clinical practice in elucidating the neurobiological mechanism of psychotherapy. This project integrates lifestyle data and physiological information of real-world patients of suicide, using wearable devices to assist the hospital suicide prevention center to manage and track suicidal cases. We also establish a database with software and hardware resources, build a suicide decision-making system, assist the mental healthcare team effectively in taking care the patient and maintaining a good therapeutic relationship between the patients and the clinicians. The preliminary results suggest the resting vagal activity was positively associated with a higher Beck Scale for Suicidal Ideation score (r = 0.33, P < 0.019). Stepwise multiple regression analysis showed a significant correlation between resting vagal activity and hospitalization length after adjusting other variables (beta coefficient = 3.00; P < 0.030). Patients with a higher resting vagal activity had more prolonged hospitalizations (hospitalization beyond 30 days) after controlling for other variables (odds ratio = 5.08, P < 0.017). In addition, we also observed the higher vagal tone in therapist when interacting with suicidal patients. We propose our hypothesis using a long COVID patient with depression and suicide as an example. The reduction of activities and circadian rhythm change might be related with allostatic dysregulation in predicting energy expenditure. We also explain the mechanism of Dialectical Behavior Therapy (DBT) by the predictive coding process of the brain. The brain networks, including Default Mode Network (DMN), amygdala, fear circuitry and reward circuitry, are all related to the generation of prediction. The treatment process may involve the feedback of prediction error signals, gradually update the brain reward pathway and prediction models. The core technology is to utilize Artificial Intelligence to identify the characteristics and patterns of suicide cases in Taiwan. We would establish prediction models to prevent repetitive suicide attempts and help clinicians to track and comprehend the situation of the clients in the long term. We will develop a crisis survival mobile application to assist patients to alleviate pressure and negative emotions in case of emergency. The monitoring of mood and suicidal ideations, as well as provision of resources that can be used will be implemented via the mobile application and the record of user condition will also be collected. We hope by analyzing the data of the telemedicine platform, we may propose a better explanation of the mechanism behind the transactional characteristics of the neurobiology of suicidality and real-world clinical variables and bring innovations and advances in the fields of psychiatry and Artificial Intelligence in Taiwan. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-16T16:05:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-16T16:05:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii ABSTRACT v LIST OF FIGURES x Chapter 1. Introduction 1 1.1 Suicide 1 1.1.1 The global burden of suicide 1 1.1.2 The risks of suicide and mental illness 3 1.1.3 The complexity of suicide 4 1.1.4 Psychosocial treatment of suicide 6 1.2 The Interplay of Various Factors in Suicide 10 1.2.1 Circadian rhythm 10 1.2.2 Autonomic nervous system 12 1.2.3 The disruption of physiology and circadian rhythm by psychological trauma 14 1.2.4 Environment risk factors 15 1.2.5 Cognitive and psychological factors 16 1.3 The Application of Technology and Digital Health 17 1.3.1 The challenges after COVID-19 pandemic 17 1.3.2 Wearable devices 19 1.3.3 Internet and self-help applications 21 1.3.4 Artificial intelligence 22 1.4 The Aims of the Study 24 Chapter 2. Literature Review 26 2.1 The Link Between Algorithm, Neurobiology and Emotion 26 2.1.1 Brain as a prediction machine to reduce uncertainty 26 2.1.2 The free energy principle 29 2.2 Allostasis and Stress 31 2.3 The Default Mode Network (DMN) of Brain 33 2.4 Towards a Paradigm Shift of Assessing Repetitive Suicidal Patients 35 Chapter 3. Methods 38 3.1 Suicide Prevention Decision Support System 38 3.2 The “Emotion Garden” Application 41 3.3 The Current Study 43 3.3.1 Participants 43 3.3.2 Interview and questionnaires 44 3.3.3 Procedures 45 3.3.4 Data storage 46 3.3.5 Prediction model 47 3.4 The Way Forward 50 Chapter 4. Results 53 4.1 The Role of Vagal Activity in Suicide 53 4.1.2 Measuring vagal tone in therapist treating complex trauma 57 4.2 The Management of Suicide Using Wearable Devices and Mobile App 60 4.2.1 Monitoring the physiological change with neuropsychiatric manifestations after COVID-19 60 4.2.2 The emotion garden App 63 4.3 Neurobiological Mechanisms of Dialectical Behavior Therapy 66 4.3.1 The predictive coding account of pathophysiology 67 4.3.2 Updating the predictions as the therapeutic mechanism 67 4.3.3 Communication between the client and the therapist and cultural contexts 73 Chapter 5. Discussion 76 5.1 The Autonomic Nervous System (ANS) and the Implication of the Suicidal Patients 76 5.1.1 The vagus nerve activity 76 5.1.2 Polyvagal theory 78 5.2 Linking the Dots Together-Treatment Implications 82 5.2.1 The implications of trauma aftereffects 82 5.2.2 Treatment of suicidal patients 84 5.2.3 Predictive coding in traumatized patients 88 5.2.3.1 PTSD as aberrant prediction process of the brain’s generative model 88 5.2.3.2 Somatic experiencing and the renegotiation process 89 5.3 Possible Barriers and Limitations 93 Chapter 6. Conclusion 95 REFERENCES 98 附錄 110 | - |
| dc.language.iso | en | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 自殺 | zh_TW |
| dc.subject | 預測編碼 | zh_TW |
| dc.subject | 決策系統 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 智慧醫療 | zh_TW |
| dc.subject | 辯證行為治療 | zh_TW |
| dc.subject | Dialectical Behavior Therapy | en |
| dc.subject | Suicide | en |
| dc.subject | Artificial Intelligence | en |
| dc.subject | Machine Learning | en |
| dc.subject | Predictive Coding | en |
| dc.subject | Decision Support System | en |
| dc.subject | eHealth | en |
| dc.title | 以生活型態資料與醫療資訊輔助之自殺防治決策系統概念架構 | zh_TW |
| dc.title | A Conceptual Framework for Suicide Prevention Decision Support System Based on Lifestyle, Environment and Medical Data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 歐陽彥正;趙坤茂;汪大暉;葉德輝;簡意玲;張志豪;吳佳儀;何弘能 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Jen Oyang;Kun-Mao Chao;Ta-Hui Wang;Te-Huei Yeh;Yi-Ling Chien;Chih-Hao Chang;Chia-Yi Wu;Hong-Nerng Ho | en |
| dc.subject.keyword | 自殺,機器學習,預測編碼,人工智慧,決策系統,智慧醫療,辯證行為治療, | zh_TW |
| dc.subject.keyword | Suicide,Artificial Intelligence,Machine Learning,Predictive Coding,Decision Support System,eHealth,Dialectical Behavior Therapy, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202302523 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2028-07-31 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
