請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88851完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉光勝 | zh_TW |
| dc.contributor.advisor | Kuang-Sheng Yeh | en |
| dc.contributor.author | 李敏怡 | zh_TW |
| dc.contributor.author | Megan Lee Min Yi | en |
| dc.date.accessioned | 2023-08-15T18:03:02Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | References
1. Fleming A. Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. Rev Infect Dis. 1980;2(1):129-39. 2. Abraham EP, Chain E, Fletcher CM, Florey HW, Gardner AD, Heatley NG, et al. Further observations on penicillin. 1941. Eur J Clin Pharmacol. 1992;42(1):3-9. 3. Armstrong GL, Conn LA, Pinner RW. Trends in infectious disease mortality in the United States during the 20th century. JAMA. 1999;281(1):61-6; doi: 10.1001/jama.281.1.61. 4. Collaborators GBDAR. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-48; doi: 10.1016/S0140-6736(22)02185-7. 5. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. 2016. 6. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988;10(4):677-8. 7. Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the action of penicillin. P Soc Exp Biol Med. 1942;51(3):386-9. 8. Kirby WM. Extraction of a highly potent penicillin inactivator from penicillin resistant Staphylococci. Science. 1944;99(2579):452-3; doi: 10.1126/science.99.2579.452. 9. Stamm WE, McKevitt M, Roberts PL, White NJ. Natural history of recurrent urinary tract infections in women. Rev Infect Dis. 1991;13(1):77-84; doi: 10.1093/clinids/13.1.77. 10. Hall JL, Holmes MA, Baines SJ. Prevalence and antimicrobial resistance of canine urinary tract pathogens. Vet Rec. 2013;173(22):549; doi: 10.1136/vr.101482. 11. Johnson JR, Clabots C. Sharing of virulent Escherichia coli clones among household members of a woman with acute cystitis. Clin Infect Dis. 2006;43(10):e101-8; doi: 10.1086/508541. 12. Johnson JR, Clabots C, Kuskowski MA. Multiple-host sharing, long-term persistence, and virulence of Escherichia coli clones from human and animal household members. J Clin Microbiol. 2008;46(12):4078-82; doi: 10.1128/JCM.00980-08. 13. Marques C, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, Gama LT, et al. Evidence of sharing of Klebsiella pneumoniae strains between healthy companion animals and cohabiting humans. J Clin Microbiol. 2019;57(6); doi: 10.1128/JCM.01537-18. 14. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903-10; doi: 10.2147/IDR.S234610. 15. Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial resistance. JAMA. 2016;316(11):1193-204; doi: 10.1001/jama.2016.11764. 16. Hofer U. The cost of antimicrobial resistance. Nat Rev Microbiol. 2019;17(1):3; doi: 10.1038/s41579-018-0125-x. 17. Antimicrobial Resistance C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55; doi: 10.1016/S0140-6736(21)02724-0. 18. Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66; doi: 10.1016/S1473-3099(18)30605-4. 19. Boolchandani M, D'Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet. 2019;20(6):356-70; doi: 10.1038/s41576-019-0108-4. 20. Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145; doi: 10.3389/fpubh.2014.00145. 21. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325(5944):1089-93; doi: 10.1126/science.1176667. 22. Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev. 2011;24(1):71-109; doi: 10.1128/CMR.00030-10. 23. Deusenbery C, Wang Y, Shukla A. Recent innovations in bacterial infection detection and treatment. ACS Infect Dis. 2021;7(4):695-720; doi: 10.1021/acsinfecdis.0c00890. 24. Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis. 2001;32 Suppl 1:S9-S15; doi: 10.1086/319370. 25. Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8); doi: 10.1101/cshperspect.a025247. 26. Pandey N, Cascella M. β-lactam antibiotics. In: StatPearls. Treasure Island (FL); 2023. 27. Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. Extended-spectrum β-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control. 2019;8:39; doi: 10.1186/s13756-019-0488-4. 28. Arumugham VB, Gujarathi R, Cascella M. Third generation cephalosporins. In: StatPearls. Treasure Island (FL); 2022. 29. Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, et al. Thienamycin, a new β-lactam antibiotic. I. discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo). 1979;32(1):1-12; doi: 10.7164/antibiotics.32.1. 30. Brogden RN, Heel RC. Aztreonam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1986;31(2):96-130; doi: 10.2165/00003495-198631020-00002. 31. Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci. 2018;5:16; doi: 10.3389/fmolb.2018.00016. 32. Olivares J, Bernardini A, Garcia-Leon G, Corona F, M BS, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol. 2013;4:103; doi: 10.3389/fmicb.2013.00103. 33. Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One. 2008;3(2):e1619; doi: 10.1371/journal.pone.0001619. 34. Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol. 2013;303(6-7):287-92; doi: 10.1016/j.ijmm.2013.02.009. 35. Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in gram-negative bacteria. Essays Biochem. 2017;61(1):49-59; doi: 10.1042/EBC20160063. 36. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482-501; doi: 10.3934/microbiol.2018.3.482. 37. Dever LA, Dermody TS. Mechanisms of bacterial resistance to antibiotics. Arch Intern Med. 1991;151(5):886-95. 38. Martínez JL. Ecology and evolution of chromosomal gene transfer between environmental microorganisms and pathogens. Microbiol Spectr. 2018;6(1); doi: 10.1128/microbiolspec.MTBP-0006-2016. 39. Dantas G, Sommer MO. Context matters - the complex interplay between resistome genotypes and resistance phenotypes. Curr Opin Microbiol. 2012;15(5):577-82; doi: 10.1016/j.mib.2012.07.004. 40. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2); doi: 10.1128/microbiolspec.VMBF-0016-2015. 41. Tsai YK, Fung CP, Lin JC, Chen JH, Chang FY, Chen TL, et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2011;55(4):1485-93; doi: 10.1128/AAC.01275-10. 42. Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223-9; doi: 10.4161/viru.23724. 43. Schaenzer AJ, Wright GD. Antibiotic resistance by enzymatic modification of antibiotic targets. Trends Mol Med. 2020;26(8):768-82; doi: 10.1016/j.molmed.2020.05.001. 44. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067; doi: 10.1155/2016/2475067. 45. Pucci MJ, Dougherty TJ. Direct quantitation of the numbers of individual penicillin-binding proteins per cell in Staphylococcus aureus. J Bacteriol. 2002;184(2):588-91; doi: 10.1128/JB.184.2.588-591.2002. 46. Aryal SC, Upreti MK, Sah AK, Ansari M, Nepal K, Dhungel B, et al. Plasmid-mediated AmpC beta-lactamase CITM and DHAM genes among gram-negative clinical isolates. Infect Drug Resist. 2020;13:4249-61; doi: 10.2147/IDR.S284751. 47. Hall BG, Barlow M. Revised Ambler classification of β-lactamases. J Antimicrob Chemother. 2005;55(6):1050-1; doi: 10.1093/jac/dki130. 48. Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. 2020;8:13; doi: 10.1186/s40560-020-0429-6. 49. Toussaint KA, Gallagher JC. β-lactam/β-lactamase inhibitor combinations: from then to now. Ann Pharmacother. 2015;49(1):86-98; doi: 10.1177/1060028014556652. 50. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum β-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101; doi: 10.1016/j.sjbs.2014.08.002. 51. Rawat D, Nair D. Extended-spectrum β-lactamases in gram-negative bacteria. J Glob Infect Dis. 2010;2(3):263-74; doi: 10.4103/0974-777X.68531. 52. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933-51, table of contents; doi: 10.1128/CMR.14.4.933-951.2001. 53. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol. 2012;3:110; doi: 10.3389/fmicb.2012.00110. 54. Kakuta N, Nakano R, Nakano A, Suzuki Y, Masui T, Horiuchi S, et al. Molecular characteristics of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Japan: predominance of CTX-M-15 and emergence of hypervirulent clones. Int J Infect Dis. 2020;98:281-6; doi: 10.1016/j.ijid.2020.06.083. 55. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161-82, Table of Contents; doi: 10.1128/CMR.00036-08. 56. Oliveira C, Amador P, Prudencio C, Tomaz CT, Tavares-Ratado P, Fernandes R. ESBL and AmpC β-lactamases in clinical strains of Escherichia coli from Serra da Estrela, Portugal. Medicina (Kaunas). 2019;55(6); doi: 10.3390/medicina55060272. 57. Reuland EA, Halaby T, Hays JP, de Jongh DM, Snetselaar HD, van Keulen M, et al. Plasmid-mediated AmpC: prevalence in community-acquired isolates in Amsterdam, the Netherlands, and risk factors for carriage. PLoS One. 2015;10(1):e0113033; doi: 10.1371/journal.pone.0113033. 58. Jacoby GA, Munoz-Price LS. The new β-lactamases. N Engl J Med. 2005;352(4):380-91; doi: 10.1056/NEJMra041359. 59. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629-61; doi: 10.1128/MMBR.00078-15. 60. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178-82; doi: 10.1128/JCM.43.8.4178-4182.2005. 61. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603; doi: 10.1128/CMR.11.4.589. 62. Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL, Chang SC. Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis. 2007;45(3):284-93; doi: 10.1086/519262. 63. Pan YJ, Lin TL, Chen CT, Chen YY, Hsieh PF, Hsu CR, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep. 2015;5:15573; doi: 10.1038/srep15573. 64. Opoku-Temeng C, Kobayashi SD, DeLeo FR. Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput Struct Biotechnol J. 2019;17:1360-6; doi: 10.1016/j.csbj.2019.09.011. 65. Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018;56(9); doi: 10.1128/JCM.00776-18. 66. Liao CH, Huang YT, Hsueh PR. Multicenter surveillance of capsular serotypes, virulence genes, and antimicrobial susceptibilities of Klebsiella pneumoniae causing bacteremia in Taiwan, 2017-2019. Front Microbiol. 2022;13:783523; doi: 10.3389/fmicb.2022.783523. 67. Mohd Asri NA, Ahmad S, Mohamud R, Mohd Hanafi N, Mohd Zaidi NF, Irekeola AA, et al. Global prevalence of nosocomial multidrug-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Antibiotics (Basel). 2021;10(12); doi: 10.3390/antibiotics10121508. 68. Ssekatawa K, Byarugaba DK, Nakavuma JL, Kato CD, Ejobi F, Tweyongyere R, et al. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitals. Antimicrob Resist Infect Control. 2021;10(1):57; doi: 10.1186/s13756-021-00923-w. 69. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344-59; doi: 10.1038/s41579-019-0315-1. 70. Bagley ST. Habitat association of Klebsiella species. Infect Control. 1985;6(2):52-8; doi: 10.1017/s0195941700062603. 71. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis. 2017;65(2):208-15; doi: 10.1093/cid/cix270. 72. Young TM, Bray AS, Nagpal RK, Caudell DL, Yadav H, Zafar MA. Animal model to study Klebsiella pneumoniae gastrointestinal colonization and host-to-host transmission. Infect Immun. 2020;88(11); doi: 10.1128/IAI.00071-20. 73. Wareth G, Neubauer H. The Animal-foods-environment interface of Klebsiella pneumoniae in Germany: an observational study on pathogenicity, resistance development and the current situation. Vet Res. 2021;52(1):16; doi: 10.1186/s13567-020-00875-w. 74. Lee D, Oh JY, Sum S, Park HM. Prevalence and antimicrobial resistance of Klebsiella species isolated from clinically ill companion animals. J Vet Sci. 2021;22(2):e17; doi: 10.4142/jvs.2021.22.e17. 75. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252-75; doi: 10.1093/femsre/fux013. 76. Jalil MB, Al Atbee MYN. The prevalence of multiple drug resistance Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections. J Clin Lab Anal. 2022;36(9):e24619; doi: 10.1002/jcla.24619. 77. Nitzan O, Elias M, Chazan B, Saliba W. Urinary tract infections in patients with type 2 diabetes mellitus: review of prevalence, diagnosis, and management. Diabetes Metab Syndr Obes. 2015;8:129-36; doi: 10.2147/DMSO.S51792. 78. Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med. 2002;113 Suppl 1A:14S-9S; doi: 10.1016/s0002-9343(02)01055-0. 79. Marques C, Gama LT, Belas A, Bergstrom K, Beurlet S, Briend-Marchal A, et al. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections. BMC Vet Res. 2016;12(1):213; doi: 10.1186/s12917-016-0840-3. 80. Dowling PM. Antimicrobial therapy of urinary tract infections. Can Vet J. 1996;37(7):438-41. 81. Dorsch R, Remer C, Sauter-Louis C, Hartmann K. Feline lower urinary tract disease in a German cat population. A retrospective analysis of demographic data, causes and clinical signs. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2014;42(4):231-9. 82. Ling GV. Therapeutic strategies involving antimicrobial treatment of the canine urinary tract. J Am Vet Med Assoc. 1984;185(10):1162-4. 83. Saevik BK, Trangerud C, Ottesen N, Sorum H, Eggertsdottir AV. Causes of lower urinary tract disease in Norwegian cats. J Feline Med Surg. 2011;13(6):410-7; doi: 10.1016/j.jfms.2010.12.012. 84. Gerber B, Boretti FS, Kley S, Laluha P, Muller C, Sieber N, et al. Evaluation of clinical signs and causes of lower urinary tract disease in European cats. J Small Anim Pract. 2005;46(12):571-7; doi: 10.1111/j.1748-5827.2005.tb00288.x. 85. Dorsch R, Teichmann-Knorrn S, Sjetne Lund H. Urinary tract infection and subclinical bacteriuria in cats: A clinical update. J Feline Med Surg. 2019;21(11):1023-38; doi: 10.1177/1098612X19880435. 86. Aurich S, Prenger-Berninghoff E, Ewers C. Prevalence and antimicrobial resistance of bacterial uropathogens isolated from dogs and cats. Antibiotics (Basel). 2022;11(12); doi: 10.3390/antibiotics11121730. 87. De Briyne N, Atkinson J, Pokludova L, Borriello SP. Antibiotics used most commonly to treat animals in Europe. Vet Rec. 2014;175(13):325; doi: 10.1136/vr.102462. 88. Riwu KHP, Effendi MH, Rantam FA, Khairullah AR, Widodo A. A review: virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Vet World. 2022;15(9):2172-9; doi: 10.14202/vetworld.2022.2172-2179. 89. Clegg S, Murphy CN. Epidemiology and virulence of Klebsiella pneumoniae. Microbiol Spectr. 2016;4(1); doi: 10.1128/microbiolspec.UTI-0005-2012. 90. Schembri MA, Blom J, Krogfelt KA, Klemm P. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun. 2005;73(8):4626-33; doi: 10.1128/IAI.73.8.4626-4633.2005. 91. Taylor PW. Bactericidal and bacteriolytic activity of serum against gram-negative bacteria. Microbiol Rev. 1983;47(1):46-83; doi: 10.1128/mr.47.1.46-83.1983. 92. Holden VI, Breen P, Houle S, Dozois CM, Bachman MA. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio. 2016;7(5); doi: 10.1128/mBio.01397-16. 93. Zhu J, Wang T, Chen L, Du H. Virulence factors in hypervirulent Klebsiella pneumoniae. Front Microbiol. 2021;12:642484; doi: 10.3389/fmicb.2021.642484. 94. Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives. J Intern Med. 2020;287(3):283-300; doi: 10.1111/joim.13007. 95. Liu YC, Cheng DL, Lin CL. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med. 1986;146(10):1913-6. 96. Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun. 2015;83(8):3325-33; doi: 10.1128/IAI.00430-15. 97. Opoku-Temeng C, Malachowa N, Kobayashi SD, DeLeo FR. Innate host defense against Klebsiella pneumoniae and the outlook for development of immunotherapies. J Innate Immun. 2022;14(3):167-81; doi: 10.1159/000518679. 98. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3); doi: 10.1128/CMR.00001-19. 99. Calfee DP. Recent advances in the understanding and management of Klebsiella pneumoniae. F1000Res. 2017;6:1760; doi: 10.12688/f1000research.11532.1. 100. Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015-2017. Infect Control Hosp Epidemiol. 2020;41(1):1-18; doi: 10.1017/ice.2019.296. 101. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-301; doi: 10.1017/ice.2016.174. 102. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112(27):E3574-81; doi: 10.1073/pnas.1501049112. 103. Palma E, Tilocca B, Roncada P. Antimicrobial resistance in veterinary medicine: an overview. Int J Mol Sci. 2020;21(6); doi: 10.3390/ijms21061914. 104. Hornsey M, Phee L, Woodford N, Turton J, Meunier D, Thomas C, et al. Evaluation of three selective chromogenic media, CHROMagar ESBL, CHROMagar CTX-M and CHROMagar KPC, for the detection of Klebsiella pneumoniae producing OXA-48 carbapenemase. J Clin Pathol. 2013;66(4):348-50; doi: 10.1136/jclinpath-2012-201234. 105. Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med. 2004;199(5):697-705; doi: 10.1084/jem.20030857. 106. Liu FL, Kuan NL, Yeh KS. Presence of the extended-spectrum β-lactamase and plasmid-mediated AmpC-encoding genes in Escherichia coli from companion animals-a study from a university-based veterinary hospital in Taipei, Taiwan. Antibiotics (Basel). 2021;10(12); doi: 10.3390/antibiotics10121536. 107. Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T, Usui M, et al. Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Front Microbiol. 2016;7:1021; doi: 10.3389/fmicb.2016.01021. 108. Liu Y, Yang Y, Chen Y, Xia Z. Antimicrobial resistance profiles and genotypes of extended-spectrum β-lactamase- and AmpC β-lactamase-producing Klebsiella pneumoniae isolated from dogs in Beijing, China. J Glob Antimicrob Resist. 2017;10:219-22; doi: 10.1016/j.jgar.2017.06.006. 109. Rubin JE, Pitout JD. Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet Microbiol. 2014;170(1-2):10-8; doi: 10.1016/j.vetmic.2014.01.017. 110. Lin WP, Wang JT, Chang SC, Chang FY, Fung CP, Chuang YC, et al. The antimicrobial susceptibility of Klebsiella pneumoniae from community settings in Taiwan, a trend analysis. Sci Rep. 2016;6:36280; doi: 10.1038/srep36280. 111. Yan JJ, Hsueh PR, Lu JJ, Chang FY, Shyr JM, Wan JH, et al. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother. 2006;50(5):1861-4; doi: 10.1128/AAC.50.5.1861-1864.2006. 112. Marques C, Menezes J, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, et al. Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: population structure, antimicrobial resistance and virulence genes. J Antimicrob Chemother. 2019;74(3):594-602; doi: 10.1093/jac/dky499. 113. Haenni M, Ponsin C, Metayer V, Medaille C, Madec JY. Veterinary hospital-acquired infections in pets with a ciprofloxacin-resistant CTX-M-15-producing Klebsiella pneumoniae ST15 clone. J Antimicrob Chemother. 2012;67(3):770-1; doi: 10.1093/jac/dkr527. 114. Rodrigues C, Machado E, Ramos H, Peixe L, Novais A. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: a successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int J Med Microbiol. 2014;304(8):1100-8; doi: 10.1016/j.ijmm.2014.08.003. 115. Vubil D, Figueiredo R, Reis T, Canha C, Boaventura L, GJ DAS. Outbreak of KPC-3-producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiol Infect. 2017;145(3):595-9; doi: 10.1017/S0950268816002442. 116. Kuan NL, Chang CW, Lee CA, Yeh KS. Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the urine of dogs and cats suspected of urinary tract infection in a veterinary teaching hospital. Taiwan Veterinary Journal. 2016;42(03):143-8; doi: 10.1142/s1682648515500274. 117. Maeyama Y, Taniguchi Y, Hayashi W, Ohsaki Y, Osaka S, Koide S, et al. Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet Microbiol. 2018;216:183-9; doi: 10.1016/j.vetmic.2018.02.020. 118. Wohlwend N, Endimiani A, Francey T, Perreten V. Third-generation-cephalosporin-resistant Klebsiella pneumoniae isolates from humans and companion animals in Switzerland: spread of a DHA-producing sequence type 11 clone in a veterinary setting. Antimicrob Agents Chemother. 2015;59(5):2949-55; doi: 10.1128/AAC.04408-14. 119. Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front Cell Infect Microbiol. 2021;11:738223; doi: 10.3389/fcimb.2021.738223. 120. Candan ED, Aksöz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol. 2015;62(4):867-74; doi: 10.18388/abp.2015_1148. 121. Remya PA, Shanthi M, Sekar U. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J Med Microbiol. 2019;37(2):210-8; doi: 10.4103/ijmm.IJMM_19_157. 122. Soltani E, Hasani A, Rezaee MA, Pirzadeh T, Oskouee MA, Hasani A, et al. Virulence characterization of Klebsiella pneumoniae and its relation with ESBL and AmpC β-lactamase associated resistance. Iran J Microbiol. 2020;12(2):98-106. 123. Lam MMC, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med. 2018;10(1):77; doi: 10.1186/s13073-018-0587-5. 124. Dereeper A, Gruel G, Pot M, Couvin D, Barbier E, Bastian S, et al. Limited transmission of Klebsiella pneumoniae among humans, animals, and the environment in a Caribbean Island, Guadeloupe (French West Indies). Microbiol Spectr. 2022;10(5):e0124222; doi: 10.1128/spectrum.01242-22. 125. Zhang Z, Lei L, Zhang H, Dai H, Song Y, Li L, et al. Molecular investigation of Klebsiella pneumoniae from clinical companion animals in Beijing, China, 2017-2019. Pathogens. 2021;10(3); doi: 10.3390/pathogens10030271. 126. Zhang Z, Zhang L, Dai H, Zhang H, Song Y, An Q, et al. Multidrug-resistant Klebsiella pneumoniae complex from clinical dogs and cats in China: molecular characteristics, phylogroups, and hypervirulence-associated determinants. Front Vet Sci. 2022;9:816415; doi: 10.3389/fvets.2022.816415. 127. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002;46(1):1-11; doi: 10.1128/AAC.46.1.1-11.2002. 128. Rensing KL, Abdallah HM, Koek A, Elmowalid GA, Vandenbroucke-Grauls C, Al Naiemi N, et al. Prevalence of plasmid-mediated AmpC in Enterobacteriaceae isolated from humans and from retail meat in Zagazig, Egypt. Antimicrob Resist Infect Control. 2019;8:45; doi: 10.1186/s13756-019-0494-6. 129. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol. 2005;43(8):4163-7; doi: 10.1128/JCM.43.8.4163-4167.2005. 130. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188; doi: 10.1038/s41467-021-24448-3. 131. Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017;19:98-106; doi: 10.1016/j.ebiom.2017.04.032. 132. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasevic AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-63; doi: 10.1016/S1473-3099(16)30257-2. 133. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012-2013. JAMA. 2015;314(14):1479-87; doi: 10.1001/jama.2015.12480. 134. Zhou K, Xiao T, David S, Wang Q, Zhou Y, Guo L, et al. Novel subclone of carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China. Emerg Infect Dis. 2020;26(2):289-97; doi: 10.3201/eid2602.190594. 135. Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, et al. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis. 2014;14:659; doi: 10.1186/s12879-014-0659-0. 136. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother. 2006;57(1):154-5; doi: 10.1093/jac/dki412. 137. Aryal SC, Upreti MK, Sah AK, Ansari M, Nepal K, Dhungel B, et al. Plasmid-mediated AmpC β-lactamase CITM and DHAM genes among gram-negative clinical isolates. Infect Drug Resist. 2020;13:4249-61; doi: 10.2147/IDR.S284751. 138. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40(6):2153-62; doi: 10.1128/JCM.40.6.2153-2162.2002. 139. Yu WL, Ko WC, Cheng KC, Lee CC, Lai CC, Chuang YC. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis. 2008;62(1):1-6; doi: 10.1016/j.diagmicrobio.2008.04.007. 140. Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, Lee CC, et al. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis. 2006;42(10):1351-8; doi: 10.1086/503420. 141. Lin JC, Koh TH, Lee N, Fung CP, Chang FY, Tsai YK, et al. Genotypes and virulence in serotype K2 Klebsiella pneumoniae from liver abscess and non-infectious carriers in Hong Kong, Singapore and Taiwan. Gut Pathog. 2014;6:21; doi: 10.1186/1757-4749-6-21. 142. Compain F, Babosan A, Brisse S, Genel N, Audo J, Ailloud F, et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol. 2014;52(12):4377-80; doi: 10.1128/JCM.02316-14. 143. Fu L, Huang M, Zhang X, Yang X, Liu Y, Zhang L, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals. Microb Pathog. 2018;116:168-72; doi: 10.1016/j.micpath.2018.01.030. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88851 | - |
| dc.description.abstract | 當包括細菌、病毒、真菌和寄生蟲等各種類型的微生物發生進化變化,使其對治療產生抗藥性時,就會出現所謂抗生素抗藥性的問題。這種現象對治療細菌感染的症狀上產生了極大的挑戰,也增加了疾病傳播、患病和死亡的風險。第三代頭孢菌素是用於對抗嚴重人類疾病的重要抗生素。頭孢菌素是屬於乙內醯氨類的抗生素,通過抑制細菌細胞壁的合成達到殺菌的作用。然而,有些細菌已經發展出可以產生乙內醯氨酶,用來分解乙內醯氨分子,使抗生素失效。肺炎克雷伯氏菌是一種屬於腸桿菌科的革蘭氏陰性、伺機性細菌,是造成肺炎、尿道感染、腦膜炎和血液感染等常見院內感染的原因。除了大腸桿菌外,肺炎克雷伯氏菌也是伴侶動物細菌性尿道感染的重要因子。基於從患有尿道感染的伴侶動物所分離出攜帶有超廣譜乙內醯氨酶,以及由質體所攜帶的AmpC的肺炎克雷伯氏菌,其在臺灣的盛行率與細菌相關的研究資訊有限,因此,本研究目的將分析自 2014 年至 2019 年間,從國立臺灣大學附設動物醫院就診之犬貓的尿液樣本內,分離出的 70 株肺炎克雷伯氏菌中的多重抗藥性基因,並進行闡述。初步使用CHROMagar ESBL培養基,篩選出帶有超廣譜乙內醯氨酶的肺炎克雷伯氏菌,隨後再採用由臨床和實驗室標準協會所頒定的表現型鑑定方法加以確認。利用聚合酶鏈鎖反應檢測這些分離株中的ESBL編碼基因,其中有19個分離株帶有屬於 blaCTX-M-1、blaCTX-M-9 和 blaSHV 組別的ESBL基因,而隸屬於 blaTEM、blaCTX-M- 2、blaCTX-M-8、blaCTX-M-25的組別之基因均未檢測到。 另外,利用相同的實驗方法檢測可發現70個肺炎克雷伯菌分離株中,有56個分離株存在pAmpC編碼基因,分別為blaCIT和blaDHA。總體而言,在所有樣本中有81% (57/70) 的分離株帶有ESBL和/或pAmpC基因。利用多重基因座序列分型法分析57株肺炎克雷伯氏菌在流行病學上的相關性,發現最普遍的序列類型是ST11 (7/57)、ST15 (6/57)和ST655 (6/57)。此外,使用聚合酶鏈鎖反應檢測 9 個毒力基因來評估每株具有抗藥性的肺炎克雷伯氏菌分離株中的 ESBL 和/或 pAmpC之毒力特徵。結果顯示主要的毒力基因型包括了wabG、uge、entB、mrkD和fimH。為測試超廣譜乙內醯氨酶基因以及由質體所攜帶的AmpC基因是否存在轉移性,使用大腸桿菌J53菌株作為接受體進行接合試驗,分別測試41株細菌,其中有43.9% (18/41) 的分離株之抗藥性基因成功轉移至大腸桿菌J53菌株中。由聚合酶鏈鎖反應的結果顯示,15株轉化接合子攜帶超廣譜乙內醯氨酶基因以及由質體所攜帶的AmpC基因,而3株轉化接合子僅攜帶質體所攜帶的AmpC基因。然而,有些 blaCIT基因並沒有成功轉移。最後,以抗微生物製劑敏感性試驗,評估57株肺炎克雷伯氏菌分離株對不同類別抗菌藥物的敏感性。含有ESBL基因的菌株對大多數乙內醯胺類和氟喹諾酮類抗生素表現出較高的耐藥性,但對胺基醣苷類和磺胺類抗生素的耐受程度相對較低。有趣的是,7% (4/57) 的分離株對屬於碳青黴烯類抗生素中的亞胺培南具有耐藥性,但這是一種僅允許人類使用的抗微生物藥物,而這種可能存在於人類和伴侶動物之間的細菌耐藥基因的傳播能力,即可能構成人類醫學的重大威脅。後續我們將收集更多來自國內動物醫院中,造成伴侶動物的尿道感染之肺炎克雷伯氏菌的臨床檢體,其所帶有的ESBL和pAmpC基因進行更詳細的闡述,期望能建構出臺灣關於伴侶動物的肺炎克雷伯氏菌之抗生素抗藥性基因資料庫。 | zh_TW |
| dc.description.abstract | Antimicrobial resistance (AMR) occurs when various types of microbes, including bacteria, viruses, fungi, and parasites, undergo evolutionary changes that render them resistant to modern medicine. This phenomenon poses significant challenges in the treatment of infections and increases the risk of disease spread, illness, and mortality. Third-generation cephalosporins (3GCs) are the most common antimicrobial drugs currently used to combat severe human diseases. Cephalosporins belong to the β-lactam class of antimicrobials and work by inhibiting the synthesis of bacterial cell walls. However, certain bacteria have developed the ability to produce β-lactamase enzymes such as extended-spectrum β-lactamase (ESBL) and plasmid-encoded AmpC (pAmpC) that break down β-lactam molecules, rendering the antimicrobial drugs ineffective. Klebsiella pneumoniae, a gram-negative opportunistic bacterium that belongs to the Enterobacteriaceae family, is a common cause of nosocomial infections such as pneumonia, urinary tract infections (UTIs), meningitis, and bloodstream infections. Apart from E. coli, K. pneumoniae is also a significant contributor of bacterial UTIs in companion animals. This study aims to characterise the prevalence of ESBL and pAmpC-producing K. pneumoniae in companion animals with UTI in Taiwan. Seventy K. pneumoniae isolates were obtained from the urine of dogs and cats admitted to the National Taiwan University Veterinary Hospital between 2014 and 2019. The ESBL-producing K. pneumoniae were initially identified using CHROMagar ESBL and subsequently phenotypically screened using a confirmatory disc test specified by the Clinical and Laboratory Standards Institute (CLSI). Polymerase chain reaction (PCR) was then used to detect ESBL-encoding genes from these isolates and it was found that 19 contained ESBL genes from the blaCTX-M-1, blaCTX-M-9, and blaSHV groups, while the blaTEM, blaCTX-M-2, blaCTX-M-8, and blaCTX-M-25 groups were not detected. PCR was also used to detect pAmpC-encoding genes in the 70 K. pneumoniae isolates and it was found that blaCIT and blaDHA groups were present in 56 isolates. Overall, ESBL and/or pAmpC genes were detected in 81% (57/70) of the isolates. Multi-locus sequence typing (MLST) was used to gain epidemiological insights into the relatedness of the 57 isolates, with the most prevalent sequence types being ST11 (7/57), ST15 (6/57), and ST655 (6/57). Furthermore, the virulence profiles of each ESBL and/or pAmpC-producing K. pneumoniae were assessed using PCR to detect 9 virulence genes. The primary virulence genotype identified included wabG, uge, entB, mrkD, and fimH. To observe the transferability of ESBL and pAmpC genes, a conjugation test was performed using an E. coli J53 strain as the recipient. Of the 41 isolates that were tested, 43.9% (18/41) were able to transfer resistant genes to the E. coli J53 strain. The PCR results showed that 15 of the transconjugates carried ESBL and pAmpC genes, while 3 carried only pAmpC genes. However, some blaCIT genes were not successfully transferred. Finally, an antimicrobial susceptibility test was conducted to evaluate the susceptibilities of the 57 K. pneumoniae isolates to different classes of antimicrobial drugs. The isolates that contained ESBL genes exhibited high resistance to most β-lactams and fluoroquinolones, but showed comparatively lower rates of resistance to aminoglycosides and sulfonamides. Interestingly, 7% (4/57) of the isolates were resistant to imipenem, a carbapenem, an antimicrobial approved for human use only. The spread of resistant genes between humans and companion animals could pose a significant threat to human medicine. In the future, we might collect more clinical samples from other animal hospitals across the country to further contribute to a database on ESBL and pAmpC genes carried by K. pneumoniae that cause UTI in companion animals in Taiwan. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T18:03:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T18:03:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
ACKNOWLEDGEMENTS II 摘要 III ABSTRACT V CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 SECTION 1 THE PREDICAMENT OF ANTIMICROBIAL RESISTANCE 3 2.1.1 Defining AMR 3 2.1.2 Consequences and Public Health Concerns 3 2.1.3 Causes of AMR 4 SECTION 2 Β-LACTAM ANTIBIOTICS 4 2.2.1 Mechanism of Action 5 2.2.2 β-Lactam Antibiotics Classification 5 SECTION 3 DRUG RESISTANCE MECHANISMS 7 2.3.1 Porins 8 2.3.2 Efflux Pumps 8 2.3.3 Target Modification 9 2.3.4 Enzymatic Inactivation 10 SECTION 4 EXTENDED-SPECTRUM Β-LACTAMASES 11 2.4.1 Ambler Classification 11 2.4.2 ESBLs 11 2.4.3 pAmpCs 14 SECTION 5 KLEBSIELLA PNEUMONIAE 14 2.5.1 Klebsiella pneumoniae Virulence Factors 16 2.5.2 Hypervirulent Klebsiella pneumoniae 18 2.5.3 Klebsiella pneumoniae Resistance 19 SECTION 6 STUDY MOTIVATION 20 CHAPTER 3 MATERIALS AND METHODS 21 SECTION 1 SAMPLE SOURCE 21 SECTION 2 ESBL PHENOTYPE TESTS 21 3.2.1 ESBL Screening 21 3.2.2 Combination Disc Tests 21 SECTION 3 BLA GENE DETECTION 22 SECTION 4 MULTI-LOCUS SEQUENCE TYPING (MLST) 23 SECTION 5 VIRULENCE GENE DETECTION 24 SECTION 6 HYPERMUCOVISCOSITY STRING TEST 25 SECTION 7 CONJUGATION TEST 25 SECTION 8 ANTIMICROBIAL SUSCEPTIBILITY TEST 25 CHAPTER 4 RESULTS 27 SECTION 1 OCCURRENCE OF ESBL AND/OR PAMPC GENES 27 SECTION 2 PHYLOGENETIC ANALYSIS OF ISOLATES 28 SECTION 3 VIRULENCE PROFILES 28 SECTION 4 HYPERMUCOVISCOSITY STRING TEST 28 SECTION 5 CONJUGATION TEST 29 SECTION 6 ANTIMICROBIAL SUSCEPTIBILITY TEST 29 CHAPTER 5 DISCUSSION 30 REFERENCES 37 APPENDIX 74 | - |
| dc.language.iso | en | - |
| dc.subject | 多重基因座序列分型法 | zh_TW |
| dc.subject | 超廣譜乙內醯氨酶 | zh_TW |
| dc.subject | 質體所攜帶的AmpC | zh_TW |
| dc.subject | 肺炎克雷伯氏菌 | zh_TW |
| dc.subject | 抗菌劑抗藥性 | zh_TW |
| dc.subject | Antimicrobial resistance | en |
| dc.subject | Plasmid-encoded AmpC | en |
| dc.subject | Klebsiella pneumoniae | en |
| dc.subject | Extended-spectrum β-lactamases | en |
| dc.subject | Multi-locus sequence typing | en |
| dc.title | 從患有尿道感染的寵物所分離出的具有超廣譜乙內醯氨酶與pAmpC的肺炎克雷伯氏菌之分離率及特性 | zh_TW |
| dc.title | Occurrence and characterisation of extended-spectrum β-lactamase and pAmpC-producing Klebsiella pneumoniae isolated from companion animals with urinary tract infections | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳柏文;陳正文 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Wen Chen;Zeng-Weng Chen | en |
| dc.subject.keyword | 超廣譜乙內醯氨酶,質體所攜帶的AmpC,肺炎克雷伯氏菌,抗菌劑抗藥性,多重基因座序列分型法, | zh_TW |
| dc.subject.keyword | Extended-spectrum β-lactamases,Plasmid-encoded AmpC,Klebsiella pneumoniae,Antimicrobial resistance,Multi-locus sequence typing, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202301043 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 8.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
